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PROBLEM SET

Universal Prethermal Dynamics in Quantum Magnets and Fracton Fluids

Problem 1: Kinetic theory of bosons in the presence of a condensate.

Consider a gas of weakly-interacting bosons

H =

∫
ddx
∇ψ†∇ψ

2m
+ g(ψ†ψ)2. (1)

A finite number of bosons is pumped at high energies at time t = 0.

(a) Show that, once enough particles cascade down in energy and start condensing, the

fluctuations on top of the condensate have dispersion ωk = k
√

2ρ0 + k2, and the lowest

order resonant interaction is three-wave scattering with matrix element:

V (3) =

√
ρ0ω1ω2ω3

2(2π)d/2

[
12

√
α1α2α3

+
k1 · k2

k1k2α3
+

k2 · k3

α1k2k3
+

k1 · k3

k1α2k3

]
. (2)

Here ρ0 = ψ†0ψ0 is the condensate density, and αk is defined as αk = 2ρ0 + k2.

(b) Keeping only the leading order term V (3) ≈
√
k1k2k3

ρ
1/4
0

, find the scaling exponents α and

β for 〈ψ†kψk〉 ∼ tαf(tβ|k|) describing fluctuations of the order parameter.

Problem 2: Energy-scaling approach to find coarsening laws.

Let’s consider the simplest case of a coarsening law in a d-dimensional systems with an

ordering field ~φ with n components. Let’s assume n > d such that topological defects are

not allowed. The equations of motion of the field ~φk is given by ∂t~φk = − δH

δ~φ−k
, and let’s

assume the structure factor obeys the simple scaling law 〈~φ−k~φk〉 ∼ Ldf(kL) containing

only a single scaling parameter L(t). Show that the rate of dissipated energy obeys the law:

dε

dt
=

∫
ddk〈 δH

δ~φk

~̇φk〉 ∼
L̇2

L2
(3)

In addition, show that if the ‘elastic’ energy stored in the ordering field is given by ε =∫
ddx〈∇~φ · ∇~φ〉, then ε ∼ 1/L2. By equating the decrease of energy of the ordering field

and the dissipation rate, argue that L ∼ t1/2, or β = 1/2.

For more general growth laws in the presence of topological defects, see Bray, Advances in

Physics 43, 357 (1994).
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Problem 3: Dynamic instabilities in a spin chain.

Consider the one-dimensional Heisenberg model

H = J
∑
i

Si · Si+1, (4)

where the initial state is a product state of spin spiraling in real space 〈Sxi 〉 = S cos(qri),

〈Syi 〉 = S sin(qri), and 〈Szi 〉 = 0. By doing a linearized analysis in terms of Bosonic exci-

tations or, alternatively, classical spins, find the most unstable modes that will govern the

short time dynamics of the correlation function 〈Sz−k(t)Szk(t)〉.

Problem 4: Hydrodynamics of a rotor model.

Consider the d-dimensional rotor model:

H =
∑
i

p2i
2I
−
∑
〈i,j〉

cos(θi − θj), (5)

Assume first that the initial state has energy larger than the critical temperature (or the

BKT temperature if d = 2).

(a) How many conservation laws does the system have?

(b) Derive the hydrodynamic equations for the conserved quantities of the systems. Are

there any ballistic modes?

(c) Assume now that the energy of the system is below the critical (or BKT) temperature.

How would you modify the hydrodynamic equations?

Problem 5: Microscopic model with dipole conservation.

Consider the classical model

H =

N∑
i=1

(pi+1 − pi)2

2
+ V (xi − xi+1), (6)

where pi is the momentum of particle i, xi is the position of particle i, and V (x) is a generic

polynomial V (x) = V2x
2 + V3x

2 + . . ..

(a) Using the Poisson bracket {xi, pj} = δi,j , show that the charges Q =
∑

i 1, D =
∑

i xi,

and P =
∑

i pi, obey the classical multipole algebra {D,P} = Q, while all other Poisson

brackets vanish.

(b) Show that Q, D, and P commute with H, thus we have a spatially local theory with

charge, dipole and momentum conservation (also energy, but this can easily be removed by

adding noise).
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