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* Local position invariance
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Testing General Relativity

= Tests of basic principles of a (metric) " Testsin the |.aost-Newtonia.n regime
theory of gravity - ?aram;:trlzed post-Newtonian (PPN)
ormaiism

= Universality of free fall
= Local Lorentz invariance ¢/c?> =GM/Rc? < 1, v/c K1
* Local position invariance
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Testing General Relativity

= Tests of basic principles of a (metric)

theory of gravity
= Universality of free fall

* Local Lorentz invariance
* Local position invariance

= Tests in the post-Newtonian regime
= Parametrized post-Newtonian (PPN)

formalism

¢/c? = GM/Rc? < 1,

v/c K1

Parameter Effect Limit Remarks
S | timne delay 2.3 x 10°° Chassini tracking
light deflection 4x10™1 VLBI
31 peribelion shift 3x<107° Jo = 1077 from helioseismology
Nordtvedt effect 23 x 10 nn = 48 — 4 — 3 assumed
£ Earth tides - gravimeter data
0 orbital polarization 04 Lunar laser ranging
2x 104 PSR J2317+1439
vy spin precession 4x 107 solar alignment with ecliptic
oy pulsar acceleration 4 x 1020 pulsar P statistics
N Nordtyvedt effect 9x 10t lunar laser ranging
G 2x107? combined PPN bounds
Ca hinary acceleration 4% 1070 P, for PSR 1913+16
(3 Newton's Jrd law 10" lunar acceleration
C4 not independent (see Equation (55))

Table 4: Current limits on the PPN parameters. Heve ny s o combination of other parameters

given by gy = 43—

~ 3~ 10&/3 — ay + 200/3 - 20, /3 - (/3.

Will (2006)
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Testing General Relativity

theory of gravity

= Tests of basic principles of a (metric)

= Universality of free fall
* Local Lorentz invariance
* Local position invariance

PHYSICAL REVIEW LETTERS
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= Tests in the post-Newtonian regime
= Parametrized post-Newtonian (PPN)

formalism

¢/c? = GM/Rc? < 1,

v/c K1

Parameter Effect Limit Remarks
+=-1 time delay 23 % 107" Cassini tracking
light deflection 4x 104 VLBI
G—1 perihelion shift 3x107% Ja = 1077 from helioseismology
Nordtvedt effect 2.3 x 10~ nn = 48 — 4 — 3 assumed
£ Earth tides {5 g2 gravimeter data
0 orbital polarization 104 Lunar laser ranging
2x 10 PSR J2317+1439
o spin precession x 1077 solar alignment with ecliptic
oy pulsar acceleration % 102" pulsar P statistics
NN Nordtvedt effect 9x10* lunar laser ranging
G 2x 1072 combined PPN bounds
) hinary acceleration 4% 107" P,. for PSR 1913+16
(3 Newton's drd law 10" lunar acceleration
Cs not independent (see Equation (55))

l'able 4:
given by gy = 43— 5 =3 < 10£/3 — ay + 200/3 - 2(, /3 - (/3.

Current limits on the PPN parameters. Here gy s« combination of other parameters

Will (2006)
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Testing General Relativity

= Tests of basic principles of a (metric) " Testsin the |.Dost-Newtonia.n regime
theory of gravity - ?aram;:tnzed post-Newtonian (PPN)
ormaiism

= Universality of free fall
= Local Lorentz invariance ¢/c?> =GM/Rc? < 1, v/c K1
* Local position invariance

= Tests in the “strong gravity” regime
= Black holes ¢/c?~0.5
= Neutronstars  ¢/c?~0.2 — 0.3

= Tests in the radiative regime
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Limitations of the pN expansion: the rise of
nonperturbative effects
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Post-Newtonian expansion

Small parameters:

v: GM «1 Vine GM <1

c2’rc? ] | c? 'I?C2 )

slowly moving weakly
gravitating

Post-Newtonian Numér.l cal Perturbation
, relativity
expansion : . theory
simulations |

3 — >
AN =

time

Thorne (1994)
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Post-Newtonian expansion

, Numerical :
Small parameters: Post-Newtonian relativity Perturbation
expansion : . theory
v2 GM v, GM simulations |
—, 5 K< 1 — K 1 B
c?2'rc? | | c? "Rc? ] \_\ s
slowly moving weakly % &g G
ravitatin éﬁ
2 g S b

=  Wider applicability in GR

> <@ 5
e 03 L' =
due to the Strong A

Equivalence Principle! h

time

Thorne (1994)
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Post-Newtonian expansion

Small parameters:

g <1 Vine GM <1
c?’'rc® ) | c? 'I?c2 )
Y .
slowly moving weakly
gravitating

=  Wider applicability in GR
due to the Strong
Equivalence Principle!

" Modified theories of gravity in
general do not obey the SEP,
even allowing for non-
perturbative strong field effects!

xS

Post-Newtonian
expansion

Numerical
relativity
simulations |

Perturbation

theory

Thorne (1994)

time
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Case study: Scalar-tensor theories

1
161G

s | @x V=glR - 20" 0,90,0] + S [ ()90

|

Universal coupling to
“physical” metric
guv = a(¢)29uv

See also: Doneva et al. (2022),“Scalarization”
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Case study: Scalar-tensor theories

1

S =
l6mG

J d*x =g[R — 29"V 3,0, }] + Sy [Pm; ?(¢)2gﬂv}]
|

Universal coupling to
“physical” metric
gyv = a(qb)zguv

* For a system of N non-self-gravitating point particles:
N N
Sm = — 2 JﬁiAdgA - - z fﬁlA\/_guv(xA)dxng
A=1 A=1

S = = i | Maa@ ey = - i [ ma@ads,
A=1 Y A=1

Effective coupling:

my(p(x4)) () = dlna(¢) dlnm(¢)
- d¢  do
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Case study: Scalar-tensor theories

1

S =
l6mG

J d*x =g[R — 29"V 3,0, }] + Sy [Pm; ?(¢)2gﬂv}]
|

Universal coupling to
“physical” metric
gyv = a(qb)zguv

* For a system of N self-gravitating point particles, Eardley (1975) suggests
skeletonizing the action as

S = —EN: | mat@)ds, = - i | ma@)ds,
A=1 A=1

— field dependent binding energy

Body-dependent effective coupling:

dInmy(¢p)
ay () = d(; * See also Damour and

Esposito-Farese (1992)
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Case study: Scalar-tensor theories

e Let: D = (g/w - fuv» ¢ — ¢0)

o : matter variables

5SEE 8Se  8S,,
- GF GF = + =0
* Total action: S0, @] = S&" [P] + S;[0, P] 5 O 5P
| 5Sfor  OSm 0
( So|P] + GF terms | 5S¢  So

Following Damour & Esposito-Farese (1996)
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Case study: Scalar-tensor theories

Let: @ = (g/w - fuw ¢ — ¢0)

o : matter variables

Total action:  Sif[o, @] = SSF[P] + S, [0, P]
\
( So[®] + GF terms \

Strategy:
8Stot — B[]
= a

oD ‘

solve perturbatively!

Fokker action:
Selo] = Stotlo, ®[o]]

Following Damour & Esposito-Farese (1996)
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Case study: Scalar-tensor theories

Following Damour & Esposito-Farese (1996)
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Case study: Scalar-tensor theories

Following Damour & Esposito-Farese (1996)

5Sak _
P= 0 5$t =0 = ®o]
o= O I T
—® = O + + + + +O(cr4)
Pld = @ l
dP=—@
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Case study: Scalar-tensor theories

Following Damour & Esposito-Farese (1996)
2. Sglo] = Sitlo, ®[a]]

e o
SHol=Solol+ {1 o—e-1 —‘Nf‘—lX} L0 ()
©

3. Spin-0,2 propagators: > e L F e :
|~ 1 y P ER R IR R
= B i b i

& 2= K K i

§ E E :Z; E 4. Expansion in v/c, GM/RC2
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Case study: Scalar-tensor theories

) .. QB0 G.
* Newtonian limit;

Gap = G[1 + (agap)o] O—O0 Guo?
o o

dinm,(¢)
d¢o P=¢o

6;240 = ay(¢o) =
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Case study: Scalar-tensor theories

. .. QT85O Ga
* Newtonian limit:
Gag = G[1 + (agap)o] O—0O Guo?
o o
* 1PN parameters:
s = 2(agap)o ,B_A _ 1 (agBaac)o
4B+ (agap)o’ PO 21+ (aAaB)O]‘ [1+ (“A“c)o]
dO(A

BAO -
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Case study: Scalar-tensor theories

] .. QB0 Gs
* Newtonian limit:
Gap = G[1 + (ayap)o] O—0O Guc?
o. o

* 1PN parameters: o o
g = 2(aqag), A =1 (agBaac)o (\f
AB 1+ (agag)y’ P21 + (aqap)ol[1 + (aqac)o]

e 2PN parameters: EgCD’ (ABCD

B



Gravitational Waves Meet Amplitudes in the Southern Hemisphere

Case study: Scalar-tensor theories

* Newtonian limit: .
Gap = G[1+ (agap)o] O—O0 G.d?
o o
* 1PN parameters: o o
g = — 2(aqag), =4 _ 1 (agBaac)o C\/)
AB 1+ (aqag),’ P21 + (aqap)ol[1 + (aqac)o]

B

2PN parameters: €4.p, (agchp

For any PN order: corrections proportional to a%,.
|_> constant if non-self-gravitating

dInmy,(¢) _ dIn[iy (¢)a(d)] |
d¢ d=¢, d¢ P=do

a0 = as(Pg) =
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Case study: Scalar-tensor theories

Newtonian limit;

Gap = G[1+ (agag)o]

1PN parameters:

_ 2(C(AC(B)O A
Yap = 1+ (aqap)o’ Ps

2PN parameters: €4.p, (agchp

dl
a0 = as(Pg) = nZ:;((p)

GmA.

Expand in C4 =

Ryc?’ —

O7B855N0O G.

o

1 (agBaac)o

o

O—0O G.o?

For any PN order: corrections proportional to a%,.

€T 211+ (@aap)ol[1 + (@aac)o]

< 7

B

|_> constant if non-self-gravitating

_ dIn[my(P)al)]

b=do d¢

(Damour & Esposito-Farese, 1992)

. ag =dlna(¢) /do

|¢=¢o

Xpo = ao[l + Ach + Aij + ]

bo
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Case study: Scalar-tensor theories

. .. Q788850  Ga
* Newtonian limit:
Gap = G[1+ (aaap)o] O0—0O Guod
o o
* 1PN parameters: o o
= 2(aqag), ,B_A _ 1 (agBaac)o C\/O
AB 1+ (aqag),’ P21 + (aqap)ol[1 + (aqac)o]

2PN parameters: €4.p, (agchp

dl
a0 = as(Pg) = HZZ;@)

GmA.

Expand in C4 =

Ryc?’ —

B

This seems to imply that a
theory with ¢y = 0 would

For any PN order: corrections proportional to a%,. be indistinguishable from GR

to any PN order.

_ dIn[my(P)ale)]

b=¢o d¢ |¢=¢>o

Xpo = ao[l + Ach + Aij + ]

(Damour & Esposito-Farese, 1992)

. ag =dlna(¢) /do

bo
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Case study: Scalar-tensor theories

* Limitation of the post-Newtonian expansion:
Non-perturbative effects make it inappropriate to expand

Qa0 = ao[l + A]_CA +A26j + ]
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Case study: Scalar-tensor theories

* Limitation of the post-Newtonian expansion:
Non-perturbative effects make it inappropriate to expand

Qa0 = ao[l + A]_CA +A26j + ]

R T
€ = _ match<<1

Tmatch D inner problem

’_T

0. | Tmatch = when measured in units of R
e - 0: : .
Tmatch — 0 when measured in units of D

—|—> outer problem

Tmatch
>—0

D R
[Damour & Esposito-Farese (1992)]
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Case study: Scalar-tensor theories

* Limitation of the post-Newtonian expansion:
Non-perturbative effects make it inappropriate to expand

Qa0 = ao 1 +A16A +AZCA

Inner problem:
Solve the TOV-like equations of
hydrostatlc equilibrium with BC
T_’Tmatch
fuv
r_’rmatch ~
— 9

[Damour & Esposito-Farese (1992)]
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Case study: Scalar-tensor theories

* Limitation of the post-Newtonian expansion:
Non-perturbative effects make it inappropriate to expand

Qa0 = ao 1 +A16A +AZCA

Inner problem:
Solve the TOV-like equations of
hydrostatic equilibrium with BC

Y=Tmatch

9w — 29 fuv

r_’rmatch ~

_— ¢

For r/R > 1:
2Gmy(P)
Juv = f/,tv + 2 6;11/ +
2 GmA(¢)aA(¢)
== rc?

[Damour & Esposito-Farese (1992)]
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Case study: Scalar-tensor theories

* Limitation of the post-Newtonian expansion:
Non-perturbative effects make it inappropriate to expand

Qa0 = ao[l + A]_CA +A26j + ]

spontaneous scalarization
, |

03_, ——

— ‘PA — 10_4

pe [x10Mg/cm’]
ag = 2§¢o + 0(¢g)?

[R. Mendes &T. Ottoni (2019)] For a nonminimally coupled scalar field, with coupling ER®?
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Testing General Relativity

Limitations of the pN expansion: the rise of
nonperturbative effects

Accommodating nonperturbative effects: pK, pD & all that
Effective action approach to dynamical scalarization

Going beyond the adiabatic approximation
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Post-Keplerian expansion

Post-Newtonian
expansion

- — <1 — K1
c’rc? c Rc? } /
\ J o | 'L\)—\ Yl

f f

slowly moving weakly ‘\A‘%/—\ ‘Qg}
gravitating "5\_&.@\)

= Modified theories of gravity in
general do not obey the SEP,
even allowing for non- h
perturbative strong field effects!

PN: Small parameters:

Numerical
relativity
simulations |

Perturbation
theory

time

Thorne (1994)
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Post-Keplerian expansion

PN: Small parameters: FESEINGREETER

\ expansion
v GM Vint GM
~ =3 K1 — s K 1
€ rc | L€ & | \_\ /)Y
[ YN Sy —
slowly moving weakly N % RS\.&S}
itati \
gravitating / %\_&_
PK (Post-Keplerian): Small é i\
parameters: *
v GM
~ 3 K1 h
c re

slowly moving

Numerical
relativity
simulations |

Perturbation
theory

time

Thorne (1994)



Post-Keplerian expansion

Gravitational Waves Meet Amplitudes in the Southern Hemisphere

PSR J0348+0432

m. (Solar mass)

0_4v11v

e
W

S
o

0.1

= General Relativity

m,

I

m. (Solar mass)

Wex, 2014

PO WM EETVOR MY T PO W VIS B EA N VO T VN

0.5 1 1.5 2
m, (Solar mass)

25 3

04— ™
0.3+ 5
0.2 m.
0.1F =
[ Wex, 2014
O s s 31 & PP QUTAT RO O AT S (LT (T
0 0.5 | 1.5 2 25 3

= Scalar-tensor theory of Damour
and Esposito-Farese

m,, (Solar mass)
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Dynamical scalarization

RAPID COMMUNMK

PHYSICAL REVIEW D 87, (81506(K) (2013)
Neutron-star mergers in scalar-tensor theories of gravity

006
 bom
M08
. 00 Enrico Barausse,'” Carlos Palenzucla.® Marcelo Pooce,” and Luois Lehner ™

0.0m ' fustitut " Astroplrsigue de Paris/ONRS, Y8bis boalevard Arago, 75014 Parts, Framce

“Depuromens of Physics, Univernity of Guelph, Guelph, Onsurio N1G 2W1, Canada
"Canadian Instiruse for Theoretionl Astrophysicn. Tovontr, Ontirio M5S IHX. Conada
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(Received 21 December 2012; publishad 25 April 2017)

Scalar-semor theories of gravity sre natural phenomenological altcrmatives to General Reldativity, whene
the grovitational interaction s mediated by 3 scalar degree of freadom, besides the nssal temsor gravitons.
In regroax of the paramcier space of these theories where coastrants from both solar system expenments
and binary-pubar observations are satisficd, we show that bimarics of ncutron stars peesent muarked

l oor 009 differcaces from General Refativity in both the late-inspiral and merger phases. In particular. phenomena
oos 0a7 refated o the spontancous scalarization of solated peutron stans ke place in the late stages of the
B 004 005 ewolption of bimary systerm, with importamt cffects in the g &y > We ¢ on the
" o - relevance of our results for the upoomsing Advanced LIGOY Viege detecton.
003
0004 . D.005 DOE 101 10U PhysRevD) 57 081 506 PACS ssmbersc 0430 —w 02250, 976004

color coding: scalar field amplitude
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Dynamical scalarization

RAFID COMMUNMATIONS

PHYSICAL REVIEW D 7, (8150&K) (2013)
Neutron-star mergers in scalar-tensor theories of gravity

Enrico Barausse,'” Carlos Palenzucla.® Marcelo Pooce,” and Luois Lehner ™
' fustitut " Astroplrsigue de Paris/ONRS, Y8bis boalevard Arago, 75014 Parts, Framce
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"Canadian Instituse for Theoretionl Astrophysics, Tovonsr, Ontsrio M5S IHX. Conada
“Perimeter Intiture for Theonenical Phyvics, Waterfon, Ontario N2L 2Y5,. Camada
*Canadiun Instiruse for Advanced Research. Cosmology & Gravity Program. Canada
(Received 21 December 2012; publishad 25 April 2017)
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In these models, spontaneous scalarization of

] T Palenzuela, Barausse, Ponce, Lehner (2014)
isolated stars only possible if § < —4.5
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Dynamical scalarization

— capturing spontaneous scalarization

* The PK formalism avoids expanding ——

GmA GmA 2
1 + A1 RACZ + A2 RACZ + e

2
otz ee 552 -

mu(po) = Mgal(py)

but still expands

ma (@) = my(do)

Ll

missing dynamical scalarization
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Dynamical scalarization

— capturing spontaneous scalarization

* The PK formalism avoids expanding ——

1A, (E1a) 4 g (S 2 +
1 RAC2 2 RACZ
but still expands

ma(@) = ma(do) |1+ (4 <¢ _ ¢O> + C, (cb — o

bo
1010 —
10°

missing dynamical scalarization 10° I
107

10° }
YO [ e

10 | ~..~--°‘~.
10°
107 +
10"

100 bbbl bbbl A Addoaaadd
10”7 10% 10°° 10+ 103

Sennet & Buonnano (2016) Log ¢

mu(po) = Mgal(py)

~
.
-\.

~10*

Ak A A iasl
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Dynamical scalarization

— capturing spontaneous scalarization

* The PK formalism avoids expanding ——

GmA GmA 2
1 + A1 RACZ + A2 RACZ + e

2
ra(E50) (250
0

mu(po) = Mgal(py)

but still expands

ma (@) = my(do)

Ll

missing dynamical scalarization

partial resummation:

“post-Dickean formalism”
10"

100 bbbl b b dasal i adaaal Addoaaadd
v 10”7 10% 10°° 10+ 103

Sennet & Buonnano (2016) Log ¢
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Testing General Relativity

Limitations of the pN expansion: the rise of
nonperturbative effects

Accommodating nonperturbative effects: pK, pD & all that
Effective action approach to dynamical scalarization

Going beyond the adiabatic approximation
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Effective action model for DS

Sennet, Shao, Steinhoff (2017)
Khalil, Sennett, Steinhoff, Buonanno (2019)

2
Sm = —AZ:lij(gb) —utu,do

¢ Same starting point

* |5t step: Reparametrizing in terms of the scalar charge/monopole:
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Effective action model for DS

Sennet, Shao, Steinhoff (2017)
Khalil, Sennett, Steinhoff, Buonanno (2019)

2
Sm = —AZ:lij(gb) —utu,do

¢ Same starting point
* |t step: Reparametrizing in terms of the scalar charge/monopole...

... using a Legendre transformation

my(Q) = my(¢) + Q¢

l

2
Sm=— z J (M4 (Q) — Q¢)/—utu,do
A=1
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Effective action model for DS

Sennet, Shao, Steinhoff (2017)
Khalil, Sennett, Steinhoff, Buonanno (2019)

S = —i j ma ()= wFinydo
A=1

Same starting point

| st step: Reparametrizing in terms of the scalar charge/monopole using a
Legendre transformation:

My (Q) = mu(¢) + Q¢

2"d step: Promote Q to an independent degree of freedom.

3rd step: Power-series expansion

@ NE) @
ma(Q) = ¢ +cMQ+—-0% + 0% + - 0" + 0(Q%)
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Effective action model for DS

Sennet, Shao, Steinhoff (2017)
Khalil, Sennett, Steinhoff, Buonanno (2019)

2
Sm = —AZ:lij(gb) —utu,do

Same starting point

| st step: Reparametrizing in terms of the scalar charge/monopole using a
Legendre transformation:

My (Q) = mu(¢) + Q¢

2"d step: Promote Q to an independent degree of freedom.

3rd step: Power-series expansion

My (Q) = ¢ + ¢ = Qf R Q7+ Q" +0(Q°)

— > Often, S;,; is invariant under ¢ —» —¢@ (or Q — —Q): keep only even terms
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Effective action model for DS

Sennet, Shao, Steinhoff (2017)
Khalil, Sennett, Steinhoff, Buonanno (2019)

S = —i j ma ()= wFinydo
A=1

Same starting point

| st step: Reparametrizing in terms of the scalar charge/monopole using a
Legendre transformation:

Ma(Q) = ma(@) + 0 —~ = ¢~ %o

2"d step: Promote Q to an independent degree of freedom.

3rd step: Power-series expansion

c@ @
F ma(Q) = m'” = ¢oQ + —-Q* + —-Q" + 0(Q%) J

» Often, S¢,¢ is invariant under ¢ — —¢ (or Q — —Q): keep only even terms

— > If ¢y # 0: ¢V = —¢,,.
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Effective action model for DS

Sennet, Shao, Steinhoff (2017)

« Newtonian-order solution: Khalil, Sennett, Steinhoff, Buonanno (2019)

mMa(Q4) mg(Qp)

Juv =Ny + hyy + 0(c™3) » hoo(X,t) = = 5.0 + 5= © +0(c™)
¢=1p+0(c™ lxhoiyé?, t)| = |()x(c‘);l)9 l
l hii(% ) =0(c™)
W(Z,t) = — b, 9% 0(c™

X — Y4 (O] |X—yp(t)]
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Effective action model for DS

Sennet, Shao, Steinhoff (2017)

« Newtonian-order solution: Khalil, Sennett, Steinhoff, Buonanno (2019)

mMa(Q4) mg(Qp)

Juv =Ny + hyy + 0(c™3) » hoo(X,t) = = 5.0 + 5= © +0(c™)
¢ = l/) +0(c™) lxhol-y(l}, t)l = le(c‘%%g |
l hii(% ) =0(c™)
Yt = Qa N QB o

X — Y4 (O] |X—yp(t)]

* Inserting in the matter action one gets:
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Effective action model for DS

Sennet, Shao, Steinhoff (2017)

e Newtonian-order Hamiltonian: Khalil, Sennett, Steinhoff, Buonanno (2019)

-7 -7 _— —

_ _ Pa PB mamp  Qa0p

H = -+ -+ — —

L Ma T s 2my * 2mgpg T r J
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Effective action model for DS

Sennet, Shao, Steinhoff (2017)

e Newtonian-order Hamiltonian: Khalil, Sennett, Steinhoff, Buonanno (2019)

-7 -7 _— —
m,m
H=71_1A+n_13+pf+pf _my B_QAQB
2m, 2mg T r

* Equation of motion for Q4:

0H

(2) Cf(l‘l-) QB
OzﬁzzA _¢0+CA QA+_Q2 +0(Qﬁ)
A

6 r
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Effective action model for DS

Sennet, Shao, Steinhoff (2017)

° Equation Of motion fOI" QA: Khalil, Sennett, Steinhoff, Buonanno (2019)

oH , M Qs
0= 30, Zy <—¢0 +C,c(1 yop +TQ3 -t 0(Q2)
To get an approximate solution:
e zx=1
* Po=0
© my =mg

oOH [1 c@ ]
O = —— = —

L N
a0~ ;¢ 6 ¢
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Effective action model for DS

Sennet, Shao, Steinhoff (2017)

° Equation Of motion fOI" QA: Khalil, Sennett, Steinhoff, Buonanno (2019)

OH ( (2) C,g4) > (B

O0==——=24\ —¢g +c +-=2-03)—-—+0(0;

aQA A ¢O A QA 6 QA r (QA)
To get an approximate solution: + Stability criterion

toaxl 9%H 2

* ¢po=0 OSF=2C(2)——+C(4)Q2
b ﬁlA = mB . Q . (2 r
il violated by Q = 0 if c® < 1/r

oOH [1 c@ ]
O = —— = —

L N
a0~ ;¢ 6 ¢
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Effective action model for DS

* Equation of motion for Q :

* Sennet, Shao, Steinhoff (2017)
e Khalil, Sennett, Steinhoff, Buonanno (2019)

OH
0Q4

@

24 <—¢0 +6Qu+ in) % 1 0@

6 r

To get an approximate solution:

77_1A=77_13

0

Zy =1
$o=0

=50 =

_ZQ [r

» Stability criterion

0°H 2
< —92.,2) _Z (4)p2
O_GQZ 2c 7ﬂ+c Q
violated by Q = 0 if c® < 1/r
1 c@
—_@___p2
c
i

v

e 1fc® < 0,Q = 0is always unstable:
spontaneous scalarization!

* Even if c® > 0, scalarization can occur at
small orbital separations: c(?) < 1/r:
dynamical scalarization!
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Effective action model for DS

* Equation of motion for Q :

* Sennet, Shao, Steinhoff (2017)
e Khalil, Sennett, Steinhoff, Buonanno (2019)

OH ( (2) C,¢(14) ) (B
O0=—=——=24\—¢y t+c +-2-03|-—+0(04
aQA A ¢O A QA 6 QA r (QA)
To getan aPprOXImat.e soZIutE)nl: + Stability criterion
A~ 2
0“H 2
* $o=0 0<——==2c@ ——+4 W2
, violated by Q = 0 if c® < 1/r
oH 1 c®
[ O:—:—Z ——C(Z)—— 2
aQ ¢ [r 6 ¢
Stable solfutions: , e 1fc® < 0,Q = 0is always unstable:
0 forl/r<c® spontaneous scalarization!
Q = 6 |1 * Even if c® > 0, scalarization can occur at
t | [=— c@ forl/r=>c® small orbital separations: c(?) < 1/r:
L ¢ r dynamical scalarization!
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Effective action model for DS

To}

(N

—— Stable
—— Unstable

* Sennet, Shao, Steinhoff (2017)
e Khalil, Sennett, Steinhoff, Buonanno (2019)

in) % 0@

r

ability criterion
0%H 2
_ 9.2 4) 2
OSa—Qz—ZC()—;+C( )Q
olated by Q = 0if c® < 1/r

e

If c® < 0,Q = 0 is always unstable:
spontaneous scalarization!

Even if c(® > 0, scalarization can occur at
small orbital separations: c(?) < 1/r:

dynamical scalarization!
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Testing General Relativity

Limitations of the pN expansion: the rise of
nonperturbative effects

Accommodating nonperturbative effects: pK, pD & all that
Effective action approach to dynamical scalarization

Going beyond the adiabatic approximation
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Effective action beyond adiabatic approx.

* Alternative interpretation as a coarse-grained description:

¢ — ¢IR + ¢UV
L sn

_VAIRRR
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Effective action beyond adiabatic approx.

* Alternative interpretation as a coarse-grained description:

¢ — ¢IR + ¢UV
Loy ss

—> AIR = R
spatially average

Dynamical short-length processes represented
by dynamical variables on the worldline
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Effective action beyond adiabatic approx.

* Alternative interpretation as a coarse-grained description:

¢ — ¢IR + ¢UV
Loy ss

—> /‘lIR = R
Spontaneous scalarization is triggered spatially average

by the instability of the fundamental
(monopolar) scalar mode (¢p-mode) Dynamical short-length processes represented
by dynamical variables on the worldline

107!

1075}

1079}

I ¢c_ ¢()|

1073

10717F
y : 2 3 4 5
EMS)  Mendes & Ortiz (2016)
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Effective action beyond adiabatic approx.

* Alternative interpretation as a coarse-grained description:

¢=¢1R+¢UV

(+) At the onset of spontaneous | v 1. <R
o uv =
scalarization, the ¢p-mode has zero frequency
—> /‘lIR = R
Spontaneous scalarization is triggered spatially average

by the instability of the fundamental

(monopolar) scalar mode (¢p-mode) Dynamical short-length processes represented

by dynamical variables on the worldline

107!

1075}

1079}

I ¢c_ ¢()|

1073

10717}
0 1 2 3 4 5

EMS)  Mendes & Ortiz (2016)
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Effective action beyond adiabatic approx.

* Alternative interpretation as a coarse-grained description:

¢=¢1R+¢UV

(+) At the onset of spontaneous | v 1. <R
o uv =
scalarization, the ¢p-mode has zero frequency
—> AIR = R
Spontaneous scalarization is triggered spatially average

by the instability of the fundamental

(monopolar) scalar mode (¢p-mode) Dynamical short-length processes represented

by dynamical variables on the worldline

|

107!

1075
< ool ‘ Introduce the ¢ mode as a new
S dynamical variable on the worldline:
= y variable on the worldline: g(7)
107

10717}

LIMS)  Mendes & Ortiz (2016)
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Effective action beyond adiabatic approx.

* Alternative interpretation as a coarse-grained description:

¢ — ¢IR + ¢UV
Loy ss

—> AIR = R
spatially average

Dynamical short-length processes represented
by dynamical variables on the worldline

* Expected dynamics of the scalar mode:

cg2d +V'(q) = ¢" ()

C(2
V() ==

‘@

4[ q4‘ _|_ oo

q° +
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Effective action beyond adiabatic approx.

* Alternative interpretation as a coarse-grained description:

¢ — ¢IR + ¢UV
Loy ss

—> AIR = R
spatially average

Dynamical short-length processes represented
by dynamical variables on the worldline

* Expected dynamics of the scalar mode:

q 4 IR crit _ Cq? %)
Cq2q+V(CI)=¢ ) ﬁSNS —deITC[ +¢(y)q—m(q)+...]

|

)
q* + - m(q) = cqy + V(q)

c
V(g) = —

‘@

2
4+



Gravitational Waves Meet Amplitudes in the Southern Hemisphere

Effective action beyond adiabatic approx.

* Before: adiabatic approximation

.\ _ a.\.z
Rl V(@) = #R0) = ST = [ de[Ed? + 90Iq —mi@) + - ]

2\\\\ l
4
—q"+ - m(q) = cqy +V(q)

C(2
V(g) =—2q% + 2

2

* In Khalil, Mendes, Ortiz, Steinhoff (PRD 2022) we:

* Includes the scalar mode dynamics;
* Considers generic (eccentric) orbits;
* Include radiation-reaction effects at the EOM level.
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Effective action beyond adiabatic approx.

* Before: adiabatic approximation
i +V'(@) = $R ) st = [ dr[L4% + g —m(@) +

C2) » €@ 4 l

Vig) = - 4t ra m(q) = cqy +V(q)

* In Khalil, Mendes, Ortiz, Steinhoff (PRD 2022) we:

* Includes the scalar mode dynamics;
* Considers generic (eccentric) orbits;
* Include radiation-reaction effects at the EOM level.
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Effective action beyond adiabatic approx.

* Computing the UV coefficients

C(z) and C(4_)

(i) Solve numerically the structure
equations in the full theory, for a
fixed baryon mass M} and different
values of ¢,

(i) Compute m(q) = m(¢o) —
Do q(Poo)

(iii) Fit a polynomial to m(q) — c(o) and
extract the quadratic (c(2)) and
quartic (c(4)) coefficients.

VM)

0.0010F

0.0005F

00000

=005
06 04 02 00 0.2 0.4 0.6
0.9
q[:”'}

IJJ)S'E':"‘""' 453 RIS T
0.06F B o Nt
0.04F \
002k * Mo

Lo Miey /10
0.00F

0.9 1.0 1.1 1.2 1.3 1.4 1.5

My[M;)
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Effective action beyond adiabatic approx.

T e T T T
* Computing the UV coefficients . - :;';
CqZZ 0.03F
(i) Compute the quasinormal mode wiial
frequency of the ¢)-mode using NS
perturbation theory. o

(i) Contrast with the solution for a 000
damped harmonic oscillator,
Cq2d +q+c2q=0

q)

q(t) = e~“[a cos(wgt) + b sin(wgt)] = ol

M

c
a),2?+a)f=ﬂ

CC'IZ 10l
0.9 1.0 1.1 1.2 1.3 1.4 1.5

10°E

100

9 1.0 1.1 1.2 1.3 1.4 1.5
|
MM,

MM
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Effective action beyond adiabatic approx.

LF Mya = Myg = 1.18M;
e=0.3, r, = 33.6M
— 107" gy =0 '
g
r :
30} = 107
25 : : -30
~ T 19
G L
~ 20f 0 10 20 30 40 50 60
I t/(10°M)
15¢ 0.5F "7 Y J
[ | — adiabatic
10£ v
= 03
g
~
= 0.2
0.1
Separation and scalar charge for an equal-mass binary 0.0¢

with initial eccentricity e = 0.3 and ¢y = 0.
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Testing General Relativity

Limitations of the pN expansion: the rise of
nonperturbative effects

Accommodating nonperturbative effects: pK, pD & all that
Effective action approach to dynamical scalarization

Going beyond the adiabatic approximation

A final recap!
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Thank you!



