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These lectures are intended to give a basic introduction to semiclassical methods in chaotic
systems. These methods are valid in the semiclassical limit ~→ 0 where quantum mechanics is
expected to reflect the underlying classical mechanics.

−
~2

2m
∇2ψ(q, t) + V (q)ψ(q, t) = i~

∂

∂t
ψ(q, t).

The limit ~→ 0 is a singular limit, because the exact solution for small but finite ~ does not
approach the solution of the unperturbed problem (~ = 0) as ~→ 0. It is a singular perturbation
problem to which one applies methods of asymptotic analysis.

For example, one of the common problems is that of highly oscillatory integrals

∫ b

a
dy A(y) e

i
~φ(y).

They are approximated by stationary phase approximation.
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The semiclassical propagator



Classical mechanics

We start with a brief recap of classical mechanics. In the Lagrangian formulation of mechanics, the
Lagrangian is defined as

L(q, q̇) = T − V =
m
2

q̇2 − V (q).

where q = (q1, . . . , qf ) in f dimensions. The Euler-Lagrange equations of motion have the form

d
dt
∂L
∂q̇
−
∂L
∂q

= 0.

Inserting the Lagrangian we obtain Newton’s second law

0 =
d
dt

mq̇ +
∂V (q)

∂q
=⇒ mq̈ = −

∂V (q)

∂q
.

The momentum is obtained from
p =

∂L
∂q̇

= mq̇.

Alternatively, one can define the Hamiltonian

H(q,p) = q̇ · p − L(q, q̇) =
1

2m
p2 + V (q),



Classical mechanics

The Euler-Lagrange equations are equivalent to Hamilton’s equations of motion

ṗ = −
∂H
∂q

, q̇ =
∂H
∂p

.

Conservation of energy E = H(q,p) follows from

d
dt

H(q,p) =
∂H
∂q
·q̇ +

∂H
∂p
·ṗ =

∂H
∂q
·
∂H
∂p
−
∂H
∂p
·
∂H
∂q

= 0.

Action principle

A central property of the Lagrangian formalism is that the equations of motion can be obtained
from an action principle. Hamilton’s principle function is defined for functions q(t) that run from qa

at time ta to qb at t = tb

R[q(t)](qb, tb,qa, ta) =

∫ tb

ta
L(q, q̇) dt .

The classical trajectories are those that make the functional R[q(t)] stationary with respect to
infinitesimal variations q(t)→ q(t) + δq(t) that leave the end points invariant.



Classical mechanics

The variation of R[q(t)] is given by

0 = δR[q] = R[q + δq]− R[q] =

∫ tb

ta

[
∂L
∂q̇

δq̇ +
∂L
∂q

δq
]

dt

=
∂L
∂q̇

δq
∣∣∣∣tb
ta
−
∫ tb

ta

[
d
dt
∂L
∂q̇
−
∂L
∂q

]
δq dt ,

where we integrated by parts. The first term in the last line vanishes, because δq(ta) = 0 and
δq(tb) = 0. Hence the variation of R[q(t)] vanishes if q(t) satisfies the Euler-Lagrange equations.

Note that there can be several different solutions q(t) that connect qa at t = ta with qb at t = tb .

For a classical trajectory, Hamilton’s principal function satisfies the relations

∂R
∂qb

= pb,
∂R
∂qa

= −pa,
∂R
∂tb

= −E .



Classical mechanics

Exercise 1

Show that Hamilton’s principal function for a classical trajectory satisfies the relations

∂R
∂qb

= pb,
∂R
∂qa

= −pa,
∂R
∂tb

= −E .

Hint: There are different ways to prove this. For example, you can use the expression for δR[q(t)] to
obtain the first two relations. The third relation is more tricky. One way is to fix a classical trajectory and
follow it longer in time∫ tb+δtb

ta
L(q, q̇, t) dt = R[q(t)](qb + q̇b δtb, tb + δtb, qa, ta),

Then the required result can be extracted from a first order expansion of this expression.



Quantum mechanics

We consider conservative quantum systems with Hamiltonian

Ĥ =
p̂2

2m
+ V (q̂).

The time evolution operator has the form

Û(t) = exp

(
−

i
~

Ĥt
)
.

It propagates an initial state |ψ0〉 at time t = 0 to a later state at time t

|ψ(t)〉 = Û(t) |ψ0〉,

which is a solution of the Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉, |ψ(0)〉 = |ψ0〉.

More generally
|ψ(tb)〉 = Û(tb − ta) |ψ(ta)〉.



Alternatively, we can write this in position representation

q̂|q〉 = q|q〉, 〈q|q′〉 = δ(q − q′),
∫ ∞
−∞

df q |q〉〈q| = 1.

in the form

ψ(q, t) = 〈q|ψ(t)〉 =

∫ ∞
−∞

df q0 〈q|Û(t)|q0〉 〈q0|ψ0〉 =

∫ ∞
−∞

df q0 K (q,q0, t)ψ0(q0),

where the propagator K (qb,qa, t) is defined as

K (qb,qa, t) = 〈qb|Û(t)|qa〉.

In terms of eigenstates of the Hamiltonian Ĥ|ψn〉 = En|ψn〉 we have

K (qb,qa, t) =
∑

n
〈qb|Û(t)|ψn〉〈ψn|qa〉 =

∑
n
ψn(qb)ψ∗n (qa) e−

i
~ En t ,

We want to obtain a semiclassical approximation for the propagator. This approximation will be
given in by a sum over all classical trajectories from qa to qb in time t . This can be most clearly
seen from the Feynman path integral. We consider first one-dimensional systems.



Exercise 2

Show that the propagator of the one-dimensional free particle is given by

K (qb, qa, t) =

〈
qb

∣∣∣∣∣exp

(
−

i
~

p̂2

2m
t

)∣∣∣∣∣ qa

〉
=

√
m

2πi~t
exp

(
i
~

m (qa − qb)2

2t

)
.

Hint: Use the completeness of the momentum eigenstates

p̂|p〉 = p|p〉, 〈p|p′〉 = δ(p − p′),
∫ ∞
−∞

dp |p〉〈p| = 1.

the amplitudes

〈q|p〉 =
1

√
2πi~

e
i
~ pq = 〈p|q〉∗,

and the Gaussian integral ∫ ∞
−∞

dx exp(−ax2 + bx) =

√
π

a
exp

{
b2

4a

}
,

where Re a > 0, or Re a, Re b = 0, Im a 6= 0. Here and in the following
√

i = ei π4 ,
√
−i = e−i π4 .



Exercise 2 (continued)

Show that the propagator of the free particle can be written in the form

K (qb, qa, t) =

√
1

2π~

∣∣∣∣ ∂2R
∂qb∂qa

∣∣∣∣ exp

(
i
~

R(qb, qa, t)− i
π

4

)
,

where R(qb, qa, t) is Hamilton’s principal function for the trajectory of the free particle from
qa to qb in time t .

We return to general conservative systems. The time evolution can be split into parts

Û(t) = e−iĤt/~ = e−iĤt1/~ e−iĤt2/~ = Û(t2)Û(t1),

where t = t1 + t2. For the propagator, this correponds to the composition property

K (qb, qa, t) = 〈qb|Û(t)|qb〉 = 〈qb|Û(t2)Û(t1)|qb〉 =

∫ ∞
−∞

dq K (qb, q, t2) K (q, qa, t1).

The idea of the Feynman path integral is to split the time evolution into a large number of N parts
and take the limit N →∞.



Propagator

We consider

Û(t) =

[
Û
(

t
N

)]N

A crucial step in the derivation is the factorisation of the propagator for small times

Û
(

t
N

)
= exp

(
−

itĤ
~N

)
= e−

λ(T̂ +V̂ )
N = e−

λT̂
N e−

λV̂
N +O

(
λ2

N2

)
.

where λ = it/~. The error term can be obtained by a Taylor expansion. It can be neglected in the
following calculation (Trotter formula).

K (q, q0, t) = 〈q|[e−
λ
N (T̂ +V̂ )]N |q0〉

= lim
N→∞

〈q|[e−
λ
N T̂ e−

λV̂
N ]N |q0〉

= lim
N→∞

∫ ∞
−∞

dq1 . . . dqN−1

N−1∏
j=0

〈qj+1|e−
λ
N T̂ e−

λ
N V̂ |qj 〉

= lim
N→∞

∫ ∞
−∞

dq1 . . . dqN−1

N−1∏
j=0

〈qj+1|e−
i
~

t
N T̂ |qj 〉 e−

i
~

t
N V (qj )

where qN = q. In the final step we use the propagator of the free particle.



The result is

K (q, q0, t) = lim
N→∞

∫ ∞
−∞

dq1 . . . dqN−1

(√
m

2πi~t

)N

exp

 i
~
ε

N−1∑
j=0

[
m
2

(qj+1 − qj )
2

ε2
− V (qj )

]

where ε = t/N. In the exponent we have

ε

N−1∑
j=0

[
m
2

(qj+1 − qj )
2

ε2
− V (qj )

]
=⇒

N→∞

∫ t

0
dt ′
[m

2
q̇2(t ′)− V (q(t ′))

]
= R(q, q0, t).

This is the Feynman path integral. It is an integral over broken
line paths as shown in the figure. It is interpreted as integral
over all paths from q0 to q in time t , written symbolically as

K (q, q0, t) =

∫
q(t)=q

q(t0)=q0

D[q(t)] exp

{
i
~

R[q(t)]

}
.

The connection to classical mechanics is obtained in the limit
~→ 0 by stationary phase approximation.
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Figure: Broken line paths



Stationary phase approximation

The stationary phase approximation provides a leading order approximation in the limit η →∞ for
the highly oscillatory integral

I(η) =

∫ b

a
dy A(y) ei η φ(y).

Assume that φ has one non-degenerate stationary point φ′(y0) = 0, φ′′(y0) 6= 0, for a < y0 < b,
and that A(y0) 6= 0. Then the leading order approximation as η →∞ is obtained by expanding the
phase up to second order about the stationary point

φ(y) ≈ φ(y0) +
1
2
φ′′(y0)(y − y0)2

and evaluating the Gaussian integral

I(η) ∼
∫ ∞
−∞

dy A(y0) eiηφ(y0)+ iη
2 φ
′′(y0) (y−y0)2

= A(y0)

√
2πi

ηφ′′(y0)
eiηφ(y0) as η →∞

using ∫ ∞
−∞

dy e−ay2
=

√
π

a
.



Stationary phase approximation

The main contribution to the integral comes from a region of order ∆y ∝ η−1/2.

If there are several stationary points in the interval (a, b) the contributions are added.

For a stationary point at one of the endpoints, a or b, one gets half the contribution.

If there is no stationary point in the interval [a, b] then the leading order approximation (of
order 1/η) comes from the end points. It can be obtained by integration by parts.

Generalisation to f dimensions: consider the integral

I(η) =

∫
df y A(y) exp (i η φ(y))

The contribution of a stationary point ∇φ(y0) = 0 to the integral is given by

I(η) ∼ A(y0)

(
2π
η

)n/2
∣∣∣∣∣det

∂2φ

∂yi∂yj
(y0)

∣∣∣∣∣
−1/2

eiηφ(y0)+iπν/4,

where ν is the number of positive eigenvalues minus the number of negative eigenvalues of the
matrix of second order derivatives, and it is assumed that this matrix does not have a vanishing
determinant at y0.

The asymptotic relation f (η) ∼ g(η) as η → η0 means limη→η0 f (η)/g(η) = 1,



Semiclassical approximation for the path integral

We apply the stationary phase approximation to the path integral expression

∫ ∞
−∞

dq1 . . . dqN−1

(√
m

2πi~t

)N

exp

 i
~
ε

N−1∑
j=0

[
m
2

(qj+1 − qj )
2

ε2
− V (qj )

] .

Denoting the exponent by iΦ/~ we obtain the stationary points from

0 =
∂Φ

∂qj
= ε

[
−m

(qj+1 − qj )− (qj − qj−1)

ε2
−
∂V (qj )

∂qj

]
j = 1, . . . ,N − 1.

This is a discretised form of Newton’s equations and in the limit ε→ 0 we obtain

−mq̈ −
∂V
∂q

= 0.

This shows is that in the semiclassical limit the propagator is given by a sum over all classical
paths from qa to qb in time t

K (qb, qa, t) ≈
∑
γ

Fba e
i
~ Rba .



The semiclassical propagator

We obtained
K (qb, qa, t) ≈

∑
γ

Fba e
i
~ Rba .

The quantities Fba and Rba depend on the trajectory γ, and Rba = R(qb, qa, t). The prefactor Fba

can be obtained from the stationary phase approximation in N − 1 dimensions. We won’t do this
calculation. Instead we ask: What follows for Fba from the composition property?

K (qc , qa, t) =

∫ ∞
−∞

dqb K (qc , qb, t2) K (qb, qa, t1).

where t = t2 + t1. We evaluate this integral in stationary phase approximation. The stationary
phase condition is

0 =
∂Rcb

∂qb
+
∂Rba

∂qb
= −pi

cb + pf
ba.

We find that the stationary point qb = q̄b is determined by the condition that the final momentum
of the trajectory from qa to q̄b is equal to the initial momentum of the trajectory from q̄b to qc . This
means that the two partial trajectories join smoothly and form a classical trajectory from qa to qc in
time t . At qb = q̄b

Rca = Rcb + Rba.



The semiclassical propagator

Performing the stationary phase approximation results in

Fca e
i
~ Rca = Fcb e

i
~ Rcb Fba e

i
~ Rba

√√√√√ 2πi~[
∂2Rcb
∂q2

b
+
∂2Rba
∂q2

b

]
qb=q̄b

.

A classical calculation shows that

[
∂2Rcb

∂q2
b

+
∂2Rba

∂q2
b

]
qb=q̄b

= −
∂2Rcb
∂qc∂qb

∂2Rba
∂qb∂qa

∂2Rca
∂qc∂qa

.

This implies

Fca = Fcb Fba

√√√√√2π~
i

∂2Rca
∂qc∂qa

∂2Rcb
∂qc∂qb

∂2Rba
∂qb∂qa

.

It suggests that

Fca ∝

√
1

2π~

∣∣∣∣ ∂2Rca

∂qc∂qa

∣∣∣∣ F̃ca.

The question is what is the factor F̃ca. It depends on the signs of the mixed partial derivatives.



The semiclassical propagator

We have
∂2Rba

∂qb∂qa
= −

∂pa

∂qb

∣∣∣∣
qa

or

[
∂2Rba

∂qb∂qa

]−1

= −
∂qb

∂pa

∣∣∣∣
qa

The last term involves minus the change δqb in the final position qb of a trajectory that starts at qa

with momentum pa + δpa. The mixed partial derivative changes sign when this quantity is zero.

We need to consider trajectories in the neighbourhood of a classical trajectory which satisfies
Newton’s second law

m
d2

dt2
q = −

∂V (q)

∂q
.

We replace q(t) by q(t) + δq(t) and obtain a differential equation for δq(t)

m
d2

dt2
δq = −V ′′(q(t)) δq.

This is the Jacobi equation. It is a homogeneous second order linear equation for δq(t).
According to the Sturm Separation Theorem, the zeros of any two linearly independent solutions
are alternating (and simple).



The semiclassical propagator

Let nba denote the number of zeros of a solution of the Jacobi equation of length t1 that starts with
δq(0) = 0, δq̇(0) 6= 0. Then (

∂2Rba

∂qb∂qa

)
=

∣∣∣∣∣ ∂2Rba

∂qb∂qa

∣∣∣∣∣ (−1)1+nba .

There is an additional (−1) because for small times the mixed partial derivative approaches that
of a free particle and is negative. The ac and bc cases are defined correspondingly. We define

Fca =

√
1

2π~

∣∣∣∣ ∂2Rca

∂qc∂qa

∣∣∣∣ F̃ca

Then
F̃ca = F̃cb F̃ba

√
i (−1)nca−nba−ncb .

It follows from the Sturm Separation Theorem that there are only two posibilities

nca − nba − ncb =

0

1
. a qqq

b c



The semiclassical propagator

For both cases we obtain

F̃ca = F̃cb F̃ba

√
i (−1)nca−nba−ncb

= F̃cb F̃ba exp
(

i
π

4
− i

π

2
(nca − nba − ncb)

)
.

This leads to our final result

Fca =

√
1

2π~

∣∣∣∣ ∂2Rca

∂qc∂qa

∣∣∣∣ exp
(
−i
π

4
− i

π

2
nca

)
.

Strictly speaking, there could be an additional factor fca with fca = fcb fba, but this factor is one.

In summary, we obtained the following result for the semiclassical propagator

Ksc(qb, qa, t) =
∑
γ

√
1

2π~

∣∣∣∣ ∂2R
∂qb∂qa

∣∣∣∣ exp

(
i
~

R(qb, qa, t)− i
π

4
− i

π

2
nba

)
.

This is the Van Vleck propagator or the Van Vleck-Gutzwiller propagator.



The semiclassical propagator

Exercise 3

For the harmonic oscillator with potential

V (q) =
m
2
ω2q2,

the semiclassical approximation is identical to the exact result.

Determine the propagator of the harmonic oscillator, valid for all times t > 0. This formula
is known as Feynman-Souriau formula.



The semiclassical propagator in f dimensions

In f dimensions the semiclassical propagator is given by

Ksc(qb,qa, t) =
∑
γ

1
(2π~)f/2

√∣∣∣∣det

(
∂2R

∂qb ∂qa

)∣∣∣∣ exp

{
i
~

R(qb,qa, t)− if
π

4
− iν

π

2

}

where the sum runs over all classical trajectories γ that go from qa to qb in time t .

For the determination of ν consider the matrix

A =

(
∂2R

∂qb ∂qa

)−1

= −
∂qb

∂pa
.

The Morse index ν increases by one for every reduction of the rank of A by one if one follows the
trajectory for time t .

This happens at conjugate points. At these points neigh-
bouring trajectories that start at the same position with in-
finitesimally different momentum intersect the original trajec-
tory. This typically occurs at caustics. At these points the
semiclassical propagator diverges. Figure: Caustic



Unitary transformations



Unitary transformations

The form of the semiclassical transformation of the propagator is familiar from a different context.
For simplicity, let us consider one-dimensional systems.

Short review of canonical transformations
Consider a Hamiltonian H(q, p) with equations of motion

q̇ =
∂H
∂p

, ṗ = −
∂H
∂q

, .

A transformation (q, p)→ (Q,P) is canonical if it preserves the Hamilton’s equations

Q̇ =
∂H
∂P

, Ṗ = −
∂H
∂Q

, where H(q, p) = H(q(Q,P), p(Q,P)).

Canonical transformations are produced by generating functions that depend on one of the old
and one of the new coordinates (see e.g. Goldstein). For example, after choosing a function
F1(q,Q) the transformation

p =
∂F1(q,Q)

∂q
, P = −

∂F1(q,Q)

∂Q

is canonical.



Unitary transformations

Alternatively, one may define a function F2(q,P). It is related to F1(q,Q) by

F2(q,P) = F1(q,Q) + PQ,

where Q = Q(q,P) and satisfies

∂F2

∂q
=
∂F1

∂q
+
∂F1

∂Q
∂Q
∂q

+
∂Q
∂q

P = p,
∂F2

∂P
=
∂F1

∂Q
∂Q
∂P

+
∂Q
∂P

P + Q = Q.

Altogether there are four different cases

F1(q,Q) p =
∂F1(q,Q)

∂q
P = −

∂F1(q,Q)

∂Q
,

F2(q,P) = F1(q,Q) + PQ p =
∂F2(q,P)

∂q
Q =

∂F2(q,P)

∂P
,

F3(p,Q) = F1(q,Q)− pq q = −
∂F3(p,Q)

∂p
P = −

∂F3(p,Q)

∂Q
,

F4(p,P) = F1(q,Q) + PQ − pq q = −
∂F4(p,P)

∂p
Q =

∂F4(p,P)

∂P
.



Unitary transformations

In quantum mechanics, canonical transformations correspond to unitary transformations (change
of bases). They are defined by the transition amplitudes

〈q|Q〉, 〈q|P〉, 〈p|Q〉, 〈p|P〉.

Unitarity implies, for example,∫ ∞
−∞

dQ 〈q|Q〉〈Q|q′〉 = δ(q − q′) and
∫ ∞
−∞

dq 〈Q|q〉〈q|Q′〉 = δ(Q − Q′).

Miller (1974) derived semiclassical approximations for the transition amplitudes. The transition
amplitudes are written in the form

〈q|Q〉 = A1(q,Q) exp

(
i
~

f1(q,Q)

)
, 〈q|P〉 = A2(q,P) exp

(
i
~

f2(q,P)

)
,

〈p|Q〉 = A3(p,Q) exp

(
i
~

f3(p,Q)

)
, 〈p|P〉 = A4(p,P) exp

(
i
~

f4(p,P)

)
.

It is assumed that transformations between canonically conjugate variables take the form

〈q|p〉 =
1

√
2πi~

e
i
~ pq = 〈p|q〉, 〈Q|P〉 =

1
√

2πi~
e

i
~ PQ = 〈P|Q〉.



Unitary transformations

Unitary transformations are performed in stationary phase approximation

〈q|Q〉 =

∫ ∞
−∞

dp 〈q|p〉 〈p|Q〉.

Inserting the previous expressions

A1(q,Q) exp

(
i
~

f1(q,Q)

)
≈
∫ ∞
−∞

dp
A3(p,Q)
√

2πi~
exp

(
i
~

pq +
i
~

f3(p,Q)

)
.

The stationary phase condition is

q +
∂f3(p,Q)

∂p
= 0,

and at the stationary point
f1(q,Q) = pq + f3(p,Q).

These relations agree with those of the generating functions for the canonical transformations. All
the other relations for the generating functions are obtained by consider the seven other possible
unitary transformations. This leads to the identification of the functions fi with the generating
functions Fi .

The amplitudes are determined by further using the unitarity relations.



Unitary transformations

Altogether the result is

〈q|Q〉 =

[
−1

2πi~
∂2F1

∂q∂Q

]1/2

exp

(
i
~

F1(q,Q)

)
, 〈q|P〉 =

[
1

2πi~
∂2F2

∂q∂P

]1/2

exp

(
i
~

F2(q,P)

)
,

〈p|Q〉 =

[
1

2πi~
∂2F3

∂p∂Q

]1/2

exp

(
i
~

F3(p,Q)

)
, 〈p|P〉 =

[
−1

2πi~
∂2F4

∂p∂P

]1/2

exp

(
i
~

F4(p,P)

)
,

If there are several stationary points then one adds the contributions.

Comparison to the semiclassical propagator

Ksc(qb, qa, t) =
∑
γ

√
1

2π~

∣∣∣∣ ∂2R
∂qb∂qa

∣∣∣∣ exp

(
i
~

R(qb, qa, t)− i
π

4
− i

π

2
nba

)
.

The propagator can be considered as a unitary transformation because

K (qb, qa, tb − ta) = 〈qb|U(tb − ta)|qa〉 = 〈qb, tb|qa, ta〉.

In classical mechanics the coordinates (qa, pa) at time ta are related to (qb, pb) at time tb by a
canonical transformation, whose generating function is the principal function R(qb, qa, tb − ta).



Unitary transformations, example

Let us consider a transformation from (q, p) to new variables (Q,P) where P is equal to the
energy E = p2/2m + V (q). We are interested in the amplitude 〈q|P〉 which corresponds to the
wave function of an energy eigenstate. The generating function F2(q,P) of the transition satisfies

∂F2(q,P)

∂q
= p,

∂F2(q,P)

∂P
= Q.

Since P = E we have from the first equation

F2(q,E)

∂q
= p = ±

√
2m(E − V (q))

from which follows
F2(q,E) = ±

∫
dq
√

2m(E − V (q)) + C(E).

C(E) leads to an irrelevant phase that can be neglected. For the amplitude we need

∂2F2

∂q∂E
= ±

(
2
m

[E − V (q)]

)−1/2
= ±

1
v(q)

.

The final result agrees with the WKB approximation

〈q|E〉 =
1√

2π~v(q)

[
exp

(
i
~

∫
p dq − i

π

4

)
+ exp

(
−

i
~

∫
p dq + i

π

4

)]
.



Uniform approximations



We found that the semiclassical propagator diverges at conjugate points. Does the exact
propagator diverge as well? Generally not (an exception is the harmonic oscillator). The reason for
the divergence is a coalescence of two stationary points at a caustic. Near the caustic the
stationary phase approximation becomes inaccurate and has to be replaced by a uniform
approximation.

Uniform approximations occur in various contexts in semiclassics (caustics, bifurcations,
diffraction, break-up of tori). We discuss a basic example. Consider

I(η) =

∫
dx g(x) eiηf (x)

Assume that f (x) has two (non-degenerate) stationary points, f ′(x1) = f ′(x2) = 0. We evaluate
the integral in stationary phase approximation and obtain in leading order for η →∞

I(η) ≈
2∑

i=1

g(xi )

√
2πi

ηf ′′(xi )
eiηf (xi ) =

2∑
i=1

A(xi ) eiηf (xi ).

If for a fixed value of η the stationary points are too close together, they cannot be considered
separately but give a joint contribution to the integral. We then apply a coordinate transformation
x → y that maps f (x) onto a simpler form with two stationary points

F (y , ξ) =
1
3

y3 − ξy + c .



Uniform approximation

The mapping x → y results in

f (x) = F (y , ξ) =
1
3

y3 − ξy + c.

The function F (y , ξ) has two stationary points

0 =
∂

∂y
F (y , ξ) = y2 − ξ =⇒ y = ±

√
ξ.

For the mapping x → y to be one-to-one the two stationary points have to map onto each other

f (x1) = F (−
√
ξ, ξ) =

2
3
ξ3/2 + c, f (x2) = F (

√
ξ, ξ) = −

2
3
ξ3/2 + c,

(w.l.o.g. x1 is the maximum and x2 the minimum.) This determines the values of ξ and c

c =
1
2

(f (x1) + f (x2)), ξ =

[
3
4

(f (x1)− f (x2))

]2/3
.

We arrive at the integral

I(η) =

∫
dy G(y) eiηF (y,ξ), where G(y) = g(x)

dx
dy
.



Uniform approximation

So far everything has been exact. Now we write G(y) in the form

G(y) = G0 + G1
∂

∂ξ
F (y , ξ) + h(y)

∂

∂y
F (y , ξ).

The last term vanishes at the stationary points. It is neglected because it leads to a higher order
contribution. This can be seen by an integration by parts. The constants G0 and G1 are
determined by the value of G(y) at the stationary points.

For the last step we need the value of the Jacobian at the stationary points. It is obtained by
differentiating

f (x) =
1
3

y3 − ξy + c

twice with the result

f ′′(x)

(
∂x
∂y

)2
+ f ′(x)

∂2x
∂y2

= 2y .

Hence

G0 =
g(x1) ξ1/4√
−2f ′′(x1)

+
g(x2) ξ1/4√

2f ′′(x2)
, G1 =

g(x1) ξ−1/4√
−2f ′′(x1)

−
g(x2) ξ−1/4√

2f ′′(x2)



It remains to evaluate the integrals

I(η) ≈
∫

dy G0 eiη(y3/3−ξy+c) −
i
η

∂

∂ξ

∫
dy G1 eiη(y3/3−ξy+c)

=
2πG0

η1/3
eiηcAi(−η2/3ξ) +

2πiG1

η2/3
eiηcAi′(−η2/3ξ)

where we used the integral representation of the Airy function

Ai(x) =
1

2π

∫ ∞
−∞

dz eiz3/3+xz .

With the asymptotic relations

Ai(−z) ∼
1

√
πz1/4

cos

(
2
3

z3/2 −
π

4

)
, Ai′(−z) ∼

z1/4
√
π

sin

(
2
3

z3/2 −
π

4

)
We obtain

I(η) ≈ g(x1)

√
2πi

ηf ′′(x1)
eiηf (x1) + g(x2)

√
2πi

ηf ′′(x2)
eiηf (x2).

The uniform approximation interpolates between two asymptotic regimes. In the opposite limit

I(η) ≈
2πg(x0) 21/3

[η f ′′′(x0)]1/3
Ai(0) eiηf (x0).



Uniform approximation

Co-dim. Type Unfoldings Singularity index

1 Fold x3

3 + ξ1x 1
6

2 Cusp x4

4 + ξ1
x2

2 + ξ2x 1
4

3 Swallow-tail x5

5 + ξ1
x3

3 + ξ2
x2

2 + ξ3x 3
10

4 Butterfly x6

6 + ξ1
x4

4 + ξ2
x3

3 + ξ3
x2

2 + ξ4x 1
3

3 Elliptic umbilic x3 − 3xy2 + ξ1(x2 + y2) + ξ2x + ξ3y 1
3

3 Hyperbolic umbilic x3 + y3 + ξ1xy + ξ2x + ξ3y 1
3

4 Parabolic umbilic x2y + y4 + ξ1x2 + ξ2y2 + ξ3x + ξ4y 3
8

Table: Elementary catastrophes



Green functions, Gutzwiller trace formula

and spectral determinants



Green function

For an investigation of the energy domain we consider the Green function

G(q,q′,E) =

〈
q
∣∣∣∣ 1

E − Ĥ

∣∣∣∣q′〉 ,
the kernel of the resolvent operator (E − Ĥ)−1. It satisfies the differential equation(

E +
~2

2m
∇2 − V (q)

)
G(q,q′,E) = δ(q − q′) ,

In terms of the eigenstates of the Hamiltonian

Ĥ |ψn〉 = En |ψn〉, 〈ψm|ψn〉 = δmn,
∑

n
|ψn〉〈ψn| = 1.

it is repesented by

G(q,q′,E) =
∑

n

ψn(q)ψ∗n (q′)
E − En

.

The Green function is related to the propagator by the transform

G(q,q′,E) =
1
i~

lim
ε→0

∫ ∞
0

dt K (q,q′, t) exp

(
i
~

(E + iε) t
)
.



Exercise 4

Consider the one-dimensional particle in a box, q ∈ [0, a].

−
~2

2m
ψ′′(q) = Eψ(q), ψ(0) = 0, ψ(a) = 0.

The Green function for a particle in a box satisfies(
E +

~2

2m
d2

dq2

)
G(q, q′,E) = δ(q − q′), G(0, q′,E) = G(a, q′,E) = 0,

Show that it can be obtained from the general formula

G(q, q′,E) =
2m
~2

ψl (q<)ψr (q>)

W (q′)
.

Here q< and q> are the smaller and larger of q and q′, respectively. ψl is a solution of
the Schrödinger equation that satisfies the boundary condition on the left-hand side, and
ψr correspondingly on the right-hand side. The Wronskian W is defined as

W (q) = ψl (q)ψ′r (q)− ψ′l (q)ψr (q).



Exercise 4 (continued)

This requires you to show that the Green function satisfies both boundary conditions, and
that it satisfies the differential equation in the regions q < q′ and q > q′. The delta-
function can be verified by integrating the differential equation from q = q′−ε to q = q′+ε
and letting ε go to zero.

What is the result for the Green function?



Green function

With the propagator of the free particle we obtain the free Green function in f dimensions

Gfree(q,q′,E) =
m

2i~2

(
1

2π~

√
2mE

|q − q′|

)f/2−1

H(1)
f/2−1

(√
2mE
~
|q − q′|

)
.

Here H(1)
l (z) = Jl (z) + iNl (z) denotes the Hankel function of the first kind.

We want to obtain a semiclassical approximation for the Green function. For this purpose we
insert the semiclassical propagator

K (q,q′, t) ≈
∑
γ

1
(2π~)f/2

√∣∣∣∣det
∂2Rγ
∂q ∂q′

∣∣∣∣ exp

{
i
~

Rγ(q′,q, t)− i f
π

4
− iνγ

π

2

}

into the transform

G(q,q′,E) =
1
i~

lim
ε→0

∫ ∞
0

dt K (q,q′, t) exp

(
i
~

(E + iε) t
)
.

and evaluate the integral in stationary phase approximation. The stationary phase condition is

∂Rγ(q,q′, t)
∂t

∣∣∣∣
t=t0

+ E = 0 or − Eγ(t0) + E = 0.



Green function

The stationary phase condition selects the time t0 for which the energy Eγ of the trajectory γ that
runs from q′ to q in time t0 is equal to E . We introduce a new action function

S(q,q′,E) = R(q,q′, t0) + Et0 =

∫ t0

0
L dt +

∫ t0

0
H dt =

∫ t0

0
p ·q̇ dt =

∫ q

q′
p ·dq.

where t0 is determined by the condition

∂R(q,q′, t)
∂t

∣∣∣∣
t=t0

= −E .

The action satisfies the relations

∂S
∂q′

= −p′,
∂S
∂q

= p,
∂S
∂E

= t0.

For the stationary phase approximation we expand in the exponent

Rγ(q′,q, t) + Et ≈ R(q,q′, t0) + Et0 +
1
2
∂2Rγ(q′,q, t)

∂t2

∣∣∣∣∣
t=t0

(t − t0)2,

and we evaluate the Gaussian integral over time t .



Green function

The stationary phase approximation results in

G(q,q′,E) ≈
∑
γ

2π
(2πi~)(f +1)/2

√∣∣∣det
∂2Rγ
∂q ∂q′

∣∣∣√∣∣∣ ∂2Rγ
∂t2

∣∣∣ exp

{
i
~

Sγ(q,q′,E)− i
π

2
ξγ

}

where

ξ =

ν,
∂2R
∂t2 > 0,

ν + 1, ∂2R
∂t2 < 0.

ξ is the number of conjugate points for constant energy. It can differ from the number of conjugate
points for constant time by one. In the next step we replace the principal function Rγ by the action
Sγ . The calculations are quite technical and we only state the result. It is conveniently expressed
in a local coordinate system in which the first coordinate is along the trajectory and the remaining
(f − 1) coordinates are perpendicular to the trajectory.

G(q,q′,E) =
∑
γ

2π
(2πi~)(f +1)/2

√√√√∣∣∣∣∣ 1
q̇1q̇′1

det′
(
−
∂2Sγ
∂q ∂q′

)∣∣∣∣∣ exp

(
i
~

Sγ(q,q′,E)− i
π

2
ξγ

)
.

The prime at the determinant indicates that it is taken w.r.t. the (f − 1) perpendicular coordinates.



Green function

Exercise 5

Show that the Green function for a particle in a box, that you obtained in Exercise 4, can
be written as a sum over all trajectories from q′ to q. The formula for a geometric series
is helpful. Convergence problems can be avoided by assuming that E has a small positive
imaginary part.



Green function

Our next step is to derive the Gutzwiller trace formula. For simplicity we will consider
two-dimensional systems, although it is not difficult to generalise the result to f dimensions. The
previous result then has the form

G(q,q′,E) =
∑
γ

2π
(2πi~)3/2

√√√√∣∣∣∣∣ 1
q̇1q̇′1

∂2Sγ
∂q2 ∂q′2

∣∣∣∣∣ exp

(
i
~

Sγ(q,q′,E)− i
π

2
ξγ

)
.

The coordinate q1 is along the trajectory and q2 is perpendicular to it. We also use q⊥ for q2.

The result can be expressed in terms of the stability matrix. This matrix describes the linearised
motion in the neighbourhood of the trajectory. It provides deviations δq⊥ and δp⊥ at the end point
of a trajectory in terms of the deviations δq′⊥ and δp′⊥ at the starting point.(

δq⊥
δp⊥

)
= M

(
δq′⊥
δp′⊥

)
.

M is a symplectic matrix. It satisfies MT JM = J where J denotes the matrix J =

(
0 I
−I 0

)
. In two

dimensions this is equivalent to det M = 1.



The stability matrix

The stability matrix can be expressed in terms of the action function S(q,q′,E). We have

p2 =
∂S
∂q2

, p′2 = −
∂S
∂q′2

.

It then follows

δp2 =
∂2S

∂q2∂q2
δq2 +

∂2S
∂q′2∂q2

δq′2,

δp′2 = −
∂2S

∂q2∂q′2
δq2 −

∂2S
∂q′2∂q′2

δq′2.

Solving for δq2 and δp2 leads to

δq2 =

(
∂2S

∂q2∂q′2

)−1 [
−

∂2S
∂q′2∂q′2

δq′2 − δp
′
2

]

δp2 =

(
∂2S

∂q2∂q′2

)−1 [(
∂2S

∂q2∂q′2

∂2S
∂q′2∂q2

−
∂2S

∂q2∂q2

∂2S
∂q′2∂q′2

)
δq′2 −

∂2S
∂q2∂q2

δp′2

]

The elements of the stability matrix can be read off. One can check that det M = 1.



Trace formula

The density of states is defined by

d(E) =
∑

n
δ(E − En).

It is related to the Green function by

d(E) = −
1
π

lim
ε→0

Im Tr G(E + iε)

= −
1
π

lim
ε→0

Im

∫
d2q

∑
n

ψ(q)ψ∗(q)

E + iε− En

=
1
π

lim
ε→0

∑
n

ε

(E − En)2 + ε2

The stationary phase condition

0 =
∂Sγ(q,q′,E)

∂q

∣∣∣∣
q′=q

+
∂Sγ(q,q′,E)

∂q′

∣∣∣∣
q′=q

= p − p′.

requires trajectories to be periodic. The further evaluation depends on whether the periodic orbits
are unstable, stable or neutral.



Periodic orbits in two dimensions

Let λ1 and λ2 be the eigenvalues of the stability matrix. Then

det M = λ1λ2 = 1, Tr M = λ1 + λ2 ∈ R, λ1,2 =
1
2

(
Tr M ±

√
(Tr M)2 − 4

)
.

We consider the cases

Tr M = 2, λ1 = λ2 = 1:
Periodic orbits are not isolated. This is typical for integrable systems where periodic orbits
form families. Tr M = 2 happens also at bifurcations of periodic orbits.

|Tr M| < 2, λ1 = eiv , λ2 = e−iv ,:
Periodic orbits are stable. This typically occurs in mixed systems. if v is a rational multiple of
2π, v = 2πn/m then the m-th repetition of the orbit bifurcates λm

1 = e2πn i = 1. This requires
uniform approximations.

Tr M = −2, λ1 = λ2 = −1,:
Limiting case of (2).

|Tr M| > 2, λ1 = ±eu , λ2 = ±e−u ,: Periodic orbits are unstable. This is typical for chaotic
systems.



Trace formula

We continue with the evaluation of the integral

d(E) = −
1
π

lim
ε→0

Im

∫
d2q G(q,q,E + iε).

for chaotic systems. The semiclassical approximation for the Green function is

G(q,q′,E) =
∑
γ

1√
2π~3q̇1q̇′1 |Mγ,12|

exp

(
i
~

Sγ(q,q′,E)− i
π

2
ξγ − i

3π
4

)
.

and the stationary phase condition is

0 =
∂Sγ(q,q′,E)

∂q

∣∣∣∣
q′=q

+
∂Sγ(q,q′,E)

∂q′

∣∣∣∣
q′=q

= p − p′.

The action Sγ does not change if one moves the starting point of a trajectory along a periodic
orbit. The stationary phase approximation is applied only in the direction perpendicular to the
periodic orbit. We assume that the periodic orbit is isolated.



Trace formula

We expand

Sγ(q,q,E) ≈ Sγ(E) +
1
2
σq2

2 ,

where Sγ(E) is the action of the periodic orbit and

σ =
∂2Sγ
∂q2∂q2

+ 2
∂2Sγ
∂q2∂q′2

+
∂2Sγ
∂q′2∂q′2

=
∂2Sγ
∂q2∂q′2

(2− Tr M) = −
1

M12
(2− Tr M).

The evaluation of the integral

dγ(E) = Re

∫
dq1 dq2

1√
2π3~3q̇2

1 |Mγ,12|
exp

(
i
~

Sγ(E) +
i

2~
σq2

2 − i
π

2
ξγ − i

π

4

)

= Re

∫
dq1

q̇1

1
π~
√
|Tr Mγ − 2|

exp

(
i
~

Sγ(E)− i
π

2
µγ

)

where

µ =

ξ, σ > 0,

ξ + 1, σ < 0.

The index ξ can change along a periodic orbit between two values that differ by one. The Maslov
index µ is the larger of these two values.



Trace formula, zero length contribution

The direct trajectory γ0 from q′ to q in the limit q′ → q approaches that of a free particle with
energy E replaced by E − V ((q + q′)/2). Its contribution to the Green function is approximated
by the free Green function

Gγ0 (q,q′,E) ≈
m

2i~2
H(1)

0

(√
2m(E − V )

~
|q − q′|

)
.

Here H(1)
0 (z) = J0(z) + iN0(z) and V = V ((q + q′)/2). Its contribution to the density of states is

d̄(E) ≈ −
1
π

lim
ε→0

Im

∫
A(E)

d2q G0(q,q,E + iε) =
m

2π~2

∫
A(E)

d2q =
mA(E)

2π~2
.

Here A(E) is the area in which E > V (q) and we used J0(0) = 1.This can be recognised as the
Thomas-Fermi approximation for the density of states

d̄(E) ≈
1

(2π~)2

∫
d2q d2p δ

(
E −

p2

2m
− V (q)

)
.



Trace formula

The final result is the Gutzwiller trace formula

d(E) ≈ d̄(E) +
∑
γ

Tγ
π~ rγ

√
|Tr Mγ − 2|

cos

(
1
~

Sγ(E)−
π

2
µγ

)

The sum is over all periodic orbits. Tγ is the period and rγ is the repetition number if γ is a
repetition of a shorter orbit. In higher dimensions |Tr Mγ − 2| has to be replaced by | det(M − 1)|.

Formula can be made convergent by considering other functions
∑

n f (En) instead of d(E).

Requires orbits up to the Heisenberg time TH = 2π~d̄(E) to resolve neighbouring levels.

This leads to an exponentially increasing effort for higher energy levels.

Exact version in Selberg trace formula. Analogies to Riemann zeta function.

For integrable systems one has to integrate over tori of periodic orbits (Berry-Tabor formula).

For mixed systems one has to deal with bifurcations of periodic orbits and break-up of tori.



Fourier transform

The Fourier transform of the density of states has peaks at the periods of the periodic orbits

Figure: Arnd Bäcker



Hydrogen atom in a magnetic field



Example: billiard systems

Billiard systems are common model systems. It is convenient to use dimensionless units
~ = 2m = 1. Then E = k2 and the semiclassical limit corresponds to k →∞. The trace formula
for d(k) = 2kd(E) has the form

d(k) =
∑

n
δ(k − kn) ≈ d̄(k) +

∑
γ

lγ cos
(
iklγ − iπ2 µγ

)
πrγ

√
|Tr Mγ − 2|

, where d̄(k) ≈
Ak
2π
.

The stability matrices are composed of two types of matrices, M = . . .M3
r M3←2

t M2
r M2←1

t , one
for every reflection, Mr , and one for every path between two reflections, Mt ,

Mt =

(
1 l

k
0 1

)
, Mr =

(
−1 0
2k

R cosα
−1

)

l is the length of the path and α is the angle of reflection (angle between normal to boundary and
trajectory). R is the radius of curvatures. It is negative for concave boundaries (e.g. Sinai billiard).

The Maslov index has an additional contribution of twice the number of reflections at walls with
Dirichlet boundary conditions. For concave billiards there are no conjugate points.



Spectral determinant

It can be more efficient to consider spectral determinants. They are entire functions of the energy
E whose zeros are given by the quantum energy levels, and they are real valued for real E

∆(E) =
∞∏

n=1

A(E ,En) (E − En).

The amplitudes depend on the regularisation. For example, for a two-dimensional billiard system
the mean density of states d̄(E) ≈ mA/(2π~2) is constant. This implies that the trace of the
Green function

Tr G(E) =
∑

n

1
E − En

is divergent. It can be regularised by considering instead

Tr Greg(E) = Tr(G(E)− G(0)) =
∑

n

1
E − En

+
1

En
=
∑

n

E
(E − En)En

,

which is finite. The regularised determinant is then obtained from

∆(E) = exp

(∫ E

0
dE ′ Tr Greg(E ′)

)
= exp

(∑
n

log(1− E/En) + E/En

)



Spectral determinant

We obtain

∆(E) =
∞∏

n=1

(
1−

E
En

)
eE/En =⇒ A(E ,En) = −

1
En

eE/En .

This is an example of a Weierstrass regularisation.

After inserting the semiclassical approximation for the trace of the Green function, one can derive
the following expression

∆(E) ≈ B(E) eiπN̄(E) ζ(E),

where B(E) is real-valued for real E . The function ζ(E) is obtained from the periodic orbit

ζ(E) =
∞∑

n=0

Cn eiSn/~

The sum is over composite orbits (or pseudo-orbits) which are combinations of periodic orbits

Sn =
∑

p∈Pn

mp Sp.

n labels all possible finite linear combinations of actions of periodic orbits with positive
coefficients. There is a zero-length term with S0 = 0 and C0 = 1.


