
Spectral determinant

It can be more efficient to consider spectral determinants. They are entire functions of the energy
E whose zeros are given by the quantum energy levels, and they are real valued for real E

�(E) =
1Y

n=1

A(E ,En) (E � En).

The amplitudes depend on the regularisation. For example, for a two-dimensional billiard system
the mean density of states d̄(E) ⇡ mA/(2⇡~2) is constant. This implies that the trace of the
Green function

TrG(E) =
X

n

1
E � En

is divergent. It can be regularised by considering instead

TrG
reg(E) = Tr(G(E)� G(0)) =

X

n

1
E � En

+
1

En

=
X

n

E

(E � En)En

,

which is finite. The regularised determinant is then obtained from

�(E) = exp

 Z
E

0
dE
0 TrG

reg(E 0)

!
= exp

 
X

n

log(1 � E/En) + E/En
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Spectral determinant

We obtain

�(E) =
1Y

n=1

✓
1 �

E

En

◆
e

E/En =) A(E ,En) = �
1

En

e
E/En .

This is an example of a Weierstrass regularisation.

After inserting the semiclassical approximation for the trace of the Green function, one can derive
the following expression

�(E) ⇡ B(E) e
i⇡N̄(E) ⇣(E),

where B(E) is real-valued for real E . The function ⇣(E) is obtained from the periodic orbit

⇣(E) =
1X

n=0

Cn e
iSn/~

The sum is over composite orbits (or pseudo-orbits) which are combinations of periodic orbits

Sn =
X

p2Pn

mp Sp.

n labels all possible finite linear combinations of actions of periodic orbits with positive
coefficients. There is a zero-length term with S0 = 0 and C0 = 1.



Spectral determinant

Motivated by the Riemann-Siegel formula for the Riemann zeta function, Berry and Keating
derived a semiclassical resummation of the spectral determinant

�(E) ⇡ 2Re[�(E)]sc,tr

where

[�(E)]sc,tr = B(E)
1X

n=0

Cne
�i⇡N̄(E)+iSn/~ ✓tr(TH/2 � Tn)

and Tn = dSn/dE . The function ✓tr smoothly truncates the sum

Heuristic explanation: The spectral determinant is real valued for real E . The Fourier transform of
a real function f (E) satisfies F(T ) = F(�T )⇤. Since the energy dependence of the oscillatory
terms is ⇠ [�⇡d̄ + Tn/~]E we obtain a relation between the contributions of orbits with periods
beyond TH/2 = ⇡d̄~ and those of orbits with period smaller than TH/2.



Numerical results for the hyperbola billiard
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Numerical results for the hyperbola billiard

The contributions of orbits below and above the cut-off, respectively. Left: real parts (with same
sign). Right: imaginary parts (with opposite signs).
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Exercise 6

Obtain the trace formula for the density of states and the spectral determinant for a particle
in a box.



Wave functions



Approximation for wave functions

Bogomolny considered the local density of states

d(q,E) =
X

n

| n(q)|
2 �(E � En) = �

1
⇡

lim
"!0

ImG(q,q,E + i")

This leads to the approximation

D
| n(q)|

2
E

E

=

D
�

1
⇡ ImG(q,q,E)

E

E

hd(E)iE

where h. . .iE denotes averaging over an energy window �E . For �E ⇡ 1/d̄(E) one need orbits
with time T⇠ < TH.

This approach is similar to using the trace formula for finding semiclassical energies. Is there an
analogue to the approach with the spectral determinants? There are several approaches to this
topic, most use quantised Poincare sections (Fishman et al., . . .). In the following I will discuss an
approach that uses low rank perturbations.



Perturbation by a point scatterer

We consider the perturbation of a system by a point scatterer. We start with one-dimensional
systems for which a delta-function potential is well-defined. Consider a quantum Hamiltonian of
the form H = H0 + �A where A = |qihq|. Then the time-independent Schrödinger equation has
the form

0 = (H0 � E) | i+ �|qi hq| i

Multiplying from the left with hq|G0 where G0 = (E � H0)
�1 is the resolvent leads to

0 = (1 � �hq|G0|qi) hq| i

The solutions are given by unperturbed energies Em if the corresponding eigenstate vanishes at
q, and by the zeros of the bracket on the right-hand side.

The resolvent G(E) = (E � H)�1 of the perturbed Hamiltonian is obtained from the general
relation G = G0 + G0�AG

G =
1

1 � G0�|qihq|
G0

The eigenvalues of the Hamiltonian H are given by the poles of the resolvent G. Hence the new
spectral determinant has the form



�1(E ,�, q) = �0(E) det(1 � �G0|qihq|)

Applying detM = e
Tr log M and TrG0|qihq| = hq|G0|qi yields

�1(E ,�, q) = �0(E) [1 � �G0(q, q,E)]

where G0(q, q
0,E) = hq|G0|q

0
i is the Green function of the unperturbed system. Note that the

poles of the Green function cancel the zeros of �0(E) if they are non-degenerate and the
corresponding wave function does not vanish at q.

An alternative representation of the Green function can be obtained by using

1
1 � G0�|qihq|

= 1 +
�G0|qihq|

1 � �hq|G0|qi
,

from which follows that
G = G0 + G0|qi

�

1 � �hq|G0|qi
hq|G0

If the fraction is expanded into a geometric series one obtains an expression that can be
interpreted as a sum over diffractive orbits, see later discussion.



A point-like scatterer in two and three dimensions

A delta-function potential is not well-defined in two or three dimensions. This is reflected by the
fact that hq|G0|qi is infinite in these cases. The standard method to define a point-like
perturbation is to apply the theory a self-adjoint extension to a Hamiltonian from whose domain
one point has been removed. The resulting expressions for �(E) and G(E) are very similar to the
one-dimensional case. The difference is that the Green function G0(q,q,E) = hq|G0|qi is
regularised.

�1(E ,�,q) = �0(E) [1 � �G
reg
0 (q,q,E)]

and
G = G0 + G0|qi

�

1 � �hq|Greg
0 |qi

hq|G0

The regularization of the Green function is not unique. Different regularizations can differ by an
arbitrary real constant. However, all different regularizations lead to the same family of self-adjoint
extensions of the Hamiltonian. We regularize the Green function by subtracting its divergent part
in the limit q0 ! q.

G
reg(q,q,E) = lim

q0!q

h
G(q,q0,E)�

m

⇡~2 log(k0|q � q
0
|)
i

where k0 is an arbitrary constant.



Relation between the wave function and �1

We found
�1(E ,�,q) = �0(E) [1 � �G

reg
0 (q,q,E)]

The effect that a perturbation by a point-like scatterer has on an energy level depends on the
value of the wave function at this point. The semiclassical approach is based on this relation.
Consider the determinant of the perturbed system, evaluated at the unperturbed energy E = En

�1(En,�,q) = �� lim
E!En

�0(E)
| n(q)|2

E � En

= ���00(En)| n(q)|
2

We take a derivative with respect to � on both sides of this equation

| n(q)|
2 = �

@
@��1(E ,�,q)
@
@E

�1(E ,�,q)

����� �=0
E=En

Inserting the semiclassical approximation for �1 results in

| n(q)|
2
⇡

Re[�0(En) Greg(q,q,En)]sc,tr

Re
⇥
�00(En)

⇤sc,tr

This is the result for the semiclassical approximation of | n(q)|2.



Discussion of the result

We found

| n(q)|
2
⇡

Re[�0(En) Greg(q,q,En)]sc,tr

Re
⇥
�00(En)

⇤sc,tr

�0 and G0 both have a semiclassical expansion in terms of trajectories. These sums are
multiplied and cut off smoothly when the joint periods Tn + T� is half the Heisenberg time.

This result is independent of the choice of the regularisation of the Green function. If one
considers only the zero-length contributions to the Green function one obtains for chaotic systems

| n(q)|
2
⇡

d̄(q,En)

d̄(En)
⇡

R
d

f p �(E � H(q,p))R
df q df p �(E � H(q,p))

.

When integrated over some small area this is consistent with the quantum ergodicity theorem,
roughly speaking, states that almost all eigenstates are uniformly distributed on the energy shell in
the semiclassical limit.

The result can applied for an examination of scars. If a small smoothing in q is applied, then the
contribution comes from closed orbits near periodic orbits, and they can be described in terms of
these periodic orbits.



Rank two perturbations

We consider also rank two perturbations which correspond to self-adjoint extensions of a
Hamiltonian from whose domain two points are removed. They formally correspond to a
perturbation by an operator of the form

�1|q1ihq1|+ µ|q1ihq2|+ µ̄|q2ihq1|+ �2|q2ihq2|

where �1 and �2 are real and µ = µr + iµi is complex. Then

�2(E) = �0(E) det

"
1 �

 
G

reg
0 (q1, q1, E) G0(q1, q2, E)

G0(q2, q1, E) G
reg
0 (q2, q2, E)

! 
�1 µ

µ̄ �2

!#

It is sufficient to consider the case �1 = �2 = 0 and µ = µr + iµi is complex. Then

�2(E, µ, q1, q2) = �(E) [1 � µG0(q2, q1, E) � µ̄G0(q1, q2, E) + |µ|2G0(q1, q2, E) G0(q2, q1, E)

�|µ|2G
reg
0 (q1, q1, E)Greg

0 (q2, q2, E)
i

The determinant �2 is again an entire function of E and the corresponding semiclassical
approximation for �2 has the form

�2(E , µ,q1,q2) ⇡ 2Re[�2(E , µ,q1,q2)]
sc,tr



Similarly to before one can show that

�0(E)G0(q,q
0,E) = �

1
2


@

@µr

+ i
@

@µi

�
�2(E , µ,q,q0)

��
µ=0 ,

from which the following semiclassical approximation is obtained

G0(q,q
0,E) ⇡

[�0(E)G0(q,q
0,E) +�0(E)G0(q0,q,E)]sc,tr

2Re[�0(E)]sc,tr
.

This can be interpreted as a resummation of numerator and denominator of

�0(E)G0(q,q
0,E)

�0(E)
.

. Similarly for wave functions

 m(q) m(q0) = �

h
@

@µr
+ i

@
@µi

i
�2(E , µ,q,q0)

2 @
@E

�2(E , µ,q,q0)

������ µ=0
E=Em

⇡
[�0(Em)G0(q,q

0,Em) +�0(Em)G0(q0,q,Em)]sc,tr

2Re[�00(Em)]sc,tr



Further applications

One can obtained resummed formulas for other quantities that are related to the Green function.
For example, the Weyl transform of the Green function is

W (x ,E) =

Z
d

f
q
0

e
�ipq

0/~
G(q +

1
2

q
0,q �

1
2

q
0,E) = h

f
X

n

Wn(x)

E � En

where x = (q,p) and Wn(x) is the Wigner function of the n-th eigenstate with energy En. Using
the result for the Green function and stationary phase approximation results in

W (x ,E) ⇡
[�(E) W (x ,E) +�(E) W (x ,E)]sc,tr

2 Re [�(E)]sc,tr

where the semiclassical approximation to the function W (x ,E) is given by classical trajectories
that satisfy the midpoint rule x = (x f + x i )/2 where x f and x i are the final and initial points in
phase space



Expectation values

A similar approach can be applied to expectation values of operators. Consider the perturbation of
the Hamiltonian by a self-adjoint operator in the form Ĥ + �Â and the corresponding spectral
determinant �(E ,�). Then it follows from first-order perturbation theory that

@

@�
�(E ,�)

���� �=0
E=Em

= �
@Em(�)

@�

����
�=0

�0(E)

E � Em

����
E!Em

= �h m|A| mi�00(Em).

Hence

h n|A| ni = �

@
@��(E ,�)
@
@E

�(E ,�)

����� �=0
E=En

The corresponding semiclassical approximation is given by

h n|A| ni ⇡ �

Re
h

@
@��(E ,�)

isc,tr

Re
h

@
@E

�(E ,�)
isc,tr

������� �=0
E=En

The contribution of the zero-length trajectories corresponds to an average of the classical A(q,p)

over the energy shell.



A simple example

Particle in a one-dimensional box with Dirichlet b.c.s
(~ = 2m = 1)

� 00(q) = E (q) ,  (0) =  (a) = 0

Semiclassical Green function (E = k2)
0 aq’ q

G(q, q0,E) =
1X

n=0

e
2inka

2ik

h
e

ik|q�q
0|
� e

ik(q+q
0)
� e

ik(2a�q�q
0) + e

ik(2a�|q�q
0|)
i

=
cos(ka � k |q � q0|)� cos(ka � k(q + q0))

2k sin ka

This is the exact Green function. The cut-off TH/2 corresponds to a length LH/2 = TH/2v = a.



A simple example

There is one periodic orbit of length 2a and its repetitions. This orbit is longer than the cut-off at a.
The mean spectral staircase is N̄(E) = ak/⇡ � 1/2.
Spectral determinant

�(E) =
1Y

n=1

(1 � E/En) =
sin ka

ka

Semiclassical approximation

�(E) =
1

2ka
e
�ika+i⇡/2

⇣
1 � e

2ika

⌘

Resummation of the spectral determinant

�(E) = 2Re[�(E)]sc,tr = 2Re

⇢
1

2ka
e
�ika+i⇡/2

�
=

sin ka

ka

The resummation with a sharp cut-off is exact.



A simple example

The resummed expression for the Green function

G(q, q0,E) =
G(q, q0,E) �(E)

�(E)

is (for the case q + q0 < a)

G(q, q0,E) =
2Re[G(q, q0,E)�(E)]sc,tr

2Re[�(E)]sc,tr

=
Re

h
e
�ika+i⇡/2

⇣
e

ik|q�q
0|�i⇡/2

� e
ik(q+q

0)�i⇡/2
⌘i

2k Re
⇥
e�ika+i⇡/2

⇤

=
cos(ka � k |q � q0|)� cos(ka � k(q + q0))

2k sin ka

Again the resummation with a sharp cut-off is exact.



A simple example

Exercise 7

Continue with the simple example and obtain resummed expressions for the wave func-
tions. Show that your result agrees with the exact normalised wave functions.



Bifurcations



Periodic orbits in mixed Systems

In mixed systems there are stable as well as unstable periodic orbits. The stability matrix Mp of a
stable periodic orbit p has eigenvalues e

±i↵p . In the linearised approximation the neighbouring
orbits wind around the periodic orbit on tori. If ↵p is a rational multiple of 2⇡

↵p = 2⇡
q

r

then the stability matrix for the r -th repetition of the periodic orbit, Mr
p , has an eigenvalue 1. This

implies that the orbit is not isolated: a bifurcation occurs, in which two or more periodic orbits
coalesce. The bifurcation is a period r -tupling bifurcation where p coalesces with one or more
orbits which have r times the period of p. For any finite change of a parameter of a system an
infinite number of bifurcations occur.

The bifurcations which occur if one parameter of the system is changed are bifurcations of
codimension one. If more than one parameter of the system is varied, then the bifurcations can
have more complicated forms which can involve a larger number of periodic orbits. In general, the
codimension K is the number of parameters that are required to bring the participating periodic
orbits into coalescence.

In addition to the codimension K , bifurcations are characterized by the repetition number r for
which the bifurcation occurs. All generic bifurcations of codimension K = 1 and K = 2 have been
completely classified for all r .



Bifurcations



Bifurcating orbits are semiclassically more important than isolated orbits.

d
osc
� (E) /

1
~2

Z
dQ dP G(Q, P) e

i�(Q,P)/~

The normal form �(Q,P) describes the configuration of the periodic orbits that participate in the
bifurcation.
Example saddle node bifurcation: �(Q,P) = P2 + x1Q + Q3

Stationary points are at (Q,P) = (±
p
�x1, 0).

Contribution at bifurcation / ~�� , where � = 7/6 for saddle node.
Away from the bifurcation (�x1 large) we have contributions of isolated orbits / ~�1. The two
regimes are interpolated by an Airy function.
There is a different diffraction integral for every type of bifurcation. This makes semiclassical
approximations in mixed systems very complicated!

Example: period-doubling pitchfork bifurcation

d⇠(E) = Re

"
1
⇡~

����
⇡�S

2~

����
1/2

exp

✓
i

~
S̄ �

i⇡

2
⌫ �

i⇡

4
�

◆

⇥

⇢✓
A1

2
+

A0
p

2

◆✓
�2J1/4

✓
|�S|

~

◆
e

i�1⇡/8 + J�1/4

✓
|�S|

~

◆
e
�i�1⇡/8

◆

+

✓
A1

2
�

A0
p

2

◆✓
J3/4

✓
|�S|

~

◆
e

i�13⇡/8 + �2J�3/4

✓
|�S|

~

◆
e
�i�13⇡/8

◆��
.



Besides � there are further exponents that are important for the semiclassical influence of the
bifurcation. They describes the size of the parameter intervals over which the bifurcation is
semiclassically stronger than isolated periodic orbits. Consider

d
osc
� (E) /

1
~2

Z
dQ dP G(Q, P) e

i�(Q,P)/~

In the example �(Q,P) = P2 + x1Q + Q3 we can make the exponent ~-independent by scaling

Q = Q̃~1/3 , P = P̃~1/2 , x1 = x̃1~2/3

Hence the relevant x1 interval scales like ~�1 where �1 = 2/3 in the example.
Bifurcations of higher codimension K have K parameters in their normal form, and there are K

exponents �i that describe the relevant volume in parameter space. Because of this finite
extension in parameter space, bifurcations of higher codimension cannot be neglected even if only
one parameter is varied!



Billiard systems



Billiard systems

Billiard systems are popular model systems in quantum chaos. Let us first consider
two-dimensional billiards. Some reasons for the popularity are

Many standard examples of chaotic systems are billiard systems (stadium billiard, Sinai
billiard, cardioid billiard, diamond billiard).

Similarly, there are standard examples of integrable systems (rectangles, circle, ellipses,
triangles (60-60-60, 90-60-30, 90-45-45), confocal parabolas).

There are new types of systems like pseudo-integrable systems.

Experiments in the field of quantum chaos are often done on systems that are modelled by
billiard systems.

There are special methods for numerical treatment and for analytical treatment.



Billiard systems

The Schrödinger equation for quantum billiards is

�
~2

2m
r

2 (q) = E  (q) or (k2 +r
2) (q) = 0, q 2 D,

where D is the domain of the billiard and k =
p

2mE/~ is the wave number.

Possible boundary conditions are

 (q) = 0, q 2 @D, Dirichlet b.c.s

n·r (q) = 0, q 2 @D, Neumann b.c.s

 + n·r (q) = 0, q 2 @D, Robin b.c.s

where @D is the boundary of the domain D,  is the parameter of the Robin boundary conditions,
and n is the outward pointing unit normal vector of the boundary. In the following we will
abbreviate @n = n·r.

For billiard systems it is convenient to use dimensionless coordinates in which ~ = 2m = 1. Then
E = k2, and the semiclassical limit corresponds to k ! 1. We will use dimensionless units in this
section (~ = 2m = 1).



The mean density of states

For billiard systems higher-order corrections to Weyl’s law for the mean density are known. Let
N(E) be the spectral staircase or spectral counting function

N(E) = #{En|En < E} =
X

n

✓(E � En),

with
d(E) =

d

dE
N(E) =

X

n

�(E � En).

For Dirichlet boundary conditions the result is

N̄(E) ⇡
A

4⇡
E �

L

4⇡

p

E +
1

12⇡

Z

@D

K (s) ds +
X

j

1
24

 
⇡

↵j

�
↵j

⇡

!
as E ! 1.

A is the area of the domain D, L is the length of the boundary @D, K (s) is the curvature of the
boundary at the coordinate s along the boundary. The sum over j runs over all corners of the
billiard and ↵j is the interior angle of a corner. For Robin boundary conditions the first two terms
are

N̄(E) ⇡
A

4⇡
E �

L

4⇡

p

E

"
1 � 2

 r
1 +

⇣
k

⌘2
�


k

!#
as E ! 1.



Boundary integral equation

We start by discussing a boundary integral equation that reduces the two-dimensional problem to
a one-dimensional problem along the boundary. To derive this integral equation we consider

[E +r
2]G0(q,q

0,E) = �(q � q
0), [E +r

2] (q) = 0.

where G0(q,q
0,E) is the free Green function.

G0(q,q
0,E) = �

i

4
H

(1)
0 (k |q � q

0
|).

We multiply the first differential equation from the left with  (q) and the second equation from the
left with G0(q,q

0,E). The difference of the resulting equations is

 (q) [E +r
2](G0(q,q

0,E)� G0(q,q
0,E)[E +r

2] (q) =  (q) �(q � q
0).

This can be written in the form

r·[ (q)rG0(q,q
0,E)� G0(q,q

0,E)r (q)] =  (q) �(q � q
0),

We continue by integrating this equation over the domain D.



Boundary integral equation

We arrive at
Z

D

d
2
q r·[ (q)rG0(q,q

0,E)� G0(q,q
0,E)r (q)] =

Z

D

d
2
q  (q) �(q � q

0).

An application of the divergence theorem

Z

D

d
2
q r·F (q) =

Z

@D

ds n·F (q),

results in

Z

@D

ds [ (q)@nG0(q,q
0,E)� G0(q,q

0,E)@n (q)] =

8
>>><

>>>:

0 q0 /2 D

 (q0)/2 q0 2 @D,

 (q0) q0 2 D/@D,

where @n = n·r. The result on the boundary can be justified by potential theory.

We will consider Dirichlet boundary conditions  (q) = 0 on @D in the following. One way to
continue is to apply these conditions to the wave function in the integral equation.



Boundary integral equation

After applying Dirichlet boundary conditions to the function  (q) we obtain for q0 2 @D

Z

@D

ds G0(q,q
0,E) @n (q) = 0.

The free Green function G0 has a logarithmic divergence in two dimensions as q ! q0

G0(q,q
0,E) = �

i

4
H

(1)
0 (k |q � q

0
|) ⇠

1
2⇡

log

✓
k |q � q0|

2

◆
+

�

2⇡
�

i

4

This is inconvenient for numerical and analytical applications. It is more appropriate to apply a
normal derivative to the previous equation before applying the b.c.s, and we obtain

�

Z

@D

ds @n0G0(q,q
0,E)@n (q) =

1
2
@n0 (q0)

This result can again be justified by potential theory. This integral equation is now non-singular
because @n0G0(q,q

0,E) stays finite if q approaches q0 along the boundary. (We assume that the
boundary is continuously differentiable.)

@n0G0(q,q
0,E) =

�ik

4
H

(1)
1 (k |q � q

0
|)

n0 ·(q � q0)

|q � q0|



Boundary integral equation

We define the integral operator

Q̂u(s0) = �2
Z

@D

ds u(s) @n0G0(q,q
0,E)

With this definition the boundary integral equation has the form

(1 � Q̂)u(s0) = 0.

This is a Fredholm integral equation of the second kind. Non-trivial solutions exit only if the
Fredholm determinant vanishes

�(E) = det(1 � Q̂) = 0.

By an application of Fredholm theory, �(E) can be represented by an absolutely convergent
series which in the semiclassical approximation becomes a series over pseudo-orbits.

For Im k � 0 all the zeros of the Fredholm determinant correspond to energies of the interior
billiard with Dirichlet boundary conditions, k = ±

p
En. For Im k < 0 there can be further zeros.

They correspond to resonances of the outside scattering problem with Neumann boundary
conditions.

In the following we apply the boundary integral equation to derive the trace formula.



The spectral staircase is related to the spectral determinant by

N(E) = Nsm(E)�
1
⇡

lim
"!0

Im log
�(E + i")

�(0)
.

We expand the determinant in terms of traces of powers of Q̂

�(E) = det(1 � Q̂) = exp
⇣
Tr log(1 � Q̂)

⌘
= exp

 
�

1X

n=1

1
n
Tr Q̂

n

!
,

and we arrive at the starting point for the derivation of the trace formula by

d(k) =
d

dk
N(E) = dsm(k) +

1
⇡
Im
1X

n=1

1
n

d

dk
Tr Q̂

n(k),

where

Tr Q̂
n(k) = (�2)n

Z

@D
ds1 . . . dsn @nn

G0(q1,qn,E) . . . @n2 G0(q3,q2,E) @n1 G0(q2,q1,E)

The trace formula can be obtained by evaluating all integrals in stationary phase approximation.
The derivation can be significantly simplified by applying the multiple reflection expansion of Balian
and Bloch (1970).



Multiple reflection expansion

This is a short excursion on the multiple reflection expansion of Balian and Bloch (1970).

We write the Green’s function for the billiard with Dirichlet boundary condition in the form

G(q,q0,E) = G0(q,q
0,E) + G1(q,q

0,E).

Here G0 is the free Green function and G1 is a solution of

(E +r
2)G1(q,q

0,E) = 0 q 2 D.

G1(q,q
0,E) = �G0(q,q

0,E) q 2 @D

In the next step G1 is represented by a double layer potential

G1(q,q
0,E) =

Z

@D

ds1 @n1 G0(q,q1,E)µ(q1,q
0,E).

Potential theory provides the jump relation for this double layer potential. It is given by

G
"
1 (q,q

0,E)�

Z

@D

ds1 @n1 G0(q,q1,E)µ(q1,q
0,E) =

1
2
µ(q1,q

0,E).



Multiple reflection expansion

Applying the boundary condition for G1 results in

�G0(q1,q
0,E)�

Z

@D

ds @n1 G0(q1,q2,E)µ(q2,q
0,E) =

1
2
µ(q1,q

0,E)

Using this relation iteratively, one obtains the multiple reflection expansion of Balian and Bloch

G(q,q0,E) = G0(q,q
0,E) + G1(q,q

0,E)

= G0(q,q
0,E) +

Z

@D

ds1 @n1 G0(q,q1,E)µ(q1,q
0,E)

= G0(q,q
0,E) + (�2)

Z

@D

ds1 @n1 G0(q,q1,E)G0(q,q
0,E)

+ (�2)
Z

@D

ds1 ds2 @n2 G0(q,q2,E) @n1 G0(q2,q1,E)µ(q1,q
0,E)

We find

G(q,q0,E) =
1X

n=0

G
(n)(q,q0,E),

where G(n) is the contribution from n reflections on the boundary to the Green function G.



Multiple reflection expansion

We found

G(q,q0,E) =
1X

n=0

G
(n)(q,q0,E),

where

G
(n)(q,q0,E) = (�2)n

Z

@D
ds1 . . . dsn @nn

G0(q,qn,E) . . . @n1 G0(q2,q1,E) G0(q1,q
0,E)

From this form follows the composition rule

G
(n+1)(q,q0,E) = (�2)

Z

@D

ds1 @n1 G0(q,q1,E) G
(n)(q1,q

0,E)

or more generally

G
(m+n+1)(q,q0,E) = (�2)

Z

@D

ds1 @n1 G
(m)(q,q1,E) G

(n)(q1,q
0,E)

We compare this to the formula for the traces of Q̂

Tr Q̂
n(k) = (�2)n

Z

@D
ds1 . . . dsn @nn

G0(q1,qn,E) . . . @n2 G0(q3,q2,E) @n1 G0(q2,q1,E)



Multiple reflection expansion

The comparison of the formulas shows

Tr Q̂
n = (�2)

Z

@D

ds @n0G(n�1)(q,q0,E)

����
q=q0

and hence

d(k) = dsm(k)�
2
⇡

d

dk
Im
1X

n=1

1
n

Z

@B
ds @n0G(n�1)(q,q0,E)|q=q0

We want to derive the trace formula from this approach. Plan of proof

First we show by induction that

G
(n)
sc (q,q0,E) =

X

�n

1
q

8⇡k |M̃�n,12|
exp

✓
ikl�n

� i
⇡

2
⇠�n

� i
3⇡
4

◆

The sum runs over all trajectories with n reflections from q0 to q and M̃ is the stability matrix
at unit energy. The index ⇠ is given by the number of conjugate points plus twice the number
of reflections at the boundary.

Then the semiclassical approximation for the density of states follows from an evaluation of
the above integral by the method of stationary phase.



Derivation of the semiclassical Green’s function

We have the composition rule

G
(n+1)(q,q0,E) = (�2)

Z

@D

ds1 @n1 G0(q,q1,E) G
(n)(q1,q

0,E),

and we want to show by induction that

G
(n)
sc (q,q0,E) =

X

�n

1
q

8⇡k |M̃�n,12|
exp

✓
ikl�n

� i
⇡

2
⇠�n

� i
3⇡
4

◆
.

In the first step we show that the relation holds for n = 0.

G0(q,q
0,E) = �

i

4
H

(1)
0 (k l) ⇠

1
p

8⇡kl
exp

✓
ikl � i

3⇡
4

◆
as k ! 1.

where l = |q � q0|. This is correct, because M̃12 = l and ⇠ = 0 for the direct trajectory. Next we
need to approximate the above integral. We have in leading order.

@n1 G0(q,q1,E) ⇡ �i n1 ·p1 G
(0)
sc (q,q1,E) = ik cos↵1 G

(0)
sc (q,q1,E)

were ↵1 is the angle between n1 and momentum p1 and we used @
@q1

S(q,q1) = �p1.



Derivation of the semiclassical Green function

With these results

(�2)
Z

@D

ds1 @n1 G0(q,q1,E) G
(n)
sc (q1,q

0,E)

=
X

�n

(�2)
Z

@D
ds1 (ik cos↵1)

exp
n

ik [l(0)(q,q1) + l(n)(q1,q
0)]� i

⇡
2 ⇠

(n)
� i

3⇡
2

o

8⇡k

q
|M̃

(0)
12 M̃

(n)
12 |

Stationary points are determined by

0 =
d

ds1
[l(0)(q,q1) + l

(n)(q1,q
0)] = t1 · [�

p
(0)
1
k

+
p
(n)
1
k

] = sin↵(0)
1 � sin↵(n)

1 .

From this follows that the angle of incidence and the angle of reflection are equal. It implies that
l(0) and l(n) are parts of a longer trajectory with (n + 1) reflections.
The expansion up to second order is a bit lengthy and we give only the result

d2

ds2
1
[l(0)(q,q1) + l

(n)(q1,q
0)] = �

cos2 ↵1 M̃
(n+1)
12

M̃
(0)
12 M̃

(n)
12

.



Derivation of the semiclassical Green function

With this result we can evaluate

(�2)
Z

@D

ds1 @n1 G0(q,q1,E) G
(n)
sc (q1,q

0,E)

=
X

�n+1

Z

@D
ds1

cos↵1 exp
�

ikl(n+1)(q,q0)� i
⇡
2 ⌫

(n)
 

4⇡
q

|M̃
(0)
12 M̃

(n)
12 |

Z 1

�1
ds1 exp

 
�ik

cos2 ↵1 M̃
(n+1)
12

2 M̃
(0)
12 M̃

(n)
12

s
2
1

!

=
X

�n+1

1
r

8⇡k

���M̃(n+1)
12

���
exp

✓
ikl

(n+1)
� i

⇡

2
⌫(n+1)

� i
3⇡
4

◆

where M̃(n+1) = M̃(0)M̃r M̃
(n) with

M̃
(0) =

 
1 l

0 1

!
, M̃r =

 
�1 0

2
R cos↵ �1

!
.

and

⌫(n+1) = ⌫(n) + 2 +

8
<

:
1 if sgn(M̃(n+1)

12 ) = sgn(M̃(n)
12 ),

0 if sgn(M̃(n+1)
12 ) 6= sgn(M̃(n)

12 ).



Derivation of the trace formula

We obtained the correct rules for the composition of stability matrices and Maslov indices. In the
final step we evaluate the following integral in stationary phase approximation.

d(k) = dsm(k)�
2
⇡

d

dk
Im
1X

n=1

1
n

Z

@B
ds @n0G(n�1)(q,q0,E)|q=q0

The contribution of a periodic orbit with n reflections is obtained from the integral

d�n
(k) = �

2
⇡
Re

k

n

l(n�1) cos↵
q

8⇡k |M̃
(n)
12 |

Z

@D

ds exp
⇣

ikl
(n�1)(q,q)� i

⇡

2
⇠(n�1)

� i
⇡

4

⌘
.

From the stationary phase condition

0 =
d

ds
l
(n�1)(q,q) = t ·[�

pi

k
+

pf

k
]

follows that the angle of incidence is equal to the angle of reflection. That means that the orbit has
to be periodic.



Derivation of the trace formula

We give only the result for the expansion up to second order

d2

ds2 l
(n�1)(q,q) = �

cos2(Tr M̃
(n)
po � 2)

(M̃(n)
po )12

,

and the result of the stationary phase approximation

d�n
(k) =

l
(n)
po

⇡rpo

q
|Tr M̃

(n)
po � 2|

cos
n

kl
(n)
po �

⇡

2
µ
(n)
po

o
.

Here M̃
(n)
po = M̃r M̃

(n�1) and

µ
(n)
po = ⇠(n�1) + 2 +

8
<

:
0 if (M̃(n)

po )12/(Tr M̃
(n)
po � 2) > 0,

1 if (M̃(n)
po )12/(Tr M̃

(n)
po � 2) < 0.

Advantages of the derivation

Only two stationary phase approximations needed.

Derivation keeps track of the composition of Maslov indices and stability matrices.



Three-dimensional billiard systems

The same calculation can be done for three-dimensional billiard systems. Then |TrM � 2| is
replaced by | det(M � 1)| in the trace formula. In three dimensions one chooses a local coordinate
system with one coordinate in the direction of a trajectory and two perpendicular to it. The stability
matrix is four-dimensional  

dq?
dp?

!
= M

 
dq0?
dp0?

!
.

It is a symplectic matrix, MT J M = J, and has 10 independent elements. It can be composed of
three different types of matrices.

M = M
b n

T
M

n

R
M

n

S
. . . M

3 2
T

M
2
R

M
2
S

M
2 1
T

M
1
R

M
1
S

M
1 a

T

Here MT is the matrix for a part of the trajectory of length L between two reflections. MS

corresponds to a rotation of the local coordinate system around the trajectory such that the new
coordinate with index 2 lies in the reflection plane that is spanned by the incoming and outgoing
trajectory at a reflection point. MT and MS are given by

MT =

0

BBBBBB@

1 0
L

p
0

0 1 0
L

p

0 0 1 0
0 0 0 1

1

CCCCCCA
, MS =

0

BBB@

cos ✓ sin ✓ 0 0
� sin ✓ cos ✓ 0 0

0 0 cos ✓ sin ✓

0 0 � sin ✓ cos ✓

1

CCCA



Three-dimensional billiard systems

MR is the matrix for a reflection

MR =

0

BBBBBBBBBBBB@

�1 0 0 0

0 1 0 0

2p

Ra cos↵

2p

Rc

�1 0

�
2p

Rc

�
2p cos↵

Rb

0 1

1

CCCCCCCCCCCCA

Here ↵ is the angle of incidence. Ra and Rb are the radii of curvature in the reflection plane and
perpendicular to it, respectively. Ra, Rb and Rc can be expressed in terms of the two main radii of
curvature at the reflection point R1 and R2 and the angle � between the tangent lying in the
reflection plane and the direction of the main curvature 1/R1.

1
Ra

=
cos2 �

R1
+

sin2 �

R2
,

1
Rb

=
sin2 �

R1
+

cos2 �

R2
,

1
Rc

=
R2 � R1

R1R2
cos� sin�.

Explicit rules for calculating the Maslov index from the stability matrices can be given.



Diffraction



Diffraction

What are important corrections to semiclassics? Consider the example of a half-plane.

region
light

shadow

region

region
light

shadow

region

The usual semiclassical approach doesn’t describe effects due to diffraction.

=) Keller’s geometrical theory of diffraction (GTD)

G(q,q0,E) ⇡ G0(q,q
0,E) + G0(q,q0,E)D(�,�0)G0(q0,q

0,E)

Diffractive rays have order k�1/2 smaller amplitude than ordinary rays in 2D.



Geometrical theory of diffraction

Examples: surface diffraction, corner diffraction, point or flux line diffraction.

Case I (not discussed in this talk):

G(q,q0,E) ⇡ G0(q,q
0,E) + G0(q,q2,E)D2 Gc(q2,q1,E)D1 G0(q1,q

0,E)

Case II and III:
G(q,q0,E) ⇡ G0(q,q

0,E) + G0(q,q0,E)D0 G0(q0,q
0,E)



Examples of diffraction coefficients

Diffraction on a corner with angle � in two dimensions (N = �/⇡)

D(�,�0) = �
4
N

sin ⇡
N

sin �
N

sin �0

N⇣
cos ⇡

N
� cos �+�0

N

⌘ ⇣
cos ⇡

N
� cos ���0

N

⌘ .

Diffraction on a flux line with flux parameter ↵ in two dimensions

D(�,�0) =
2 sin(↵⇡) exp

n
i
���0

2

o

cos
⇣

���0
2

⌘ .

Diffraction on a point-like scatterer with parameter a in two and dimensions

D =
2⇡

i
⇡
2 � � � log

⇣
ka

2

⌘ , D =
4⇡a

1 + ika
.

In the first two cases the diffraction coefficients diverges for certain angles (at optical boundaries
where ray contributions are discontinuous)



Multiple diffraction

General diffractive rays ⇠ can an arbitrary number of diffraction events, and an arbitrary number of
reflections. They contribute to Green function

G
⇠
d
(q,q0,E) ⇡ G

⇠(q,qn,E)Dn G
⇠(qn,qn�1,E)Dn�1 · . . . · D1 G

⇠(q1,q
0,E)

and to the density of eigenmodes

d
⇠(k) ⇡ Re

0

@L⇠

⇡

nY

j=1

Dj G
⇠(q j+1,q j ,E)

1

A

The contributions of the ray parts between diffraction events are of the form

G
⇠(qb,qa,E) ⇡

1
q

8⇡k |M̃12|

e
ikL�i⇡⌫/2�i3⇡/4

For each diffraction event the amplitude decreases by an order k�1/2

Are these diffractive contributions important?

How do contributions have to be modified at optical boundaries?



Exercise 8 (difficult)

Assume that the point q0 is at the corner point of a billiard. The contribution to the Green
function from a trajectory that is diffracted once is given by

G
(⇠1,⇠2)(q,q0,E) ⇡ G

⇠2 (q,q0,E)D G
⇠1 (q0,q

0,E).

Here D is the diffraction coefficient of the corner, and the diffracted trajectory has the two
parts ⇠1 and ⇠2. Calculate the contribution of a diffracted orbit to the density of states.

d(E) = �
1
⇡

lim
"!0

Im

Z
d

2
q G(q,q,E + i").

You should obtain

d
⇠(E) ⇡ Re

✓
T ⇠

⇡
D G

⇠(q0,q0,E)

◆

Here ⇠ is the trajectory that is obtained if ⇠2 and ⇠1 join smoothly to form a trajectory from
q0 to q0.



Diffraction at a corner

Fourier transform of the density of eigenmodes for the triangle 7⇡
12 , ⇡

4 , ⇡
6

(Pavloff, Schmit)



Diffraction at a corner

Fourier transform of the density of eigenmodes for the triangle 11⇡
21 , ⇡

3 , ⇡
7

Pavloff, Schmit (unpublished)

Uniform approximations needed =) uniform geometrical theory of diffraction


