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Relativistic Quantum Chaos: Neutrino Billiards
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Central Conjectures of Quantum Chaos

• Bohigas-Gianonni-Schmit Conjecture (1984) [Berry (1977), Casati et al. (1980)]:

The spectral fluctuation properties of generic classically chaotic systems 

coincide with those of random matrices from the Gaussian Ensembles

 Question: Do the conjectures apply to relativistic quantum billiards like 
neutrino billiards?

 Problem: NBs do not have a well-defined classical limit 
 We use the semiclassical approach (length spectra, Husimi distributions) 

• Berry-Tabor Conjecture: 

The spectral fluctuation properties of generic integrable systems coincide 

with those of uncorrelated random numbers from a Poisson process

• Nonrelativistic Quantum Systems / Quantum Billiards

• Relativistic Quantum Systems / Quantum Billiards
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Graphene

• Near each corner of the first hexagonal Brillouin zone the electron 
energy  exhibits a linear dependence on the quasimomentum q

• Close to the diabolical (‘Dirac’) points the band structure is described by 
the Dirac equation of massless fermions 



• Independent contributions from K+ and K- valleys  4D Dirac equation

conduction
band

valence
band



K+K-
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Graphene Billiards

• Assumption: interaction of the graphene pz orbitals non-negligible for 1st, 
2nd and 3rd nearest neighbors

• Graphene billiard: Dirichlet BCs along the 1st missing row of atoms outside 
sheet

t1

t3
t2

• Tight-binding model

+ …..
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DOS of Rectangular and Africa-Shaped GBs
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Ratio Distributions for Dirac / Graphene Billiards

• Ratio distribution of all 1656 (1823) resonance frequencies of rectangular 
(Africa) billiard agrees with Poisson (GOE)

• The same holds for the (k=1)-overlapping ratio distribution
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• Dirac equation

• For V0 the Dirac Hamiltonian is not invariant under                                                          

→ chaotic systems with no geometric symmetries follow GUE statistics                                                                                                               

K̂ˆT̂ yi

Massless Spin-1/2 Particle in a Potential
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Dirac Equation for Neutrino Billiards
Berry & Mondragon, Proc. R. Soc. Lond. A 412, 53 (1987)

• Dirac equation for a free spin-1/2 particle with mass m

• BC requires that the outward current vanishes along boundary                          

• BC links the spinor components at the boundary

• Parameter   arc length:

• Coordinates in the complex plane:

• Normal vector:

• Polar coordinates:
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Dirac Equation for Massive Neutrino Billiards

• The energy E is given in terms of the free space wavevector k as

• The nonrelativistic limit k   complies with the BC

• Define

nonrel.  Limit     /2
ultrarel. Limit     0

• The resulting Dirac equation has the same form as for the NB with m=0
• For m  0 the Dirac Hamiltonian is not time-reversal invariant
 if it’s shape corresponds to that of a chaotic billiard, GUE is expected

• For m   we have 2  0 and the BC for 1 becomes Dirichlet

with

with
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Boundary Integral Equation for NBs

• Combining the Dirac equation and the matrix equation satisfied by the 
associated free-space Green function yields the boundary integral  

• Free-space Green function

• H0 and H1 have singularities at r = 0

• Incorporate the B.C. in the equation for
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Boundary Integral Method for Massive NBs
Dietz & Li, PRE 102, 042214 (2020)

• For m=0 the singularities are removed with the replacements

in coordinates (n,s) normal / tangential to boundary, and with the relation

• Boundary integral equation for the first spinor component

• In the integral  is excluded, as it is accounted for on the lhs
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Spectral Properties of Half-Circle QB
With Robin BCs

•Robin BC

•Shown are results for the symmetric solutions

=100

=20

=0

=50
N

D
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Trace Formula for the Spectral Density of                   
Massive Neutrino Billiards

BD & Z. Li, PRE102, 042214 (2020) 

• Quantization condition deduced from the BIEs for Massive NBs

• Trace formula is a sum over the periodic orbits of the classical billiard

Only POs with even         
# reflections p contribute

• The factor              depends on m and the direction of propagation of the PO



Gutzwiller
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Wave Functions and Current for the        
Rectangular NB

|| |2||1|

QB NB
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NBs with Shapes Exhibiting a Mirror Symmetry

•Coordinate (orthogonal) transformation  unitary transformation in Dirac 
Hamiltonian



•The transformed spinor functions do not fulfill the boundary condition

 not classifiable according to their transformation properties under 
reflection at the mirror axis

•Reflection at the x- or y-axis






•Reflection at the x- or y-axis of the Dirac equation yields
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Wave Functions and Currents of Elliptic NB 

•The ellipse has a reflection symmetry with respect to the x- and y-axis    
 it has a twofold symmetry

• All wave functions are either symmetric or antisymmetric with respect to 
rotation by 

|u|Re1 Re2Im1 Im2 u
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NBs with Shapes with N-fold Rotational Symmetry

• N-fold rotational symmetry:

• Counterclockwise rotation by 2/N

• Wave functions classifiable according to their transformation properties

• The spinor components transform differently under rotation

• Symmetry group , g: rotation by 2/N, N

l=0,1,2,…,N-1

• For 
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Entanglement of Symmetry Classes in                   
Equilateral-Triangle NB

BD, Acta Pol. 140, 473 (2021)

|u|Re1 Re2 Im1 Im2 u

l=0

l=1

l=2

• Symmetry-projected eigenvalue equations with n=n1+n2, m=n1-n2
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Symmetry-Projected BIEs  for NBs
Zhang & Dietz, PRB 104, 064310 (2021)

• Boundary-integral equation can be written in the form 

• 3fold symmetry implies 

• Use 3fold symmetry and define

andwith

• Symmetry-projected boundary-integral equations 

with



with
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Wave functions of the Massive Neutrino Billiard 
with C3 Symmetry

|1| |2| |1| |2| |1| |2|

Singlets l=0 Doublets l=1 Doublets l=2

m=0

m=20

m=100

• For m   the wave function components 1,2 decouple and |2 / 1|  0 
• The nodal-line structure of the singlets becomes discernible because 

Im(1,2)  0 
• The intensity distributions of the doublets become similar
• The wave functions approach those of the QB

1500 levels,
kr0  [0,35]
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Spectral Properties of
Neutrino & Quantum Billiards

•Spectral properties for mass m=0, m=50, m=100 (100), and for the QB

•Non-generic orbits manifest themselves as slow oscillations in N fluc (k)

•Spectral properties are close to GUE for m=0 and to that of the QB for m100

Singlets Doublets
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Lengths Spectra of Neutrino Billiards

QB

NB: m=20

NB: m=2

NB: m=0

Singlets l=0All eigenvalues (l=0,1,2)

• For m=0 POs with an odd number of reflections are missing
• For m=20  the length spectrum exhibits peaks at the lengths of all POs
• For the singlets some peaks disappear with increasing m  

 pseudo orbits
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Lengths Spectra of the Doublets of             
Neutrino Billiard

Doublets l=2Doublets l=1

• The lengths spectra differ for small m and become similar for m  100

• The occurrence of peaks / interference of POs depends on m and the 

direction of propagation of the POs and thus on l

 The doublets exhibit peaks at the lengths of different pseudo orbits 
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|u|Re1 Re2|n|

Momentum Distributions, Wave Functions & 
Currents of a Square NB (l=1) 

•The square has a fourfold symmetry  the spinor components can be 
classified according to their transformation properties under rotation by /2

Local current:

Momentum distribution:
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Spectral Properties of Square NBs

•The square QB is an untypical system with integrable dynamics 
•The spectral properties of the square NB agree with Poisson
 overshootings are due to accidental degeneracies
•The spectral properties of the symmetry-projected eigenstates with l=0,
l=1, l=2, l=3 are close to Semi-Poisson

QB

NB

NB

QB

l=0, 2 l=1, 3

NB /4 triangle
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Length Spectrum of massless Square NB

• Generally, the length spectra of the NBs exhibit peaks only at lengths of POs 
with an even number of reflections at the boundary

• For the symmetry-projected cases peaks appear at lengths of pseudo orbits

l=0

l=1

QB

NB

l=2

l=3
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Wave Functions and Currents of Rectangular NB 

•The rectangle has a reflection symmetry with respect to the x- and y-axis    
 it has a twofold symmetry

• All spinor components are either symmetric or antisymmetric with respect 
to rotation by 

Re1 Re2Im1 Im2 |u|

Local current:
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Ratio distributions of the                         
Rectangular QB & NB

All eigenstates
Symmetry-projected 
eigenstates of the NB

l=0 l=1NB QB

•The spectral properties of the symmetry-projected eigenstates with l=0
and l=1are close to Semi-Poisson for all ratios of  a/b

• How do the spectral properties change when destroying the N-fold 
symmetry by cutting the NB along symmetry lines?

b/a=GM
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|u|Re1 Re2|n|

Momentum Distributions, Wave Functions & 
Currents of a Triangle NB 

b/a=GM

•Triangular billiards are obtained by cutting the rectangular billiards long 
the diagonal  symmetry-reduced

•The NB and QB exhibit similar scarred wave functions

NB QB
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Some Characteristics of Right-Triangle QBs

• Rectangular and right-triangle billiards with inner angles a=/n are integrable 
and exhibit untypical spectral properties

• Right-triangle billiards with inner angles a=m/n (m1, n,m incommensurable)
are pseudointegrable

 Exhibit intermediate statistics, i.e., levels repel each other and the nearest-
neighbor spacing distribution decays exponentially

• Right-triangle with irrational a/ may exhibit GOE-like behavior
• We found quarter-Poisson for NBs with b/a irrational if it is semi-Poisson for 

the corresponding QBs 
• Atas et al., JPA 46, 355204 (2013):

• Semi-Poisson: delete every second number from a Poisson sequence
• Quarter-Poisson: delete every second number from a semi-Poisson 

sequence
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Spectral Properties of Triangular NBs with 
b/a=GM and b/a=2

•The spectral properties of the triangle QB is close to semi-Poisson 
statistics  linear level repulsion

•The spectral properties of the triangle NB is close to quarter-Poisson 
statistics  cubic level repulsion

•For b/a=2 the QB / NB shows GOE / GUE. Deviations are due to scarred 
functions

b/a=2b/a=GM
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• Eigenvalues:

• Eigenfunctions:

Circle Sector QB

a
a
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15 Circle Sector @ Lower Band Edge

• At the band edges the spectral properties coincide with those of the 
corresponding quantum billiard for any shape

• The system is effectively described by the Schrödinger equation
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15 Circle Sector: Below the VHS

• The spectral properties are intermediate between Poisson and GOE
• With increasing energy the lattice structure starts to prevail leading to the 

occurrence of the van Hove singularities in the spectral density and the 
Dirac point 
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15 Circle Sector @ Dirac Point

• Near the Dirac points the spectral properties coincide with those of chaotic 
systems with preserved time-reversal invariance (GOE)

• Attributed to the edge structure implying different boundary conditions for 
the independent triangular lattices

 Spectral properties of relativistic quantum billiards ?
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Spectral Properties of the 3fold-Symmetric Solutions of the 
Circle NB and the 120 Circle Sector NB

NB after extracting 
contributions of the diameter 
orbit by employing its trace 
formula

NB

•Trace formula for diameter orbit:

•Circle neutrino billiard: ,
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Spectral Properties of Massive Half-Circle NB

• Spectral properties for mass m=0 (0), 10, 20, 50, 100, and for the QB

• Contributions of diameter orbit are extracted by employing its trace formula

• Deviations from Poisson due to intermingling of symmetry classes of the 

spinor components and discontinuity in the BCs at the corners                 

• NBs do not have a classical counterpart  Semiclassical limit?

||
NB, m=0QB

|| |u|
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Semiclassical Approach:
Length Spectra & Quantum Poincaré Section Map

• The Poincaré map is defined in terms of the arclength sn and the                   
momentum pn = |p| sin n at n th bounce with the boundary

• Definition of Birkhoff coordinates

• Husimi function on PSOS: Projection of boundary function onto a coherent 
state on the billiard boundary

• Husimi functions:

• Coherent state:

• Semiclassical approach: semiclassical approximation for the fluctuating part 
of spectral density in terms of a sum over periodic orbits

• Length spectrum
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Trace Formula for the Spectral Density of                   
Massive Neutrino Billiards

BD & Z. Li, PRE102, 042214 (2020) 

• Quantization condition deduced from the BIEs for Massive NBs

• Trace formula is a sum over the periodic orbits of the classical billiard

Only POs with even         
# reflections p contribute

• The factor              depends on m and the direction of propagation of the PO



Gutzwiller
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Length Spectra of 1/2-Circle and 1/4-Ellipse NBs

Half 
circle

Quarter 
ellipse

m=0 m=0

•The length spectra of the NBs exhibit peaks only at length of POs 
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Husimi Distribution of the First Wave Function 
Component of 1/2-Circle NB

p = sin 

s

m=0

m=10

m=20

m=50

QB

•For m50 the Husimi distribution is close to that of the QB, for smaller mass 
it is similar to it for diameter-orbit like WFs
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Spectral Properties of Massive 1/4-Ellipse NB

•Spectral properties for mass m=0 (0), 10, 20, 50, 100, and for the QB

•Contributions of diameter orbit are extracted by employing its trace formula

•Deviations from Poisson due to intermingling of symmetry classes of the 

spinor components and discontinuity in the BCs at the corners

||
NB, m=0QB

|| |u|
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Husimi Distribution of the First Wave Function 
Component of Quarter-Ellipse NB

p = sin 

s

m=0

m=10

m=20

m=50

QB

•For m20 the Husimi distribution is close to that of the QB, for smaller mass 
it is similar to it for diameter-orbit like WFs
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Constant Width Billiards
O. Knill, Elemente der Mathemarik 53, 89 (1998)

• Classical dynamics is unidirectional

• Change from clockwise to anti-clockwise motion classically forbidden

• In quantum billiard transition from p>0 to p<0 possible due to tunneling
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Spectra of the CW NB & QB

• The spectra of the QB & NB can be separated into singlets and nearly-

degenerate doublets

• Singlets correspond to diameter orbit (p=0) of circle NB & QB

• For the QB dynamical tunneling leads to a splitting of the degenerate 

eigenvalues of the circle billiard into doublets of nearly degenerate ones

• Doublets can be separated into two independent sequences

• The circle NB has no degeneracies

• For the NB the spectra can be separated into eigenstates corresponding to 

Husimi functions localized in the upper or lower part of the PSOS
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Comparison of Wave Functions & Husimi
Functions of the QB and Massless NB

adjacent  
eigenvalues
(nearly 
degenerate 
doublets)

QB NB

eigenvalues 
separated by 
 4 others

• NB: Hn(q,p)0 only in upper or lower half of the PSM like classical dynamics

located on small 
islands!
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Comparison of Wave Functions and Husimi
Distributions of the QB and Massless NB

Boundary condition:

m = 1m = 1

Located 
on small 
islands
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• V1 couples H (chaotic dynamics) to D1 (regular dynamics) with the coupling 
t1 measured in units of mean spacing d0

RMT Model for the Spectral Properties of                                  
Right Doublett Partner / Positive-p Husimi Partner

t1=0.125

• RMT model: H : 300300 GUE matrix
D1: 100100 diagonal Poisson matrix

Green: QB 

Red: Massless NB

Turquoise: RMT Model    
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Length Spectra of the QB and Massless NB

• The ‘doublet partners’ of the relativistic constant-width billiard are separated 

by several mean spacings  there is no dynamical tunneling

• Length spectra exhibit peaks at the lengths of the periodic orbits

• Peak at l  79 corresponds to regular island in chaotic sea (11 bounces)

NB

QB
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Thank you

for

your attention
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Husimi Distribution of the First Wave Function 
Component of Half-Circle NB

p 
=

 s
in

 

s

m=0

m=10

m=20

m=50

QB

•Husimi functions

•For m50 the Husimi distribution is close to that of the QB, for smaller mass 
it is similar to it for diameter-orbit like WFs
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Spectral Properties of
Robin Sector Billiard for Symmetric Case

•Robin BC

•Shown are the symmetric solutions

0
0.5
1
5
10
20
QB

=1

=20

=50

=100
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TBM Description for Graphene Billiards

• is resonance frequency of an “isolated“ void

• Nearest-neighbour contribution  t1, s1

• Next-nearest neighbour contribution  t2, s2

• Second-nearest neighbour contribution  t3, s3

t1

t3
t2

• TBM for energies  and eigenstates

• Generalized eigenvalue problem

• Tight-binding Hamiltonian

• Wavefunction overlap matrix 


