Relativistic Quantum Chaos: Neutrino Billiards

Central Conjectures of Quantum Chaos

- Nonrelativistic Quantum Systems / Quantum Billiards
- Berry-Tabor Conjecture:

The spectral fluctuation properties of generic integrable systems coincide with those of uncorrelated random numbers from a Poisson process

- Bohigas-Gianonni-Schmit Conjecture (1984) [Berry (1977), Casati et al. (1980)]: The spectral fluctuation properties of generic classically chaotic systems coincide with those of random matrices from the Gaussian Ensembles
- Relativistic Quantum Systems / Quantum Billiards
- → Question: Do the conjectures apply to relativistic quantum billiards like neutrino billiards?
- \rightarrow Problem: NBs do not have a well-defined classical limit
- \rightarrow We use the semiclassical approach (length spectra, Husimi distributions)

Graphene

- Near each corner of the first hexagonal Brillouin zone the electron energy ω exhibits a linear dependence on the quasimomentum q
- Close to the diabolical ('Dirac') points the band structure is described by the Dirac equation of massless fermions

$$\pm \begin{pmatrix} 0 & \partial_x - i\partial_y \\ \partial_x + i\partial_y & 0 \end{pmatrix} \begin{pmatrix} \Psi_A \\ \Psi_B \end{pmatrix} = i \frac{\omega - \omega_D}{v_F} \begin{pmatrix} \Psi_A \\ \Psi_B \end{pmatrix}$$

• Independent contributions from K_+ and K_- valleys \Rightarrow 4D Dirac equation

Graphene Billiards

• Tight-binding model

$$\hat{\mathcal{H}}_{ij}^{TBM} = t_0 \delta_{ij} + t_1 \delta(|\mathbf{r}_i - \mathbf{r}_j| - d_0) + t_2 \hat{\delta}(|\mathbf{r}_i - \mathbf{r}_j| - d_1) + \dots$$

- Assumption: interaction of the graphene p_z orbitals non-negligible for 1st, 2nd and 3rd nearest neighbors
- Graphene billiard: Dirichlet BCs along the 1st missing row of atoms outside sheet

DOS of Rectangular and Africa-Shaped GBs

Ratio Distributions for Dirac / Graphene Billiards

- Ratio distribution of all 1656 (1823) resonance frequencies of rectangular (Africa) billiard agrees with Poisson (GOE)
- The same holds for the (k=1)-overlapping ratio distribution

Massless Spin-1/2 Particle in a Potential

Proc. R. Soc. Lond. A **412**, 53–74 (1987) Printed in Great Britain

> Neutrino billiards: time-reversal symmetry-breaking without magnetic fields

> BY M. V. BERRY, F.R.S., AND R. J. MONDRAGON H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, U.K.

Dirac equation

$$\begin{pmatrix} V & -\mathrm{i}\hbar(\partial_x - \mathrm{i}\partial_y) \\ -\mathrm{i}\hbar(\partial_x + \mathrm{i}\partial_y) & -V \end{pmatrix} \begin{pmatrix} \psi_1(\mathbf{r}) \\ \psi_2(\mathbf{r}) \end{pmatrix} = k \begin{pmatrix} \psi_1(\mathbf{r}) \\ \psi_2(\mathbf{r}) \end{pmatrix}$$

• For $V \neq 0$ the Dirac Hamiltonian is not invariant under $\hat{T} = i\hat{\sigma}_y \hat{K}$

 \rightarrow chaotic systems with no geometric symmetries follow GUE statistics

Dirac Equation for Neutrino Billiards Berry & Mondragon, Proc. R. Soc. Lond. A 412, 53 (1987)

• Dirac equation for a free spin-1/2 particle with mass m

$$\hat{H}_D \boldsymbol{\psi} = \left(c \boldsymbol{\hat{\sigma}} \cdot \boldsymbol{\hat{p}} + mc^2 \boldsymbol{\hat{\sigma}_z} \right) \boldsymbol{\psi} = E \boldsymbol{\psi}, \ \boldsymbol{\psi} = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

• BC requires that the outward current vanishes along boundary

$$\mathbf{n} \cdot \left[\boldsymbol{\psi}^{\dagger} \boldsymbol{\nabla}_{\boldsymbol{p}} \hat{\boldsymbol{H}}_{D} \boldsymbol{\psi}
ight] = 0$$

• BC links the spinor components at the boundary

$$\psi_2(s) = ie^{i\alpha(s)}\psi_1(s)$$

- Coordinates in the complex plane: w(s) = x(s) + iy(s)
- Normal vector: $\boldsymbol{n}(s) = [\cos \alpha(s), \sin \alpha(s)]$
- Polar coordinates: $x(r,\phi) + iy(r,\phi) = w(r,\phi) = R(r,\phi)e^{i\phi}$ $\phi \in [0,2\pi), r = [0,r_0]$

• Parameter $\phi \rightarrow \text{arc length: } s(\phi) = \int_0^{\phi} |w'(\tilde{\phi})| d\tilde{\phi}, s \in [0, \mathcal{L}), ds = |w'(\phi)| d\phi$

Dirac Equation for Massive Neutrino Billiards

• The energy *E* is given in terms of the free space wavevector *k* as

$$E = \hbar c k_E = \hbar c k \sqrt{1 + \beta^2}, \ \beta = \frac{mc}{\hbar k}$$

• The nonrelativistic limit $k\beta \rightarrow \infty$ complies with the BC

• Define

$$\psi = \begin{pmatrix} \sqrt{\frac{1+\sin\theta_{\beta}}{2}}\tilde{\psi}_{1} \\ \sqrt{\frac{1-\sin\theta_{\beta}}{2}}\tilde{\psi}_{2} \end{pmatrix} \text{ with } \sin\theta_{\beta} = \frac{\beta}{\sqrt{1+\beta^{2}}} \text{ nonrel. Limit } \Leftrightarrow \theta_{\beta} \to \pi/2 \text{ ultrarel. Limit } \Leftrightarrow \theta_{\beta} \to 0$$

$$\Rightarrow k\tilde{\psi}(\boldsymbol{r}) + i\hat{\boldsymbol{\sigma}} \cdot \nabla \tilde{\psi}(\boldsymbol{r}) = 0 \text{ with } \tilde{\psi}_{2}(s) = ie^{i\alpha(s)}\mathcal{K}^{-1}\tilde{\psi}_{1}(s) \quad \mathcal{K} = \sqrt{\frac{1-\sin\theta_{\beta}}{1+\sin\theta_{\beta}}}$$

- The resulting Dirac equation has the same form as for the NB with *m*=0
- For $m \rightarrow 0$ the Dirac Hamiltonian is not time-reversal invariant \Rightarrow if it's shape corresponds to that of a chaotic billiard, GUE is expected
- For $m \to \infty$ we have $\psi_2 \to 0$ and the BC for ψ_1 becomes Dirichlet

Boundary Integral Equation for NBs

 Combining the Dirac equation and the matrix equation satisfied by the associated free-space Green function yields the boundary integral

$$2i \oint_{\partial \Omega} \mathrm{d}s \, \boldsymbol{n} \cdot \left[\boldsymbol{\psi}(\boldsymbol{r})^{\dagger} \hat{\boldsymbol{\sigma}} \hat{\boldsymbol{G}}_{\boldsymbol{0}}(\boldsymbol{r}, \boldsymbol{r}') \right] = \begin{cases} \boldsymbol{\psi}^{\dagger}(\boldsymbol{r}') &, \ \boldsymbol{r}' \in \Omega \backslash \partial \Omega \\ \frac{1}{2} \boldsymbol{\psi}^{\dagger}(\boldsymbol{r}') &, \ \boldsymbol{r}' \in \partial \Omega \\ 0 &, \ \text{otherwise} \end{cases}$$

• Free-space Green function

$$G^{0}(\mathbf{r},\mathbf{r}') = -\frac{1}{4} \begin{pmatrix} \mathrm{i}k & \partial_{x} - \mathrm{i}\partial_{y} \\ \partial_{x} + \mathrm{i}\partial_{y} & \mathrm{i}k \end{pmatrix} H^{(1)}_{0}(k|\mathbf{r} - \mathbf{r}'|).$$

• Incorporate the B.C. in the equation for $m{r}'\in\partial\Omega$

$$\begin{split} \tilde{\psi}_{1}^{*}(\phi') &= \frac{ik}{2} \oint_{\partial\Omega} |w'(\phi)| d\phi \tilde{\psi}_{1}^{*}(\phi) \left\{ -\mathcal{K}^{-1} H_{0}^{(1)}[k\rho(\phi,\phi')] + e^{-i\alpha(\phi)} e^{i\xi(\phi,\phi')} H_{1}^{(1)}[k\rho(\phi,\phi')] \right\} \\ \tilde{\psi}_{2}^{*}(\phi') &= \frac{ik}{2} \oint_{\partial\Omega} |w'(\phi)| d\phi \tilde{\psi}_{2}^{*}(\phi) \left\{ \mathcal{K} H_{0}^{(1)}[k\rho(\phi,\phi')] + e^{i\alpha(\phi)} e^{-i\xi(\phi,\phi')} H_{1}^{(1)}[k\rho(\phi,\phi')] \right\} \\ &e^{i\xi(\phi,\phi')} = \frac{w(\phi) - w(\phi')}{|w(\phi) - w(\phi')|}, \ \rho(\phi,\phi') = |w(\phi) - w(\phi')| \end{split}$$

• ${\rm H}_0$ and ${\rm H}_1$ have singularities at $\rho\,{=}\,0$

Boundary Integral Method for Massive NBs Dietz & Li, PRE 102, 042214 (2020)

 $\int \alpha$

• For m=0 the singularities are removed with the replacements

$$\Phi_{1}(n,s) = \left\{ \psi_{1}(n,s) + \left[-ie^{-i\alpha(s)}\right]\psi_{2}(n,s) \right\} / 2 \\
\Phi_{2}(n,s) = \left\{ \psi_{2}(n,s) + \left[ie^{i\alpha(s)}\right]\psi_{1}(n,s) \right\} / 2, \qquad \Phi_{1,2}(n,s) \xrightarrow{n \to 0^{-}} \psi_{1,2}(s)$$

in coordinates (n,s) normal / tangential to boundary, and with the relation

$$\oint_{\partial\Omega} \mathrm{d}s e^{i\frac{\Delta\Phi(s,s')}{2}} \tilde{\psi}_1^*(s) \cos\left(\frac{\Delta\Phi(s,s')}{2}\right) \frac{ik}{4} H_0^{(1)}(k\rho) = \oint_{\partial\Omega} \mathrm{d}s e^{i\frac{\Delta\Phi(s,s')}{2}} i\tilde{\psi}_1^*(s)$$
$$\times \left[\sin\theta_\beta \sin\left(\frac{\Delta\Phi(s,s')}{2}\right) \frac{ik}{4} H_0^{(1)}(k\rho) - \cos\theta_\beta \sin\left(\frac{\alpha(s') + \alpha(s)}{2} - \xi(s,s')\right) \frac{ik}{4} H_1^{(1)}(k\rho)\right]$$

• Boundary integral equation for the first spinor component

$$(1 - \sin \theta_{\beta}) \,\tilde{\psi}_{1}^{*}(\phi') = \frac{ik}{4} \int_{0}^{2\pi} |w'(\phi)| d\phi Q_{k}(\phi', \phi) \tilde{\psi}_{1}^{*}(\phi)$$
$$Q_{k}(\phi', \phi) = \cos \theta_{\beta} \left[e^{i(\alpha(\phi') - \alpha(\phi))} - 1 \right] H_{0}^{(1)}(k\rho)$$
$$+ \left\{ [1 - \sin \theta_{\beta}] \, e^{i(\xi(\phi, \phi') - \alpha(\phi))} + [1 + \sin \theta_{\beta}] \, e^{-i(\xi(\phi, \phi') - \alpha(\phi'))} \right\} H_{1}^{(1)}(k\rho)$$

• In the integral $\phi=\phi'$ is excluded, as it is accounted for on the lhs

Spectral Properties of Half-Circle QB With Robin BCs

• Shown are results for the symmetric solutions

Trace Formula for the Spectral Density of Massive Neutrino Billiards

BD & Z. Li, PRE102, 042214 (2020)

Quantization condition deduced from the BIEs for Massive NBs

$$\boldsymbol{u}(s') = \boldsymbol{\hat{Q}}(k)\boldsymbol{u}(s) \quad \Rightarrow \quad \det\left(\mathbbm{1} - \boldsymbol{\hat{Q}}(k)\right) = 0 \quad \Rightarrow \quad \rho^{fluc}(k) = \frac{1}{\pi}\Im\sum_{p=1}^{\infty}\frac{1}{p}\frac{\mathrm{d}}{\mathrm{d}k}\left[\operatorname{Tr}\left(\boldsymbol{\hat{Q}}\right)^{p}(k)\right]$$

• Trace formula is a sum over the periodic orbits of the classical billiard

• The factor $\mathcal{B}_{\gamma_p}^{(l)\tilde{\beta}}e^{i\Gamma_{\gamma_p}^{(l)}}$ depends on *m* and the direction of propagation of the PO

$$\rho^{fluc}(k;\tilde{\beta}) \xrightarrow{\tilde{\beta} \to \infty} \frac{1}{\pi} \Re \sum_{\gamma_p} \mathcal{A}_{\gamma_p} e^{i\Theta_{\gamma_p}}$$

$$\rho^{fluc}(k;\tilde{\beta}) \xrightarrow{\tilde{\beta} \to 0} \frac{1}{\pi} \Re \sum_{\gamma_p} (-1)^p \cos\left(\Phi_{\gamma_p}\right) \cos\left(p\frac{\pi}{2}\right) \mathcal{A}_{\gamma_p} e^{i\Theta_{\gamma_p}} \qquad \Rightarrow \qquad \begin{array}{l} \text{Only POs with even} \\ \# \text{ reflections } p \text{ contribute} \end{array}$$

Wave Functions and Current for the Rectangular NB

NBs with Shapes Exhibiting a Mirror Symmetry

 Coordinate (orthogonal) transformation Hamiltonian

$$oldsymbol{r'}=\hat{oldsymbol{R}}oldsymbol{r}\qquad \Rightarrow \quad \hat{oldsymbol{H}}_D(oldsymbol{r'})=\hat{oldsymbol{H}}_D'=\hat{oldsymbol{U}}^\dagger\hat{oldsymbol{H}}_D\hat{oldsymbol{U}},\,ar{oldsymbol{\psi}}(oldsymbol{r'})=\hat{oldsymbol{U}}^\dagger ilde{oldsymbol{\psi}}(oldsymbol{r})$$

• Reflection at the x- or y-axis

$$egin{aligned} \hat{m{R}}_{x,y} = \pm \, \hat{m{\sigma}}_z & \hat{m{H}}_D' = \hat{m{H}}_D(\hat{m{R}}_{x,y}m{r}) & egin{aligned} \hat{m{U}}_x = \, \hat{m{\sigma}}_x & ar{m{\psi}}_x^{m{T}}(m{r}') = \left[ar{\psi}_2(m{r}), ar{\psi}_1(m{r})
ight] \ \hat{m{U}}_y = i oldsymbol{\hat{\sigma}}_y & ar{m{\psi}}_y^{m{T}}(m{r}') = \left[-ar{\psi}_2(m{r}), ar{\psi}_1(m{r})
ight] \end{aligned}$$

• The transformed spinor functions do not fulfill the boundary condition

 $\bar{\psi}_2(s) \neq i e^{i\bar{\alpha}(s)} \mathcal{K}^{-1} \bar{\psi}_1(s)$

- ⇒ not classifiable according to their transformation properties under reflection at the mirror axis
- Reflection at the x- or y-axis of the Dirac equation yields

$$\hat{\boldsymbol{H}}_{NB}(-x,y) = \hat{\boldsymbol{H}}_{NB}^{\star}(x,y) \implies [\psi_1(-x,y),\psi_2(-x,y)] = \pm [\psi_1^{\star}(x,y),\psi_2^{\star}(x,y)]$$
$$\hat{\boldsymbol{H}}_{NB}(x,-y) = \hat{\boldsymbol{\sigma}}_{\boldsymbol{z}} \hat{\boldsymbol{H}}_{NB}^{\star}(x,y) \hat{\boldsymbol{\sigma}}_{\boldsymbol{z}} \Longrightarrow [\psi_1(x,-y),\psi_2(x,-y)] = [\pm \psi_1^{\star}(x,y), \mp \psi_2^{\star}(x,y)]$$

Wave Functions and Currents of Elliptic NB

- The ellipse has a reflection symmetry with respect to the x- and y-axis \Rightarrow it has a twofold symmetry
- All wave functions are either symmetric or antisymmetric with respect to rotation by $\boldsymbol{\pi}$

NBs with Shapes with *N***-fold Rotational Symmetry**

• Counterclockwise rotation by $2\pi/N$

$$\hat{\boldsymbol{R}}_{N} = \begin{pmatrix} \cos\left(\frac{2\pi}{N}\right) & -\sin\left(\frac{2\pi}{N}\right) \\ \sin\left(\frac{2\pi}{N}\right) & \cos\left(\frac{2\pi}{N}\right) \end{pmatrix} \qquad \qquad \hat{\boldsymbol{U}}_{N} = \begin{pmatrix} e^{i\frac{\pi}{N}} & 0 \\ 0 & e^{-i\frac{\pi}{N}} \end{pmatrix} \qquad \qquad \bar{\boldsymbol{\psi}}(\boldsymbol{r}') = \begin{pmatrix} \bar{\psi}_{1}(\boldsymbol{r}') \\ \bar{\psi}_{2}(\boldsymbol{r}') \end{pmatrix} = \begin{pmatrix} e^{-i\frac{\pi}{N}} \tilde{\psi}_{1}(\boldsymbol{r}) \\ e^{i\frac{\pi}{N}} \tilde{\psi}_{2}(\boldsymbol{r}) \end{pmatrix}$$

- *N*-fold rotational symmetry: $w(s') = e^{i\frac{2\pi}{N}}w(s)$ $e^{i\alpha(s')} = e^{i\frac{2\pi}{N}}e^{i\alpha(s)}$
- Symmetry group $G = C_N = \{e, g, \dots, g^{N-1}\}$ g: rotation by $2\pi/N$, $\hat{U}(g) = e^{i\frac{2\pi}{N}\hat{L}}$
- Wave functions classifiable according to their transformation properties

$$\psi_{1,2}^{(l)}(\boldsymbol{g}_l^{-\lambda}\boldsymbol{r}) = \tilde{\psi}_{1,2}^{(l)}(\boldsymbol{r'}) = e^{i\lambda\frac{2l\pi}{N}}\tilde{\psi}_{1,2}^{(l)}(\boldsymbol{r}) \quad l=0,1,2,\dots,N-1$$

- The spinor components transform differently under rotation
- For $\tilde{\psi}_1^{(l)}(\boldsymbol{r})$ $\tilde{\psi}_2(\boldsymbol{r'}) = e^{-i(l-1)\frac{2\pi}{N}}\tilde{\psi}_2(\boldsymbol{r}) \equiv \tilde{\psi}_2^{(l-1)}(\boldsymbol{r'})$

$$\tilde{\psi}_2(s') = i e^{i\alpha(s')} \mathcal{K}^{-1} \tilde{\psi}_1^{(l)}(s') = e^{-i(l-1)\frac{2\pi}{N}} \tilde{\psi}_2(s) \equiv \tilde{\psi}_2^{(l-1)}(s')$$

Entanglement of Symmetry Classes in Equilateral-Triangle NB BD, Acta Pol. 140, 473 (2021)

• Symmetry-projected eigenvalue equations with $n=n_1+n_2$, $m=n_1-n_2$

$$\tan\left(\frac{\sqrt{3}}{2}k_x - \tilde{n}\pi\right) = 3\frac{\mathcal{K}\left(\mathcal{K}^2 - 1\right)\cos\theta_k}{1 + \mathcal{K}^4 - 4\mathcal{K}^2 - \mathcal{K}\left(1 + \mathcal{K}^2\right)\sin\theta_k + 4\mathcal{K}^2\sin^2\theta_k}$$
$$\tan\left(\frac{k_y}{2} - l\frac{2\pi}{3} - \tilde{m}\pi\right) = \sqrt{3}\frac{\frac{\mathcal{K}^2}{2} + \mathcal{K}\sin\theta_k}{1 - \frac{\mathcal{K}^2}{2} + \mathcal{K}\sin\theta_k}$$

Symmetry-Projected BIEs for NBs Zhang & Dietz, PRB 104, 064310 (2021)

• Boundary-integral equation can be written in the form

 $u(\phi') = \int_0^{2\pi} d\phi |w'(\phi)| Q(k; \phi, \phi') u(\phi)$ with $u(\phi) = \psi_{1,2}(\phi)$

3fold symmetry implies

$$w\left(\phi + \lambda \frac{2\pi}{3}\right) = e^{i\lambda \frac{2\pi}{3}} w(\phi) \quad \Longrightarrow \quad Q\left(k; \phi, \phi' - \lambda \frac{2\pi}{3}\right) = Q\left(k; \phi + \lambda \frac{2\pi}{3}, \phi'\right), \phi, \phi' \in [0, \frac{2\pi}{3})$$

• Use 3fold symmetry and define $M_{\lambda}(k;\phi,\phi') = Q\left(k;\phi+\lambda\frac{2\pi}{3},\phi'\right)$

$$\boldsymbol{u}(\phi') = \int_{0}^{\frac{2\pi}{3}} d\phi \hat{M}(k;\phi,\phi') \boldsymbol{u}(\phi) \text{ with } \boldsymbol{u}(\phi) = \begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix} (\phi) \text{ and } \hat{M}(k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_2 & M_0 & M_1 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_2 & M_0 & M_1 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_2 & M_0 & M_1 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_2 & M_0 & M_1 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_2 & M_0 & M_1 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_2 & M_0 & M_1 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_2 & M_0 & M_1 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_2 & M_0 & M_1 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_2 & M_0 & M_1 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_2 & M_0 & M_1 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_2 & M_0 & M_1 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_2 \\ M_1 & M_2 & M_0 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0 & M_1 & M_1 & M_2 \\ M_1 & M_2 & M_1 \end{pmatrix} (k;\phi,\phi') = \begin{pmatrix} M_0$$

Symmetry-projected boundary-integral equations

$$u^{(l)}(\phi') = \int_0^{\frac{2\pi}{3}} d\phi \tilde{M}^{(l)}(k;\phi,\phi') u^{(l)}(\phi) \text{ with } \tilde{M}^{(l)}(k;\phi,\phi') = \sum_{\lambda=0}^2 e^{i\frac{2l\pi}{3}\lambda} M_\lambda(k;\phi,\phi')$$

Wave functions of the Massive Neutrino Billiard with C₃ Symmetry

- For $m \to \infty$ the wave function components $\psi_{1,2}$ decouple and $|\psi_2 / \psi_1| \to 0$
- The nodal-line structure of the singlets becomes discernible because $Im(\psi_{1,2}) \rightarrow 0$
- The intensity distributions of the doublets become similar
- The wave functions approach those of the QB

Spectral Properties of Neutrino & Quantum Billiards

• Spectral properties for mass m=0, m=50, m=100 (100), and for the QB

- Non-generic orbits manifest themselves as slow oscillations in $N^{fluc}(k)$
- Spectral properties are close to GUE for $m{=}0$ and to that of the QB for $m{\geq}100$

Lengths Spectra of Neutrino Billiards

- For *m*=0 POs with an odd number of reflections are missing
- For m=20 the length spectrum exhibits peaks at the lengths of all POs
- For the singlets some peaks disappear with increasing *m*
 - \Rightarrow pseudo orbits

Lengths Spectra of the Doublets of Neutrino Billiard

• The lengths spectra differ for small *m* and become similar for $m \approx 100$

• The occurrence of peaks / interference of POs depends on *m* and the direction of propagation of the POs and thus on *l*

 \rightarrow The doublets exhibit peaks at the lengths of different pseudo orbits

Momentum Distributions, Wave Functions & Currents of a Square NB (*l*=1)

Local current:

$$\hat{\boldsymbol{u}} = \boldsymbol{\nabla}_{\boldsymbol{p}} H_D = c \hat{\boldsymbol{\sigma}}, \, \boldsymbol{u}(\boldsymbol{r}) = c \boldsymbol{\psi}^{\dagger} \hat{\boldsymbol{\sigma}} \boldsymbol{\psi}$$

Momentum distribution:

$$\tilde{\psi}_n(q_x, q_y) = \iint_{\Omega} dx dy \psi_n(x, y) e^{-i\boldsymbol{q}\boldsymbol{r}}$$

• The square has a fourfold symmetry \Rightarrow the spinor components can be classified according to their transformation properties under rotation by $\pi/2$

Spectral Properties of Square NBs

• The square QB is an untypical system with integrable dynamics

- The spectral properties of the square NB agree with Poisson
- \rightarrow overshootings are due to accidental degeneracies
- The spectral properties of the symmetry-projected eigenstates with *l*=0, *l*=1, *l*=2, *l*=3 are close to Semi-Poisson

Length Spectrum of massless Square NB

- Generally, the length spectra of the NBs exhibit peaks only at lengths of POs with an even number of reflections at the boundary
- For the symmetry-projected cases peaks appear at lengths of pseudo orbits

Wave Functions and Currents of Rectangular NB

- •The rectangle has a reflection symmetry with respect to the x- and y-axis \Rightarrow it has a twofold symmetry
- All spinor components are either symmetric or antisymmetric with respect to rotation by $\boldsymbol{\pi}$

Ratio distributions of the Rectangular QB & NB

All eigenstates

Symmetry-projected eigenstates of the NB

- The spectral properties of the symmetry-projected eigenstates with *l*=0 and *l*=1are close to Semi-Poisson for all ratios of a/b
- How do the spectral properties change when destroying the *N*-fold symmetry by cutting the NB along symmetry lines?

Momentum Distributions, Wave Functions & Currents of a Triangle NB

- Triangular billiards are obtained by cutting the rectangular billiards long the diagonal → symmetry-reduced
- The NB and QB exhibit similar scarred wave functions

Some Characteristics of Right-Triangle QBs

- Rectangular and right-triangle billiards with inner angles $\alpha = \pi/n$ are integrable and exhibit untypical spectral properties
- Right-triangle billiards with inner angles $\alpha = \pi m/n \ (m \neq 1, n, m$ incommensurable) are pseudointegrable
- ⇒ Exhibit intermediate statistics, i.e., levels repel each other and the nearestneighbor spacing distribution decays exponentially
- Right-triangle with irrational α/π may exhibit GOE-like behavior
- We found quarter-Poisson for NBs with b/a irrational if it is semi-Poisson for the corresponding QBs
- Atas et al., JPA 46, 355204 (2013):

$$P_{\nu}(s) = \frac{\Gamma(\nu+2)^{\nu+1}}{\Gamma(\nu+1)^{\nu+2}} s^{\nu} \exp\left(-\frac{\Gamma(\nu+2)}{\Gamma(\nu+1)}s\right) \quad \mathcal{P}_{\nu}(r) = \frac{\Gamma(2\nu+2)\Gamma^{2}(\nu+2)}{(\nu+1)^{2}\Gamma^{4}(\nu+1)} \frac{r^{\nu}}{(1+r)^{2\nu+2}}$$

- Semi-Poisson: delete every second number from a Poisson sequence
- Quarter-Poisson: delete every second number from a semi-Poisson sequence

Spectral Properties of Triangular NBs with b/a=GM and b/a=2

- The spectral properties of the triangle QB is close to semi-Poisson statistics → linear level repulsion
- The spectral properties of the triangle NB is close to quarter-Poisson statistics → cubic level repulsion
- For b/a=2 the QB / NB shows GOE / GUE. Deviations are due to scarred <u>functions</u>

Circle Sector QB

15° Circle Sector @ Lower Band Edge

- At the band edges the spectral properties coincide with those of the corresponding quantum billiard for any shape
- The system is effectively described by the Schrödinger equation

15° Circle Sector: Below the VHS

- The spectral properties are intermediate between Poisson and GOE
- With increasing energy the lattice structure starts to prevail leading to the occurrence of the van Hove singularities in the spectral density and the Dirac point

15° Circle Sector @ Dirac Point

- Near the Dirac points the spectral properties coincide with those of chaotic systems with preserved time-reversal invariance (GOE)
- Attributed to the edge structure implying different boundary conditions for the independent triangular lattices
- \rightarrow Spectral properties of relativistic quantum billiards ?

Spectral Properties of the 3fold-Symmetric Solutions of the Circle NB and the 120° Circle Sector NB

Spectral Properties of Massive Half-Circle NB

- Spectral properties for mass m=0(0), 10, 20, 50, 100, and for the QB
- Contributions of diameter orbit are extracted by employing its trace formula
- Deviations from Poisson due to intermingling of symmetry classes of the spinor components and discontinuity in the BCs at the corners
- NBs do not have a classical counterpart \rightarrow Semiclassical limit?

Semiclassical Approach: Length Spectra & Quantum Poincaré Section Map

- Length spectrum $|\tilde{\rho}(l)| = |\int_{0}^{k_{max}} \mathrm{d}k e^{ikl} \rho_{fluc}(k)|$
- Semiclassical approach: semiclassical approximation for the fluctuating part of spectral density in terms of a sum over periodic orbits
- Husimi function on PSOS: Projection of boundary function onto a coherent state on the billiard boundary

• Husimi functions:
$$H_j(s,p) = \frac{1}{2\pi k_j} \frac{1}{\int_0^{\mathcal{L}} ds' \left|\partial_{n'}\psi(s')\right|^2} \left|\int_0^{\mathcal{L}} ds' \partial_{n'}\psi(s')C^{\delta}_{(s',p)}(s';k_j)\right|^2$$

• Coherent state:
$$C_{(s,p)}^{\delta}(s';k_j) = \left(\frac{k_j}{\pi\delta^2}\right)^{1/4} \sum_{m=-\infty}^{\infty} \exp\left(ipk_j\left(s'-s+m\mathcal{L}\right) - \frac{k_j}{2\delta^2}\left(s'-s+m\mathcal{L}\right)^2\right)$$

- Definition of Birkhoff coordinates
- The Poincaré map is defined in terms of the arclength s_n and the momentum $p_n = |\mathbf{p}| \sin \theta_n$ at *n* th bounce with the boundary

Trace Formula for the Spectral Density of Massive Neutrino Billiards

BD & Z. Li, PRE102, 042214 (2020)

Quantization condition deduced from the BIEs for Massive NBs

$$\boldsymbol{u}(s') = \boldsymbol{\hat{Q}}(k)\boldsymbol{u}(s) \quad \Rightarrow \quad \det\left(\mathbbm{1} - \boldsymbol{\hat{Q}}(k)\right) = 0 \quad \Rightarrow \quad \rho^{fluc}(k) = \frac{1}{\pi}\Im\sum_{p=1}^{\infty}\frac{1}{p}\frac{\mathrm{d}}{\mathrm{d}k}\left[\operatorname{Tr}\left(\boldsymbol{\hat{Q}}\right)^{p}(k)\right]$$

• Trace formula is a sum over the periodic orbits of the classical billiard

• The factor $\mathcal{B}_{\gamma_p}^{(l)\tilde{\beta}}e^{i\Gamma_{\gamma_p}^{(l)}}$ depends on *m* and the direction of propagation of the PO

$$\rho^{fluc}(k;\tilde{\beta}) \xrightarrow{\tilde{\beta} \to \infty} \frac{1}{\pi} \Re \sum_{\gamma_p} \mathcal{A}_{\gamma_p} e^{i\Theta_{\gamma_p}}$$

$$\rho^{fluc}(k;\tilde{\beta}) \xrightarrow{\tilde{\beta} \to 0} \frac{1}{\pi} \Re \sum_{\gamma_p} (-1)^p \cos\left(\Phi_{\gamma_p}\right) \cos\left(p\frac{\pi}{2}\right) \mathcal{A}_{\gamma_p} e^{i\Theta_{\gamma_p}} \qquad \Rightarrow \qquad \begin{array}{l} \text{Only POs with even} \\ \# \text{ reflections } p \text{ contribute} \end{array}$$

Length Spectra of 1/2-Circle and 1/4-Ellipse NBs

Husimi Distribution of the First Wave Function Component of 1/2-Circle NB

 For m≈50 the Husimi distribution is close to that of the QB, for smaller mass it is similar to it for diameter-orbit like WFs

Spectral Properties of Massive 1/4-Ellipse NB

- Spectral properties for mass m=0 (0), 10, 20, 50, 100, and for the QB
- Contributions of diameter orbit are extracted by employing its trace formula
- Deviations from Poisson due to intermingling of symmetry classes of the spinor components and discontinuity in the BCs at the corners

Husimi Distribution of the First Wave Function Component of Quarter-Ellipse NB

 For m≈20 the Husimi distribution is close to that of the QB, for smaller mass it is similar to it for diameter-orbit like WFs

Constant Width Billiards O. Knill, Elemente der Mathemarik 53, 89 (1998)

- Classical dynamics is unidirectional
- Change from clockwise to anti-clockwise motion classically forbidden
- In quantum billiard transition from p>0 to p<0 possible due to tunneling

$$w(\phi) = -R_0 i e^{i\phi} - ia_3 \left[\frac{\left(e^{i4\phi} - 1 \right)}{4} + \frac{\left(e^{-i2\phi} - 1 \right)}{2} \right] - ia_5 \left[\frac{\left(e^{i6\phi} - 1 \right)}{6} - \frac{\left(e^{-i4\phi} - 1 \right)}{4} \right], \ \phi \in [0, 2\pi)$$
$$w'(\phi) = \mathcal{R}(\phi) e^{i\phi}, \ \mathcal{R}(\phi) = R_0 + 2ia_3 \sin(3\phi) + 2a_5 \cos(5\phi), \ \mathcal{R}(\phi) = \mathcal{R}^*(\phi)$$
$$t(\phi) = [\cos \phi, \sin \phi]; \qquad \mathbf{n}(\phi) = \left[\cos \left(\phi - \frac{\pi}{2} \right), \sin \left(\phi - \frac{\pi}{2} \right) \right]$$

Spectra of the CW NB & QB

- The spectra of the QB & NB can be separated into singlets and nearlydegenerate doublets
- Singlets correspond to diameter orbit (p=0) of circle NB & QB
- For the QB dynamical tunneling leads to a splitting of the degenerate eigenvalues of the circle billiard into doublets of nearly degenerate ones
- Doublets can be separated into two independent sequences
- The circle NB has no degeneracies
- For the NB the spectra can be separated into eigenstates corresponding to Husimi functions localized in the upper or lower part of the PSOS

Comparison of Wave Functions & Husimi Functions of the QB and Massless NB

• NB: $H_n(q,p)\neq 0$ only in upper or lower half of the PSM like classical dynamics

Comparison of Wave Functions and Husimi Distributions of the QB and Massless NB

RMT Model for the Spectral Properties of Right Doublett Partner / Positive-*p* **Husimi Partner**

• V_1 couples H (chaotic dynamics) to D_1 (regular dynamics) with the coupling τ_1 measured in units of mean spacing d_0

Length Spectra of the QB and Massless NB

- The 'doublet partners' of the relativistic constant-width billiard are separated by several mean spacings → there is no dynamical tunneling
- Length spectra exhibit peaks at the lengths of the periodic orbits
- Peak at $l \cong 79$ corresponds to regular island in chaotic sea (11 bounces)

Thank you

for

your attention

Husimi Distribution of the First Wave Function Component of Half-Circle NB

 For m≈50 the Husimi distribution is close to that of the QB, for smaller mass it is similar to it for diameter-orbit like WFs

Spectral Properties of Robin Sector Billiard for Symmetric Case

• Robin BC $(s)_{0}$ $\left[\tilde{\beta} + \frac{1}{2}\kappa(s)\right]\Phi_j(s) + \left.\partial_n\Phi_j(n,s)\right|_{n\to 0^-} = 0$ $\Sigma^2(L)$ (T) ⁶0.2 0.1 Shown are the symmetric solutions 2 3 6 QB Length Spectrum 300 Long 100 $\tilde{\beta}$ =1 20 0.8 10 $\tilde{\beta}$ =20 5 0.4 $\tilde{\beta}$ =50 0.2 0.5 $\tilde{\beta} = 100$ 12 2 10 4 8

TBM Description for Graphene Billiards

• TBM for energies ω and eigenstates $|\Psi_{\vec{q}}(\vec{r})\rangle = \sum_{j} \left(C_A |\Phi_j^A\rangle + C_B |\Phi_j^B\rangle \right) e^{i\vec{q}\cdot\vec{R}_j}$

• Generalized eigenvalue problem

$$\mathcal{H}_{TB}|\Psi_{\vec{q}}(\vec{r})\rangle = \omega(\vec{q})\mathcal{S}_{WO}|\Psi_{\vec{q}}(\vec{r})\rangle$$

Tight-binding Hamiltonian

$$\mathcal{H}_{TB} = \begin{pmatrix} f_0 + t_2 f_2(\vec{q}) \\ t_1 f_1(\vec{q}) + t_3 f_3(\vec{q}) \end{pmatrix}$$

Wavefunction overlap matrix

$$S_{WO} = \begin{pmatrix} 1 + s_2 f_2(\vec{q}) & s_1 f_1(\vec{q}) + s_3 f_3(\vec{q}) \\ s_1 f_1(\vec{q}) + s_3 f_3(\vec{q}) & 1 + s_2 f_2(\vec{q}) \\ \end{pmatrix}$$

- f_0 is resonance frequency of an "isolated" void
- Nearest-neighbour contribution $\sim t_1$, s_1
- Next-nearest neighbour contribution $\sim t_2$, s_2
- Second-nearest neighbour contribution ~ t₃, s₃

```
Relativistic Quantum Chaos | 53
```