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Classical Billiard

V=

V=0

• Particle moves freely within the billiard along straight lines with constant 
velocity and is reflected specularly at boundary

• Shape of billiard determines chaoticity of classical dynamics
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Microwave billiardQuantum billiard

eigenvalue E  resonance frequency  f

eigenfunction   electric field strength Ez

Quantum Billiards and Microwave Billiards

• Experimental determination of the eigenvalues and wave functions of 
the quantum billiard with microwave billiards

f < fmax = c/2h
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Measurement Principle

Resonance spectrum
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• Measurement of the scattering matrix element S21 with a superconducting 
cavity

positions of the resonances 
fn=knc/2p yield eigenvalues 
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Weyl formula: 
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Unfolding of Spectra

• Integrated spectral density N( E ) = # levels below E 

• Decompose into a smooth and a fluctuating part

• Replace eigenvalues Ei by the smooth part of the integrated spectral 
density 

)( ii ENe 

• Quantum billiard / Microwave billiard:
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Indispensable Requirements on Analysis of
Fluctuation Properties  

• Completeness of the level sequences. Missing levels imply changes in the 

fluctuation properties

• Unambiguous assignment of the states to the relevant symmetry classes

like, e.g., spin J and parity p in nuclei, or geometric symmetries in quantum 

billiards

• Either needs level sequences with similar fluctuation properties containing 

at least 5 levels in an ensemble of many nuclei or a complete sequence of 

at least ~100 levels in one nucleus / one quantum billiards
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Complete Identification of States in 208Pb Below 6.20 MeV
A. Heusler et al., Phys. Rev. C 93, 054321 (2016)

• Below 6.20 MeV a complete sequence of 151 levels was identified 

• For each state, spin J and parity p were determined unambiguosly 
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Fluctuating Part of the Integrated Spectral 
Density of the Complete Sequence

• All 151 energy levels irrespective of their spin and parity were used
• N fluc fluctuates around zero  clear indication that spectrum is complete
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Spectral Properties of the Complete Sequence

• Spectral properties agree with those of random Poissonian numbers
• Reason: Superposition of states belonging to different symmetry classes
• In order to attain information on the underlying nucleon dynamics, the 

spectra need to be separated into subspectra characterized by J p
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Ensemble Averages of Symmetry-Projected States
Dietz et al., PRL 118, 012501 (2017)

• The spectral properties of the ensemble agree well with those of random 
matrices from the GOE, thus indicating chaoticity of the nuclear system
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Eigenvalues:

Neumann-Neumann

Dirichlet-Dirichlet

Neumann-Dirichlet

Dirichlet-Neumann

x

y

a

b

 = 0 at x & y axes

n = 0 at x & y axes

Mirror Symmetries
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Nonrelativistic QBs with a                            
Discrete Rotational Symmetry

• Billiard domain in polar coordinates

• Wave functions classifiable according to their transformation properties

• Apply time-reversal operator 

• Eigenvalues of states with l, M-l with l  0, M/2 are degenerate

• Schrödinger equation of the QB with Dirichlet BC

l,l=0,1,2,..,M-1

with

• M-fold rotational symmetry:

• Rotation by 2p/M :


T invariance
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Symmetry-Projected Boundary Integral Equations  
for QBs

• Boundary-integral equation can be written in the form 

• Symmetry-projected boundary-integral equations 

with

• M-fold symmetry 
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Spectral Properties of the 4Fold-symmetric QB 
and its Symmetry-Projected Eigenstates

l=0, 2 l=1

• Spectral properties of all levels (violet) agree with 2GOE+1GUE (turquoise)

•The spectral properties of the symmetry-projected eigenstates with l=0, l=2

agree with GOE, those of l=1, l=3 are degenerate and agree with GUE

 Does not comply with BGS because the billiard system is T invariant
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• For the symmetry-projected cases peaks appear at lengths of pseudo orbits
• Magenta: Obtained by summing over the complex-valued Fourier transforms 

for all symmetry classes
• Black: Obtained from the eigenvalues for l=0,1,2  below Ĩ/r0=3 there are 

only pseudo orbits

l=0

l=1

QB

l=2

l=3

Length Spectra of the 4Fold-symmetric QB and 
its Symmetry-Projected Eigenstates

Ĩ/r0
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Constant Width Billiards
O. Knill, Elemente der Mathematik 53, 89 (1998)

• Classical dynamics is unidirectional

• Change from clockwise to anti-clockwise motion classically forbidden

• In quantum billiard transition from p>0 to p<0 possible due to tunneling
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Constant Width Microwave Billiard
Dietz et al., PRE 90, 022903 (2014)

• Construction of two superconducting microwave billiards (Q=106) 

• Degenerate resonances are split into doublets due to tunneling 

• Singlets correspond to diameter orbit (p=0). The sequence of doublets can be 

split into two independent spectra    r
n

l
n kk ,
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• Wave function looks like a deformed J0-eigenfunction of circle billiard 

• Husimi function on PSOS: Projection of boundary function onto a coherent 
state on the billiard boundary,

y

x

p

q

p

Wave function and Husimi function of a       
Singlet Mode

Quantum PSOS
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QB: Modes Localized on and Around           
Diameter Orbit

‘Symmetric DO’ has maximum at p=0 ‘Asymmetric DO’ has minimum at p=0
p p
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QB: Whispering Gallery Modes and                       
Modes Associated with Regular Island

p p
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Regular Islands in Chaotic Sea of PSOS
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Splitting of the Doublett Partners

p
• Red and green circles mark ‘hybrid modes’ modes with peaks at zero and 

whispering gallery modes

• Husimi functions of pairs with large splittings all exhibit a maximum around 

diameter orbit → confirms assumption of tunneling via p=0 modes
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: GOE

: GUE

RMT Model for the Spectral Properties

• Prediction: Due to unidirectionality the statistics is of GUE type
• But: The classical dynamics is mixed regular / chaotic in each half of PSOS
• V1 couples H (chaotic dynamics) to D1 (regular dynamics) with the coupling 

t1 measured in units of mean spacing d0
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• Splitting-weighted density of states:

• Average with a Gaussian:  

• Large splittings recur periodically

Splitting-Weighted Density of States 
S. Creagh, N. Whelan, PRL77 (1996)
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• Period corresponds to length of the billiard diameter

• Corroborates that tunneling is enhanced for states that are localized around 

the diameter orbits

Fourier Transform of Splitting-Weighted Density 
of States
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• RMT model: 

• Tunneling: V2 couples Hmixed (p>0) with (Hmixed)* (p<0) via D0 (regular region 
around p=0) with coupling strength t2 measured in units of mean spacing d

δ
~

/

Tunneling Model for Splitting Distribution
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Truncated Cauchy Distribution
F. Leyvraz, D. Ullmo, JPA 29 (1996)

t2=0.234

δ
~

/

• Truncated Cauchy distribution

• Fit to experimental splitting distribution yields approximately the same 
values for tunneling matrix element t2 as the RMT model for tunneling

2

~ t for
~

~
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PSM of 3 Limaçon Billiards
(Mixed integrable / chaotic dynamics) 

ll cos21)( 2 r

• The spectral properties change from Poisson and GOE with increasing 
l /  chaoticity
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Fluctuating Part of the Integrated Resonance 
Density of a ¼ Stadium

• Non-generic orbits:
`Bouncing Ball Orbits´

)()()( . fNfNfN g
flucWeyl 

)(.. fN gn
osc
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osc

[Sieber et al. JPA 26, 6217 (1993)]
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Spectral Properties of a ¼ Stadium

~1600 eigenfrequencies
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Fully Chaotic Tilted Stadium Billiard

• Tilted stadium (Primack + Smilansky, 1994) 

• 690 eigenvalues of quantum billiard were obtained from the resonance 
spectra with the harmonic inversion method

~800    
eigenfrequencies
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vertex

bond

• Wave function on the bond connecting vertices i and j 

• The „magnetic vector potential“ Ai,j with Re(Ai,j)0 and Ai,j=-Aj,i induces 
violation of time-reversal invariance

• For incommensurate bond lengths the wave dynamics is chaotic or 
Poisson depending on the boundary conditions at the vertices

→ graphs serve as a model system to study aspects of quantum chaos
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Quantum Graphs
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Characteristics of Quantum Graphs

• Connectivity matrix element for vertices i and j

• Continuity:

• Current conservation:

• Dirichlet boundary condition at vertex i corresponds to li  Poisson

0,)(,)0( ,,,,  jijjijiiji CjiL for

• Neumann boundary condition at vertex i corresponds to li=0  GEs apply

• Vertex S-matrix:

vi: valency
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Spectrum of Quantum Graphs
T. Kottos et al., Ann. Phys. 274, 76 (1999)

• Wave function on bond (i,j) with length Li,j

• Current conservation yields the homogeneous set of linear equations

• Non-trivial solution:

with

• Fulfilled for discrete values of k that solve the equation

Weyl formula:   .)( constk
L

kNEkN
tot

Weyl 
p
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Scattering Matrix for Open Quantum Graphs

lead• The quantum graph is turned into a scattering system 
by attaching leads to it that extend to infinity

• An exact semiclassical approximation (trace formula) has been derived for 
the fluctuating part of the spectral density 

with

• (MM)-dimensional scattering matrix: 

• (M )-dimensional  matrix      describes coupling of quantum graph 
to the exterior through the leads

• Time-reversal invariance:

M = # leads, V = # vertices 
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Spectral Properties of Graphs with
Preserved T Invariance (GOE)

• The long-range spectral fluctuations deviate from the GOE curves for L>3 (8)
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Fluctuating Part of the Integrated Spectral
Density of the Computed Eigenvalues

• Fluctuating part of the integrated spectral density exhibits slow oscillations
 We applied the exact trace formula for quantum graphs to find their origin 

(a general procedure to identify nonuniversal effects) 

: smoothed N fluc (k)

: numerics
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Trace Formula for Quantum Graphs
T. Kottos et al., Ann. Phys. 274, 76 (1999)
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• Take into account only orbits confined to a bond, bouncing back and forth 

between the two vertices

• Orbits confined to a bond do not sense the chaoticity of the dynamics 
arising due to the joint effect of the scattering at all vertices

 exhibit nonuniversal features

• Such orbits are absent in unidirectional graphs

• To demonstrate the dominance of these orbits in the spectra we compared 
results for N fluc(k) and length spectra 

i  j
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Fluctuating Part of Integrated Spectral Density
Dietz et al., PRE 95, 052202 (2017)

• The slow oscillations are well described by the integrated semiclassical 
trace formula taking into account only orbits that are confined to individual 
bonds 

: numerics

: reduced trace formula
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Comparison of a Numerical & Semiclassical
Length Spectrum

: experiment

: numerics

: semiclassical length 
spectrum

• For the shortest lengths, the experimental and the numerical length spectra
are well described by the semiclassical one including only periodic orbits
confined to individual bonds

 Backscattering at the joints of the quantum graphs is nonnegligible thus 
leading to nonuniversal features in spectral properties
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Length spectrum
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Threefold way

• Quantum systems with violated time-reversal invariance 

• Quantum Systems with integer spin and preserved time-reversal invariance 

• Time-reversal operator

• Hamiltonian (unitary universality class):

• Hamiltonian (orthogonal universality class):

T

• Quantum systems with 1/2-integer spin and preserved time-reversal 
invariance belong to the symplectic universality class 
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Hamiltonian with Symplectic Symmetry (GSE)

• Time-reversal operator of spin-1/2 systems

• Time-reversal invariance

• Hermiticity implies that              is symplectic

• The eigenvalues are Kramer’s degenerate

• Symplectic Hamiltonian

• Define basis
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Quantum Graph with Symplectic Symmetry

• Introduced by [A. Rehemanjiang et al. Phys. Rev. Lett. 117, 064101 (2016)]

• Graphs are identical except for a phase of p/2

• Time-reversal invariance is induced by a magnetic vector potential        

Ai,j= p/2 at two corresponding bonds\

• Coupling is realized with two bonds of same length and a relative 

phase of p

-
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Spectral Properties of Graphs with Violated          
T Invariance and with Symplectic Symmetry

• The long-range spectral fluctuations deviate from the GUE / GSE curves for 
L>3 (8)

• Origin: backscattering at the vertices 

GUE GSE
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Level Dynamics of GUE and GSE Graph 
J. Lu et al., PRE 102, 022309 (2020) 

• The lengths of two pairs of corresponding bonds is varied while keeping the 
spectral density (k) fixed.

• The stripes of constant slopes correspond to trapped modes

i  j
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Curvature Distributions

• Before extraction of nonuniversal 
contributions 

• After extraction of nonuniversal 
contributions 
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Avoided Crossing Distributions

• Distribution of the distances between adjacent levels at lengths of closest 
encounter
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Thank you

for

your attention
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RMT Model for Poisson to GOE Transitions
V.K.B. Kota, Lecture Notes in Physics 884, Chapter 3.2

• Ansatz for random matrices with spectral properties intermediate between 
Poisson and GOE statistics  

• H0: diagonal matrix containing random Poissonian numbers
• H1: random matrix from the GOE
• Variances of matrix elements were chosen such, that the lengths of the 

level sequences of H0 and H1 coincided
• Spectral properties are indistinguishable from GOE for l  1-2
• Wigner-like approximation for the NNSD in terms of the I0(x) Bessel 

function and the U(a,b,x) Kummer function [G. Lenz & F. Haake, PRL 67, 1 (1991)]
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