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Classical Billiard

 Particle moves freely within the billiard along straight lines with constant
velocity and is reflected specularly at boundary
» Shape of billiard determines chaoticity of classical dynamics
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Quantum Billiards and Microwave Billiards

« Experimental determination of the eigenvalues and wave functions of
the quantum billiard with microwave billiards

Quantum billiard Microwave billiard
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Measurement Principle

* Measurement of the scattering matrix element S,, with a superconducting
cavity
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Unfolding of Spectra

* Integrated spectral density N( £) = # levels below E
* Decompose into a smooth and a fluctuating part
N(E)=N(E)+N"™(E)

* Replace eigenvalues E;i by the smooth part of the integrated spectral

density _
e, =N(E))

* Quantum billiard / Microwave billiard:

Weyl formula: N(k = \/E)z N (k) = ik2 —Ek + const.

4r 4r
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Indispensable Requirements on Analysis of
Fluctuation Properties

« Completeness of the level sequences. Missing levels imply changes in the
fluctuation properties

« Unambiguous assignment of the states to the relevant symmetry classes
like, e.g., spin J and parity = in nuclel, or geometric symmetries in quantum

billiards

 Either needs level sequences with similar fluctuation properties containing
at least 5 levels in an ensemble of many nuclei or a complete sequence of
at least ~100 levels in one nucleus / one quantum billiards
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Complete Identification of States in 208Pb Below 6.20 MeV
A. Heusler et al., Phys. Rev. C 93, 054321 (2016)
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» Below 6.20 MeV a complete sequence of 151 levels was identified

 For each state, spin J and parity © were determined unambiguosly
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Fluctuating Part of the Integrated Spectral
Density of the Complete Sequence
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« N/ fluctuates around zero — clear indication that spectrum is complete

 All 151 energy levels irrespective of their spin and parity were used
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Spectral Properties of the Complete Sequence
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» Spectral properties agree with those of random Poissonian numbers

» Reason: Superposition of states belonging to different symmetry classes

* In order to attain information on the underlying nucleon dynamics, the
spectra need to be separated into subspectra characterized by J *
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Ensemble Averages of Symmetry-Projected States
Dietz et al., PRL 118, 012501 (2017)
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* The spectral properties of the ensemble agree well with those of random
matrices from the GOE, thus indicating chaaoticity of the nuclear system
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Mirror Symmetries

Eigenvalues: E(m,n) =
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Nonrelativistic QBs with a
Discrete Rotational Symmetry

» Billiard domain in polar coordinates
r = [z(r,9), y(r, 0)], w(r, ) = z(r, 0) +iy(r, p), ¢ € [0,27), 7 € [0,7(]

M
« Schrédinger equation of the QB with Dirichlet BC

ﬁwm(ra 90): _A('r,tp)?vbm(ra (10) = /f?n?ﬂm(’f‘, (10) with wm(ra 90)|?“=7“0: 0.

* Rotation by 27/M : R = 3L

. 2 ‘Y 27 I\\ : ’// I\I‘.
 M-fold rotational symmetry: w (go -+ A—"T) = "M w(p)

v}

» WWave functions classifiable according to their transformation properties

R r) = (no- T0) = FN0000)  1470,1,2,.,M-1
* Apply time-reversal operatorT = C
. 9 | . « T invariance . -
0 (r,(,o— M"r/\) = MDA [y Q(r, )] = [ o 90)] =Ym " (r,e),

* Eigenvalues of states with /, M-/ with [ =0, M/2 are degenerate
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Symmetry-Projected Boundary Integral Equations
for QBs

» Boundary-integral equation can be written in the form

u(o) = ] "ol ()| QB (k0,0 )ule) with w(@) = B,(d)

Q9 (ks p, ) = iy coslaly’) — £l )] H (ko)

cittod) - AT o) = o) - w(e)

» M-fold symmetry w (cp + ,\%) = T w(p)

« Symmetry-projected boundary-integral equations

27

M -
wD(f) = [ dpOD (k: 0, ' Yu® (1)
0

~ o 27T ~ M=l « 2l f
Mi(k; 0,¢') = Q (k;so +A 90') QO (k; 0, ') = /\Z_% ST AM(k;0,¢")  Q=Q@B,
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Spectral Properties of the 4Fold-symmetric QB
and its Symmetry-Projected Eigenstates
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» Spectral properties of all levels (violet) agree with 2GOE+1GUE (turquoise)

* The spectral properties of the symmetry-projected eigenstates with /=0, /=2
agree with GOE, those of =3 are degenerate and agree with GUE

— Does not comply with BGS because the billiard system is T invariant

Quantum Billiards and Quantum Graphs | 14



Length Spectra of the 4Fold-symmetric QB and
its Symmetry-Projected Eigenstates
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» For the symmetry-projected cases peaks appear at lengths of pseudo orbits
« Magenta: Obtained by summing over the complex-valued Fourier transforms

for all symmetry classes
- Black: Obtained from the eigenvalues for /=0,1,2 = below I/r,=3 there are

only pseudo orbits
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Constant Width Billiards
O. Knill, Elemente der Mathematik 53, 89 (1998)
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* Classical dynamics is unidirectional

« Change from clockwise to anti-clockwise motion classically forbidden
* In quantum billiard transition from p>0 to p<0 possible due to tunneling

i6¢_1 —7;4(,75_1
=)o) gy

) dep 1 i2¢0 1
w(¢p) = —Ryie®—ias (e 1 ) + ( 5 )] —ias

w'(¢) = R(p)e, R(¢) = Ry + 2iassin(3¢) + 2as cos(5¢), R(p) = R*(¢)

t(¢) = [cos ¢, sin @] n(p) = [COS (¢ — 1), sin (¢ _

SIE]

)]
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Constant Width Microwave Billiard
Dietz et al., PRE 90, 022903 (2014)

-20 -20

-40 -40

-60 -60

IS.|* (dB)
S,/ (dB)

-80 -80

-100 -100

Sy
I 155 w6 157 158

94 95 Q6= BT Q8 99
Frequency (Cﬁqz)~ -

== = Frequency (GHz) ~

~

20 [*= — 20 -

-40 -40

@ -60 E‘é -60

a0 2 80

—— -100 -100
9702 9.706 971 15.43 15.44 15.45  15.46

Frequency (GHz) Frequency (GHz)

 Construction of two superconducting microwave billiards (Q=10°)

» Degenerate resonances are split into doublets due to tunneling

 Singlets correspond to diameter orbit (p=0). The sequence of doublets can be
split into two independent spectra {k’ |, {k/ }
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Wave function and Husimi function of a
Singlet Mode

Quantum PSOS :0'_ A ]

T8 06 0302 0 030406 08 1
p

» Wave function looks like a deformed J,-eigenfunction of circle billiard

« Husimi function on PSOS: Projection of boundary function onto a coherent
state on the billiard boundary, C¢, ,(s; k»)

1 1
2k 1 ds |{(s), V(o) )|

L 2

ds <ﬁ,(s), an(s)> CF, (s k)

H,(p,q) =
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QB: Modes Localized on and Around
Diameter Orbit
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QB: Whispering Gallery Modes and
Modes Associated with Regular Island
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Regular Islands in Chaotic Sea of PSOS

Projection of H (q,p) on g-axis for n=123
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Splitting of the Doublett Partners

0.003 . . . , . ,

k (1/cm) O T s oA 02 0 03 04 05 05 1
* Red and green circles mark ‘hybrid modes’ modes with peaks gt zero and
whispering gallery modes
« Husimi functions of pairs with large splittings all exhibit a maximum around
diameter orbit — confirms assumption of tunneling via p=0 modes

Quantum Billiards and Quantum Graphs | 22




RMT Model for the Spectral Properties
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 Prediction: Due to unidirectionality the statistics is of GUE type

« But: The classical dynamics is mixed regular / chaotic in each half of PSOS

* V, couples H (chaotic dynamics) to D, (regular dynamics) with the coupling
T, measured in units of mean spacing d,

Quantum Billiards and Quantum Graphs | 23



Splitting-Weighted Density of States
S. Creagh, N. Whelan, PRL77 (1996)

4l
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- Splitting-weighted density of states: f(k) = Z (W - 1) 6(k — ky)

1 _K)?
» Average with a Gaussian: fe(k) = T / dK f(K)e™ o
o Jo

 Large splittings recur periodically
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Fourier Transform of Splitting-Weighted Density
of States

40

WURVRILY

40
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 Period corresponds to length of the billiard diameter
» Corroborates that tunneling is enhanced for states that are localized around

the diameter orbits

Quantum Billiards and Quantum Graphs | 25



Tunneling Model for Splitting Distribution

P(5)

0

 Tunneling: V, couples H™xed (p>0) with (H™*¢d)* (p<0) via D, (regular region
around p=0) with coupling strength t, measured in units of mean spacing d

Quantum Billiards and Quantum Graphs | 26



Truncated Cauchy Distribution
F. Leyvraz, D. Ullmo, JPA 29 (1996)
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0.4

 Truncated Cauchy distribution
P(S) . 2 ZﬁTg

T ord2 4 47

for §<r,

* Fit to experimental splitting distribution yields approximately the same
values for tunneling matrix element 1, as the RMT model for tunneling
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PSM of 3 Limacon Billiards
(Mixed integrable / chaotic dynamics)
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* The spectral properties change from Poisson and GOE with increasing

A/ chaoticity
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Fluctuating Part of the Integrated Resonance
Density of a /2 Stadium
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* Non-generic orbits:
"Bouncing Ball Orbits’

f (GHz)

/ -3
N (f) = o f’ Zm Cos (4nm—’— Zn

[Sieber et al. JPA 26, 6217 (1993)]
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Spectral Properties of a /4 Stadium
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Fully Chaotic Tilted Stadium Billiard

* Tilted stadium (Primack + Smilansky, 1994)

* 690 eigenvalues of quantum billiard were obtained from the resonance
spectra with the harmonic inversion method

I B B T T 7 0.3
1 ez =
- -"""xl_ :. -
& = = ~800
B | NH {1"“ . .
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1 I 1 1 I 1 I 1
ﬂ{I 1 2 3 “l} 5 10 15 0
S L
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Quantum Graphs

! J
vertex P, (x)=a, AT L, E+AD
b- .:ZJ(_i).,a. . \
i J A 1, J
e bond

I

« WWave function on the bond connecting vertices i and

(et =

—z——Al.j LPl.j(x):k \Pl.j(x)

dx ’ ’ ’

* The ,magnetic vector potential® 4, ; with Re(4, =0 and 4; =-4,; induces
violation of time-reversal invariance

* For incommensurate bond lengths the wave dynamics is chaotic or
Poisson depending on the boundary conditions at the vertices

— graphs serve as a model system to study aspects of quantum chaos
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Characteristics of Quantum Graphs

« Connectivity matrix element for vertices i and j

| if 7, j are connected
C..=C, = )
bSOl {0 otherwise
» Continuity: ¥ (0)=p,¥, (L )=¢ fori<j,C,  #0

 Current conservation:

Ei C,.,j(iAj,,.—d%> V. i(x) . +,~§i C,.,J-<—iA,-,j+%> ¥, j(x) xzo@oi
« Vertex S-matrix: oD = (5.m oL g Lo ) C.C A = N
jiyim Js n \/TAZQ J vk
* Dirichlet boundary condition at vertex i corresponds to 14— = Poisson
5= =0

* Neumann boundary condition at vertex i corresponds to 1=0 = GEs apply

() - .
g’ = —0, y+(2/v;) v;: valency
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Spectrum of Quantum Graphs
T. Kottos et al., Ann. Phys. 274, 76 (1999)

« Wave function on bond (i,j) with length L

_ el . ; —ids Li s oo ) .
Sui’j_sin kL, (@;sin[k(L; ;—x)]+ ¢@e“iimismkx) C; ;, i<}
« Current conservation yields the homogeneous set of linear equations
h(k)g =0
» Fulfilled for discrete values of £ that solve the equation
o | det h(k) = 0
* Non-trivial solution:
_ —> 7,é.cos(k:Lm).C+"? A=14
hz" k) = =4 _ sin(kL;m)
with (k) { C;je~tAiilii =10 [sin(kLz-j)]_l RE-N
L LtOl‘
Weyl formula: Nk =VE)= N"' (k) = =k + const.
T
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Scattering Matrix for Open Quantum Graphs

* The quantum graph is turned into a scattering system \Iead

by attaching leads to it that extend to infinity

* (MxM)-dimensional scattering matrix:

~

. —1
So(k) = 1y, — 20T [ﬁ(k) ; %WWT] W
M = # leads, V = # vertices

« (MxV)-dimensional matrix W describes coupling of quantum graph \
to the exterior through the leads

e Time-reversal invariance: TS,T-1 =87, = 8!

» An exact semiclassical approximation (trace formula) has been derived for
the fluctuating part of the spectral density
(1-3)
Vs

e 1 I, cos (r [kl, + muy)) , . i
pfl (k) - Z . er(np'yj:,/Z) £ Wlth € pp/2 — H
PEP, s=1
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Spectral Properties of Graphs with
Preserved T Invariance (GOE)

0.8 1
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- 13 0.2
~ 0. g
" 1<
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» The long-range spectral fluctuations deviate from the GOE curves for L>3 (8)
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Fluctuating Part of the Integrated Spectral
Density of the Computed Eigenvalues

. numerics
: smoothed N/t (k)

20 24 28 32 36 40
k [dm™]
* Fluctuating part of the integrated spectral density exhibits slow oscillations
— We applied the exact trace formula for quantum graphs to find their origin

(a general procedure to identify nonuniversal effects)
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Trace Formula for Quantum Graphs
T. Kottos et al., Ann. Phys. 274, 76 (1999)

 Take into account only orbits confined to a bond, bouncing back and forth
between the two vertices

" 1 9 Y
o (k):;ZZ(Z_Sj 2L, cos(rkZLl.,j) . .

rooi,j

 Orbits confined to a bond do not sense the chaoticity of the dynamics
arising due to the joint effect of the scattering at all vertices
— exhibit nonuniversal features

» Such orbits are absent in unidirectional graphs

* To demonstrate the dominance of these orbits in the spectra we compared
results for N/#<(k) and length spectra
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Fluctuating Part of Integrated Spectral Density
Dietz et al., PRE 95, 052202 (2017)

: numerics

: reduced trace formula

00 24 28 32 36 40
k [dm ']

* The slow oscillations are well described by the integrated semiclassical
trace formula taking into account only orbits that are confined to individual
bonds
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Comparison of a Numerical & Semiclassical
Length Spectrum

oo
o

. experiment

: numerics

o))
O

1 I 1 1
]

. semiclassical length
spectrum

Length spectrum

| |" I‘ \ & l H’ N "
! ;ﬂ]l_lqmn ki : ) W ! \M ()=
% 4 8 12 20
[ [dm]
 For the shortest lengths, the experimental and the numerical length spectra
are well described by the semiclassical one including only periodic orbits
confined to individual bonds
— Backscattering at the joints of the quantum graphs is nonnegligible thus
leading to nonuniversal features in spectral properties

Length Spectrum
o
o

o
(=
1 1 I 1 1 1

ikl ﬂuc (k)
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Threefold way

* Quantum systems with violated time-reversal invariance

« Hamiltonian (unitary universality class):
H = H
* Quantum Systems with integer spin and preserved time-reversal invariance

* Time-reversal operator
T=C1T?=1

« Hamiltonian (orthogonal universality class):
THT'=H H=H'

* Quantum systems with 1/2-integer spin and preserved time-reversal
invariance belong to the symplectic universality class
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Hamiltonian with Symplectic Symmetry (GSE)

On —]1N>

 Time-reversal operator of spin-1/2 systems T =y(C, Y = (11 0
N N

A A A

 Time-reversal invariance THT ! =H
« Hermiticity implies that 7 = AT is symplectic
H=YHTYT
» The eigenvalues are Kramer’s degenerate 72 — 1 = (¢\T1_/{) = O_

« Define basis B={1),]2)...,|N),|T1),|T2),...,|TN)}

« Symplectic Hamiltonian H = ( Ho V) Hy=H,V=-VT
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Quantum Graph with Symplectic Symmetry

* Introduced by [A. Rehemanjiang et al. Phys. Rev. Lett. 117, 064101 (2016)]
» Graphs are identical except for a phase of +r/2
* Time-reversal invariance is induced by a magnetic vector potential
A, = £r/2 at two corresponding bonds\
* Coupling is realized with two bonds of same length and a relative
phase of «
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Spectral Properties of Graphs with Violated
T Invariance and with Symplectic Symmetry

| ——— 1
0.8} GUE { os}

-------- |

12} i .

- GSE { os}
i 1 o6k
ol 17 04t

=0.08F
P r

1(s)

1 o.04F

» The long-range spectral fluctuations deviate from the GUE / GSE curves for
L>3 (8)

 Origin: backscattering at the vertices
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Level Dynamics of GUE and GSE Graph
J. Lu et al., PRE 102, 022309 (2020)

140

130 —_— e — \

120 M I > i

e(N)

110 ==

* The lengths of two pairs of corresponding bonds is varied while keeping the
spectral density p(k) fixed.
» The stripes of constant slopes correspond to trapped modes
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Curvature Distributions

o After extraction of nonuniversal

Before extraction of nonuniversal  os}t GUE -+

contributions

contributions

0.8 GUE -
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Avoided Crossing Distributions

1ol ' I ' I ' I ' I ' I ' I ' I ' I %

P(c)

L 4 / \ .
/ Sdo ,; \ =
O I | 1 ] I | I ~p— | I | 1 Ahltu —_—
0 0.6 1.2 1.8 2.4 0.6 1.2 1.8 2.4 ——
C c 0.4 0

« Distribution of the distances between adjacent levels at lengths of closest
encounter
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Thank you
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your attention
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RMT Model for Poisson to GOE Transitions

V.K.B. Kota, Lecture Notes in Physics 884, Chapter 3.2

* Ansatz for random matrices with spectral properties intermediate between
Poisson and GOE statistics

H,+AH, A = 0: Poisson
VI+ 2 A > 0: GOE

* H,: diagonal matrix containing random Poissonian numbers

* H,: random matrix from the GOE

 Variances of matrix elements were chosen such, that the lengths of the
level sequences of H, and H, coincided

 Spectral properties are indistinguishable from GOE for A = 1-2

» Wigner-like approximation for the NNSD in terms of the /,(x) Bessel
function and the U(a,b,x) Kummer function [G. Lenz & F. Haake, PRL 67, 1 (1991)]

H(A) =

P oi(s,2) = S’“‘(j)z exp|- (1)’ s’ /4/12]]o dée <22 [Esu(A)) A, u(A) =rU(-1/2,0, )
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