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Classical Billiard

V=

V=0

• Particle moves freely within the billiard along straight lines with constant 
velocity and is reflected specularly at boundary

• Shape of billiard determines chaoticity of classical dynamics
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Microwave billiardQuantum billiard

eigenvalue E  resonance frequency  f

eigenfunction   electric field strength Ez

Quantum Billiards and Microwave Billiards

• Experimental determination of the eigenvalues and wave functions of 
the quantum billiard with microwave billiards

f < fmax = c/2h
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Measurement Principle

Resonance spectrum
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• Measurement of the scattering matrix element S21 with a superconducting 
cavity

positions of the resonances 
fn=knc/2p yield eigenvalues 
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Weyl formula: 
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Unfolding of Spectra

• Integrated spectral density N( E ) = # levels below E 

• Decompose into a smooth and a fluctuating part

• Replace eigenvalues Ei by the smooth part of the integrated spectral 
density 

)( ii ENe 

• Quantum billiard / Microwave billiard:
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Indispensable Requirements on Analysis of
Fluctuation Properties  

• Completeness of the level sequences. Missing levels imply changes in the 

fluctuation properties

• Unambiguous assignment of the states to the relevant symmetry classes

like, e.g., spin J and parity p in nuclei, or geometric symmetries in quantum 

billiards

• Either needs level sequences with similar fluctuation properties containing 

at least 5 levels in an ensemble of many nuclei or a complete sequence of 

at least ~100 levels in one nucleus / one quantum billiards
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Complete Identification of States in 208Pb Below 6.20 MeV
A. Heusler et al., Phys. Rev. C 93, 054321 (2016)

• Below 6.20 MeV a complete sequence of 151 levels was identified 

• For each state, spin J and parity p were determined unambiguosly 
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Fluctuating Part of the Integrated Spectral 
Density of the Complete Sequence

• All 151 energy levels irrespective of their spin and parity were used
• N fluc fluctuates around zero  clear indication that spectrum is complete
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Spectral Properties of the Complete Sequence

• Spectral properties agree with those of random Poissonian numbers
• Reason: Superposition of states belonging to different symmetry classes
• In order to attain information on the underlying nucleon dynamics, the 

spectra need to be separated into subspectra characterized by J p
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Ensemble Averages of Symmetry-Projected States
Dietz et al., PRL 118, 012501 (2017)

• The spectral properties of the ensemble agree well with those of random 
matrices from the GOE, thus indicating chaoticity of the nuclear system
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Eigenvalues:

Neumann-Neumann

Dirichlet-Dirichlet

Neumann-Dirichlet

Dirichlet-Neumann

x

y
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b

 = 0 at x & y axes

n = 0 at x & y axes

Mirror Symmetries
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Nonrelativistic QBs with a                            
Discrete Rotational Symmetry

• Billiard domain in polar coordinates

• Wave functions classifiable according to their transformation properties

• Apply time-reversal operator 

• Eigenvalues of states with l, M-l with l  0, M/2 are degenerate

• Schrödinger equation of the QB with Dirichlet BC

l,l=0,1,2,..,M-1

with

• M-fold rotational symmetry:

• Rotation by 2p/M :


T invariance
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Symmetry-Projected Boundary Integral Equations  
for QBs

• Boundary-integral equation can be written in the form 

• Symmetry-projected boundary-integral equations 

with

• M-fold symmetry 


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Spectral Properties of the 4Fold-symmetric QB 
and its Symmetry-Projected Eigenstates

l=0, 2 l=1

• Spectral properties of all levels (violet) agree with 2GOE+1GUE (turquoise)

•The spectral properties of the symmetry-projected eigenstates with l=0, l=2

agree with GOE, those of l=1, l=3 are degenerate and agree with GUE

 Does not comply with BGS because the billiard system is T invariant



Quantum Billiards and Quantum Graphs | 15

• For the symmetry-projected cases peaks appear at lengths of pseudo orbits
• Magenta: Obtained by summing over the complex-valued Fourier transforms 

for all symmetry classes
• Black: Obtained from the eigenvalues for l=0,1,2  below Ĩ/r0=3 there are 

only pseudo orbits

l=0

l=1

QB

l=2

l=3

Length Spectra of the 4Fold-symmetric QB and 
its Symmetry-Projected Eigenstates

Ĩ/r0
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Constant Width Billiards
O. Knill, Elemente der Mathematik 53, 89 (1998)

• Classical dynamics is unidirectional

• Change from clockwise to anti-clockwise motion classically forbidden

• In quantum billiard transition from p>0 to p<0 possible due to tunneling
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Constant Width Microwave Billiard
Dietz et al., PRE 90, 022903 (2014)

• Construction of two superconducting microwave billiards (Q=106) 

• Degenerate resonances are split into doublets due to tunneling 

• Singlets correspond to diameter orbit (p=0). The sequence of doublets can be 

split into two independent spectra    r
n

l
n kk ,
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• Wave function looks like a deformed J0-eigenfunction of circle billiard 

• Husimi function on PSOS: Projection of boundary function onto a coherent 
state on the billiard boundary,

y

x

p

q

p

Wave function and Husimi function of a       
Singlet Mode

Quantum PSOS
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QB: Modes Localized on and Around           
Diameter Orbit

‘Symmetric DO’ has maximum at p=0 ‘Asymmetric DO’ has minimum at p=0
p p
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QB: Whispering Gallery Modes and                       
Modes Associated with Regular Island

p p
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Regular Islands in Chaotic Sea of PSOS
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Splitting of the Doublett Partners

p
• Red and green circles mark ‘hybrid modes’ modes with peaks at zero and 

whispering gallery modes

• Husimi functions of pairs with large splittings all exhibit a maximum around 

diameter orbit → confirms assumption of tunneling via p=0 modes
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: GOE

: GUE

RMT Model for the Spectral Properties

• Prediction: Due to unidirectionality the statistics is of GUE type
• But: The classical dynamics is mixed regular / chaotic in each half of PSOS
• V1 couples H (chaotic dynamics) to D1 (regular dynamics) with the coupling 

t1 measured in units of mean spacing d0
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• Splitting-weighted density of states:

• Average with a Gaussian:  

• Large splittings recur periodically

Splitting-Weighted Density of States 
S. Creagh, N. Whelan, PRL77 (1996)
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• Period corresponds to length of the billiard diameter

• Corroborates that tunneling is enhanced for states that are localized around 

the diameter orbits

Fourier Transform of Splitting-Weighted Density 
of States
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• RMT model: 

• Tunneling: V2 couples Hmixed (p>0) with (Hmixed)* (p<0) via D0 (regular region 
around p=0) with coupling strength t2 measured in units of mean spacing d

δ
~

/

Tunneling Model for Splitting Distribution
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Truncated Cauchy Distribution
F. Leyvraz, D. Ullmo, JPA 29 (1996)

t2=0.234

δ
~

/

• Truncated Cauchy distribution

• Fit to experimental splitting distribution yields approximately the same 
values for tunneling matrix element t2 as the RMT model for tunneling

2

~ t for
~

~
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PSM of 3 Limaçon Billiards
(Mixed integrable / chaotic dynamics) 

ll cos21)( 2 r

• The spectral properties change from Poisson and GOE with increasing 
l /  chaoticity
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Fluctuating Part of the Integrated Resonance 
Density of a ¼ Stadium

• Non-generic orbits:
`Bouncing Ball Orbits´

)()()( . fNfNfN g
flucWeyl 

)(.. fN gn
osc
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osc

[Sieber et al. JPA 26, 6217 (1993)]

D
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Spectral Properties of a ¼ Stadium

~1600 eigenfrequencies
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Fully Chaotic Tilted Stadium Billiard

• Tilted stadium (Primack + Smilansky, 1994) 

• 690 eigenvalues of quantum billiard were obtained from the resonance 
spectra with the harmonic inversion method

~800    
eigenfrequencies
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vertex

bond

• Wave function on the bond connecting vertices i and j 

• The „magnetic vector potential“ Ai,j with Re(Ai,j)0 and Ai,j=-Aj,i induces 
violation of time-reversal invariance

• For incommensurate bond lengths the wave dynamics is chaotic or 
Poisson depending on the boundary conditions at the vertices

→ graphs serve as a model system to study aspects of quantum chaos
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Quantum Graphs
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Characteristics of Quantum Graphs

• Connectivity matrix element for vertices i and j

• Continuity:

• Current conservation:

• Dirichlet boundary condition at vertex i corresponds to li  Poisson

0,)(,)0( ,,,,  jijjijiiji CjiL for

• Neumann boundary condition at vertex i corresponds to li=0  GEs apply

• Vertex S-matrix:

vi: valency
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Spectrum of Quantum Graphs
T. Kottos et al., Ann. Phys. 274, 76 (1999)

• Wave function on bond (i,j) with length Li,j

• Current conservation yields the homogeneous set of linear equations

• Non-trivial solution:

with

• Fulfilled for discrete values of k that solve the equation

Weyl formula:   .)( constk
L

kNEkN
tot

Weyl 
p
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Scattering Matrix for Open Quantum Graphs

lead• The quantum graph is turned into a scattering system 
by attaching leads to it that extend to infinity

• An exact semiclassical approximation (trace formula) has been derived for 
the fluctuating part of the spectral density 

with

• (MM)-dimensional scattering matrix: 

• (M )-dimensional  matrix      describes coupling of quantum graph 
to the exterior through the leads

• Time-reversal invariance:

M = # leads, V = # vertices 
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Spectral Properties of Graphs with
Preserved T Invariance (GOE)

• The long-range spectral fluctuations deviate from the GOE curves for L>3 (8)
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Fluctuating Part of the Integrated Spectral
Density of the Computed Eigenvalues

• Fluctuating part of the integrated spectral density exhibits slow oscillations
 We applied the exact trace formula for quantum graphs to find their origin 

(a general procedure to identify nonuniversal effects) 

: smoothed N fluc (k)

: numerics
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Trace Formula for Quantum Graphs
T. Kottos et al., Ann. Phys. 274, 76 (1999)
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• Take into account only orbits confined to a bond, bouncing back and forth 

between the two vertices

• Orbits confined to a bond do not sense the chaoticity of the dynamics 
arising due to the joint effect of the scattering at all vertices

 exhibit nonuniversal features

• Such orbits are absent in unidirectional graphs

• To demonstrate the dominance of these orbits in the spectra we compared 
results for N fluc(k) and length spectra 

i  j
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Fluctuating Part of Integrated Spectral Density
Dietz et al., PRE 95, 052202 (2017)

• The slow oscillations are well described by the integrated semiclassical 
trace formula taking into account only orbits that are confined to individual 
bonds 

: numerics

: reduced trace formula
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Comparison of a Numerical & Semiclassical
Length Spectrum

: experiment

: numerics

: semiclassical length 
spectrum

• For the shortest lengths, the experimental and the numerical length spectra
are well described by the semiclassical one including only periodic orbits
confined to individual bonds

 Backscattering at the joints of the quantum graphs is nonnegligible thus 
leading to nonuniversal features in spectral properties
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Length spectrum
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Threefold way

• Quantum systems with violated time-reversal invariance 

• Quantum Systems with integer spin and preserved time-reversal invariance 

• Time-reversal operator

• Hamiltonian (unitary universality class):

• Hamiltonian (orthogonal universality class):

T

• Quantum systems with 1/2-integer spin and preserved time-reversal 
invariance belong to the symplectic universality class 
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Hamiltonian with Symplectic Symmetry (GSE)

• Time-reversal operator of spin-1/2 systems

• Time-reversal invariance

• Hermiticity implies that              is symplectic

• The eigenvalues are Kramer’s degenerate

• Symplectic Hamiltonian

• Define basis
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Quantum Graph with Symplectic Symmetry

• Introduced by [A. Rehemanjiang et al. Phys. Rev. Lett. 117, 064101 (2016)]

• Graphs are identical except for a phase of p/2

• Time-reversal invariance is induced by a magnetic vector potential        

Ai,j= p/2 at two corresponding bonds\

• Coupling is realized with two bonds of same length and a relative 

phase of p

-
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Spectral Properties of Graphs with Violated          
T Invariance and with Symplectic Symmetry

• The long-range spectral fluctuations deviate from the GUE / GSE curves for 
L>3 (8)

• Origin: backscattering at the vertices 

GUE GSE
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Level Dynamics of GUE and GSE Graph 
J. Lu et al., PRE 102, 022309 (2020) 

• The lengths of two pairs of corresponding bonds is varied while keeping the 
spectral density (k) fixed.

• The stripes of constant slopes correspond to trapped modes

i  j
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Curvature Distributions

• Before extraction of nonuniversal 
contributions 

• After extraction of nonuniversal 
contributions 
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Avoided Crossing Distributions

• Distribution of the distances between adjacent levels at lengths of closest 
encounter
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Thank you

for

your attention
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RMT Model for Poisson to GOE Transitions
V.K.B. Kota, Lecture Notes in Physics 884, Chapter 3.2

• Ansatz for random matrices with spectral properties intermediate between 
Poisson and GOE statistics  

• H0: diagonal matrix containing random Poissonian numbers
• H1: random matrix from the GOE
• Variances of matrix elements were chosen such, that the lengths of the 

level sequences of H0 and H1 coincided
• Spectral properties are indistinguishable from GOE for l  1-2
• Wigner-like approximation for the NNSD in terms of the I0(x) Bessel 

function and the U(a,b,x) Kummer function [G. Lenz & F. Haake, PRL 67, 1 (1991)]
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