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Classical and Quantum Chaos and the 
semiclassical approach

• Classical & Quantum Chaos

• Semiclassical Approach  Martin Sieber

• Random matrix theory  Thomas Guhr
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Lagrange-Equations
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• Generalized coordinates and generalized velocities

• Lagrange-function VTttL ))(),(( qq 
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Hamiltonian Formalism

• Hamiltonian with N degrees of freedom
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• Coordinates and the conjugate momenta

• Hamilton´s equations of motion

• Conservative systems: Hamiltonian H(q,p)=E is constant along the phase 
space trajectory x(t) = (q, p) 
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The Phase Space

• The phase space vector x(t) specifies the trajectory of a particle in phase 
space
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• 2N-dimensional gradient

T

NN pppqqq 





























 ,,,,,,,:
2121


x



• With this notation Hamilton‘s equations may be written as
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Properties of the Phase Space Trajectories

• For conservative systems (E=const.), the trajectory x(t) is confined to the

(2N-1)-dimensional energy shell

• Because of the uniqueness of Hamilton´s equations of motion for a given 

initial condition x0, a phase space trajectory x(t) can never cross itself

• A trajectory is called periodic if x(t+T) = x(t) for some 0<T<

• Liouville´s Theorem

The divergence of the Hamiltonian flux H(x,t) vanishes
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 The phase space volume d is invariant under canonical transformations
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• For some integrable systems a canonical transformation can be found 
such that

Definition of Integrability

• A system of N degrees of freedom is integrable, if there are at least N
constants of motion that are in involution

0},{

,,1.,),(

1





























N

i i

m

i

n

i

m

i

n
mn

nn

p

C

q

C

q

C

p

C
CC

NnconstCC pq

• For conservative systems the Hamiltonian itself is a constant of motion 
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• Generating function:
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• Consider systems for which a canonical transformation exists such that
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• The generating function is given up to a constant by
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• Generally for N > 1 a solution can only be found for integrable systems, 
the simplest ones being separable systems with
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Torus Variables I

• Einstein (1917): The phase space trajectories x(t) of an integrable system 
with N independent degrees of freedom lie on a manifold, which has the 
structure of an N-torus

• An N-torus is a connected N-dimensional manifold MN with one hole. For 
N=1 it is a circle, for N=2 it is a torus 

• The constants of motion Cn define vector fields vn which are linearly 
independent and in the tangential plane of MN

ξJvJv  HCnn 1,

• On an N-torus always exist N independent loops Cn, that cannot be
reduced to a point or mapped onto one another

• These elementary loops may be described by angle variables n ϵ[0,2)
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Torus (Action-Angle) Variables II

• Each loop Cn can be mapped onto a circle with radius In corresponding to 
the momenta conjugate to the angle variables n

• Action variables In >0:
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• Equations of motion for these `torus variables´
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Periodic Orbits on an N-Torus

• N=2: Trajectories move on a 2-torus with frequencies 1, 2.

• 1 / 2 irrational: trajectories never close and cover the torus surface

uniformly

• 1 / 2 = n / m rational: periodic orbits  trajectories are closed and never

cover the whole torus surface

• Condition for the periodicity of a trajectory on an N-torus:
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• Note: i is constant but generally depends on I
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Classical Billiard

V=

V=0

• Particle moves freely within the billiard along straight lines with constant 
velocity and is reflected specularly at boundary

• Shape of billiard determines chaoticity of classical dynamics
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Integrable and Chaotic Billiards

• Integrable billiards:

• Constants of motion: L px, py

• Chaotic billiards:

5.0),cos(1)(  r

circle square ellipse

L1L2

LimaçonBunimovich stadiumSinai
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Integrable and Chaotic Dynamics

Rectangular billiard (regular) Bunimovich stadium (chaotic)

• Dynamical, exponential instability leading to unpredictability is a 

characteristic of chaos  

• Deterministic chaos: sensitivity of the solutions of the equations of motion 

with respect to infinitesimal changes in the initial conditions  
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Poincaré Section Map (PSM)

• The Poincaré map is defined in terms of the arclength sn and the                   
momentum pn = |p| sin n at n th bounce with the boundary

• Energy conservation: |p|=const.=1

Definition of Birkhoff coordinates
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Classical and Quantum Chaos | 15

PSM of Ellipse

• Orbits encircling both foci touch an ellipse

• Orbits passing between the foci touch hyperbolas

• PSMs were generated by varying the initial angle 

rotations librations
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PSM of Stadium Billiard

• PSM was created by iterating one initial condition (s0, p0) over a large 
number of  bounces with the boundary / long time 
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PSM of Limaçon Billiard
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• PSM was generated by varying the initial angle 
• For  = 0.5 the PSM is similar to that of the stadium billiard
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• Energy shell:

Ergodicity of the Classical Dynamics

 Spatial and temporal averages coincide:

Not ergodic: Ergodic:

• Ergodicity: Almost all trajectories visit every part in the accessible phase 
space 
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• How does the regular or chaotic behaviour of the classical dynamics 

manifest itself in those of the corresponding quantum system?

• Problem: a distinction between regularity and chaos in terms of the long-

time evolution of trajectories is not possible in a quantum system

• Reason: Heisenberg’s uncertainty relation Δx Δp ≥ / 2

• But: due to the correspondence principle there must be a relation 

between a classical system and its quantum counter partner

 quantum chaos

Central Question of Quantum Chaos
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n

Quantum Billiard

• Schrödinger equation of a free particle

• Confinement to billiard boundary B  Dirichlet conditions at boundary

• Eigenfunctions

• Eigenvalues

• Time-independent Schrödinger equation
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Eigenvalues:

Neumann-Neumann

Dirichlet-Dirichlet

Neumann-Dirichlet

Dirichlet-Neumann

x

y

a

b

 = 0 at x & y axes

n = 0 at x & y axes

Wave Functions of the Rectangular Billiard
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Wave Functions of the Circle Billiard
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• Eigenfunctions and eigenvalues:

• Angular momentum of classical trajectory:
mRk
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Wave Functions of Circle and Limaçon Billiard
for Increasing Energy
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Ergodicity in Quantum Systems

• Probability that a quantum particle in state n is found in a part B0 of             
position space B:

• Quantum ergodicity:

• Exception: `scar´ wave functions
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Berry-Tabor Conjecture: 

• The fluctuation properties in the eigenvalue spectra of a typical integrable 

system behave like independent random numbers from a Poisson

process  Based on Einstein-Brillouin-Keller (EBK) quantization

Spectral Properties of Integrable Systems
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Integrable Systems:                                   
Einstein-Brillouin-Keller (EBK) Quantization

• EBK quantization:  ,2,1,0,
4
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• Maslov index                       ,  =  turning points, b =  refl. at hard wall
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• EBK equation provides an implicit quantization condition for the energies

• Generally, the EBK eigenvalues yield a good approximation for the 
quantum eigenvalues in the semiclassical limit  

• Applicable to N-dimensional integrable systems that can be described 
using torus variables
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Action-Angle Variables of a Rectangular Billiard

• Constants of motion
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• At each reflection one of the momenta pi (i=x,y) changes its sign pi-pi

• Hamiltonian

• Angle variables
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Rectangular Billiard
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• The trajectories are unfolded by reflecting the 
rectangular billiard at its boundaries 

• Periodic folding  2-torus

 EBK eigenvalues exact!
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Trace Formula in Terms of Periodic Orbits
Sieber et al., JPA 28, 5041 (1995)

• Sum over periodic orbits with lengths 22222 yxpq LqLpL 
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• Weyl formula for the smooth part of the level density of 2D billiards

• Spectral density of a quantum system: 
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Numerical Test of the Trace Formula for 
Rectangular Billiards 

• Length spectrum

)()()( kNkNkN smoothfluc 

: numerical eigenvalues

: trace formula
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Action-Angle Variables of a Circle Billiard
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• Polar coordinates

• Hamiltonian
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• Conjugate momenta
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• Action variables

• Angle variables

R1
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R1

R

Circle Billiard
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• Spectrum produced by the EBK quantization is not exact!

Mr = # librations of the radial coordinate, M = # revolutions

• Example: closed orbits in circle billiard, 
characterized by (Mr,,M)
Mr = # vertices of polygon
M = # revolutions around center
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Trace Formula for Circle Billiard
Berry & Tabor, JPA 10, 371 (1977)
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1• Periodic orbits:

• Action of periodic orbits:
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• Trace formula:

• Convergence problem: as Mr for fixed M, 

the length RsM 2M R

 Accumulation points of orbits at scaled actions 

of multiples of 2
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Numerical Test of the Trace Formula for 
Circle Billiards 

• Length spectrum

)()()( kNkNkN smoothfluc 

: numerical eigenvalues

: trace formula



Classical and Quantum Chaos | 35

Gutzwiller‘s Trace Formula for Chaotic Billiards
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• Trace formula was derived under the assumption that all involved

periodic orbits should be isolated in phase space

 applicable to chaotic systems

 Martin Sieber‘s lectures

lpo:  length of periodic orbit po
po: Maslov index of periodic orbit po
Mpo: Monodromy matrix 
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Spectral Properties of
Robin Sector Billiard

•Robin BC

•Shown are the symmetric solutions

k=0
k=0.5
k=1
k=5
k=10
k=20
QB
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k=100
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Spectral Properties of Chaotic Systems

Bohigas-Gianonni-Schmit Conjecture:

• The fluctuation properties in the eigenvalue spectra of a typical              

time-reversal invariant integer spin / time-reversal invariant 1/2 

integer spin / time-reversal non-invariant chaotic system coincide 

with those of real-symmetric / quaternion real / complex Hermitian

random matrices from the Gaussian ensembles (GOE / GSE / GUE)
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• A complex conjugation operator can be defined with respect to any 
presentation

Time-Reversal

• Property of antinunitary, which implies antilinearity:
,

• The Schrödinger equation is time-reversal invariant if to each solution  

existsanother, uniquely related solution

• A classical Hamiltonian is called time-reversal invariant if H is invariant 
under the operation

• Conventional time-reversal operator is the complex conjugation
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‚

Canonical Transformation for Hamiltonian 
without Time-Reversal Invariance

• A Hermitian matrix is diagonalized by a unitary transformation

• Hamiltonian can be expressed by a Hermitian matrix with real eigenvalues

• Canonical transformation changes H but not its eigenvalues and does not 
destroy Hermiticity 

• Let                              , i.e.,

• Hermiticity:

11   AEAAHAH

• Unitary matrices constitute the class of canonical transformations
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Canonical Transformation for Time-Reversal
Invariant Hamiltonians

, with

• Invariance of H under antiunitary time-reversal operator T

• T-invariant basis can be constructed from arbitrary | and complex a

• With respect to the T-invariant basis the Hamiltonian is real symmetric

 Hamiltonian can be made real without being diagonalized

• Orthogonal matrices constitute the class of canonical transformations
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• The Gaussian orthogonal / symplectic / unitary ensembles are defined in 
the space of real symmetric / quaternion real / Hermitian matrices by :  

Random Matrix Theory:                              
Gaussian Ensembles

)()()()( 121222221111 HPHPHPHP  …….

• The matrix elements are statistically independent

• GOE: The joint probability is invariant under orthogonal transformations O

• GUE (GSE): The joint probability is invariant under unitary (+symplectic)
transformations U

• The probability density P(H) has the same form for GOE, GSE and GUE
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Threefold way

• Quantum systems with violated time-reversal invariance 

• Quantum Systems with integer spin and preserved time-reversal invariance 

• Time-reversal operator

• Hamiltonian (unitary universality class):

• Hamiltonian (orthogonal universality class):

T

• Quantum systems with 1/2-integer spin and preserved time-reversal 
invariance belong to the symplectic universality class 
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Hamiltonian with Symplectic Symmetry (GSE)

• Time-reversal operator of spin-1/2 systems

• Time-reversal invariance

• Hermiticity implies that              is symplectic

• The eigenvalues are Kramer’s degenerate

• Symplectic Hamiltonian

• Define basis
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Eigenvalue Distributions of NN Random Matrices 
from the GEs 

• Joint probability distribution of the eigenvalues of NN dimensional real 
symmetric random matrices from the GOE (=1) / Hermitian random 
matrices from the GUE (=2) / quaternion-real random matrices from the 
GSE (=4)

• Ensemble-averaged level density

• Wigner´s semicircle law
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Level Density and Integrated Level Density

• The level density fluctuates around a non-uniform average density
 System specific property, i.e., non-universal feature  

)(E
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Equivalence of Ensemble Averages and
Spectral Averages     

atomic nucleus


E

microwave billiard


f

• Ergodicity: Ensemble average = spectral average

• Spectral averages are performed over different parts of the level 

sequence 

• Uniform average level density needed  unfolding of spectra )(E

 EaE exp)(  ff )(



Classical and Quantum Chaos | 47

Unfolding

• Replace Ei by

• The unfolded ei should have unit average spacing / density in interval of 
N levels





E

EEENEf )(d)()( 

 unfolding implies replacement of Ei by the integrated level density 
evaluated up to Ei

)( ii ENe • Unfolding:
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Integrated Level Density of the 
Unfolded Eigenvalues
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Nearest-Neighbor Spacing Distribution         
`Wigner Surmise´

• The distribution of the spacings between adjacent eigenvalues may be 
derived using 22 random matrices ( =1: GOE,  = 2: GUE,  = 4: GSE)

• Normalize to average spacing one and P(S) to one 

• The result are the Wigner distributions:

• Generally used for comparison of numerical and experimental data with  
random matrix predictions 

• Very good approximation of exact distribution (see below) 
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n-Point Correlation- and Cluster Functions

• n-point correlation function: probability density to find a level around each 
of the points E1, E2, …, En, while the positions of the remaining levels are 
unobserved 

• Each Rn is grouped into clusters depending on  nmEEE
miii ,,,,

21


• Irreducible cluster functions vanish for large |Ei-Ej|
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• Unfolding necessary to obtain definite limits as N
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Long-Range Correlations

• Number variance

• Related to the 2-point cluster function by

• Dyson-Mehta statistic (rigidity): least-mean square deviation of N(e) from 
the straight line best fitting it in an interval of length L

• The 2-point cluster function is known explicitly:

,

,
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Spectral Properties of Uncorrelated Random 
Numbers from a Poisson Process

• Poissonian fluctuations: no correlations between neighboring levels!

• Constant level density: 

• Gap probability and nearest-neighbor spacing distribution are Poisson 
distributions:

• All cluster functions Yn with n > 1 vanish
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Ratio Distributions
Y.Y. Atas, E. Bogomolny, O. Giraud et al., PRL 110, 084101 (2013)

• Consider ratio of two consecutive spacings of nearest-neighbors

• Advantage: ratios are dimensionless  no unfolding required

• Ratio distribution of Gaussian ensembles (=1,2,4):

• Ratio distribution of Poissonian random numbers:
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Thank you

for

your attention
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Canonical Transformations

• Consider a transformation
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Semiclassical Approximation for Level Density of
the Rectangular Billiard

• Starting point of the derivation of the semiclassical level density is the 

EBK quantization 
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• Employ Poisson´s summation formula
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Nearest-Neighbor Spacing Distributions

• Probability that an interval of length S in units of the mean spacing 2/N is 
empty

S
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• CUE:

• Expand in a Taylor series:

• Taylor coefficients:
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Comparison of the Exact NND with the
Wigner Surmise
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• Kicked top:

• Stroboscopic temporal behavior described by unitary Floquet operator
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• 105 eigenphases were computed


