Classical and Quantum Chaos and the semiclassical approach

- Classical \& Quantum Chaos
- Semiclassical Approach \rightarrow Martin Sieber
- Random matrix theory \rightarrow Thomas Guhr

References:
F. Haake, Quantum Signatures of Chaos (Spinger Verlag, Heidelberg, 2001)
P. Cvitanović, Chaos, and what to do about it ? www.ChaosBook.org
A.Bäcker, Eigenfunctions in chaotic quantum systems
https://tud.qucosa.de/api/qucosa\%3A23663/attachment/ATT-0/?L=1

Classical and Quantum Chaos | 1

Lagrange-Equations

- Generalized coordinates and generalized velocities

$$
\mathbf{q}(t)=\left(q_{1}(t), q_{2}(t), \cdots, q_{N}(t)\right), \dot{\mathbf{q}}(t)=\left(\dot{q}_{1}(t), \dot{q}_{2}(t), \cdots, \dot{q}_{N}(t)\right)
$$

- Lagrange-function $\quad L(\mathbf{q}(t), \dot{\mathbf{q}}(t))=T-V$
- Kinetic energy $T=\frac{1}{2} m \sum_{i=1}^{N} \dot{q}_{i}^{2}, \quad m=1$, external potential $V=V(\mathbf{q})$
- Conservative system $\frac{\partial L}{\partial t}=0 \Rightarrow E=T+V=$ const.
- Lagrange equations $\quad \frac{\partial L}{\partial q_{i}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)=0$

Hamiltonian Formalism

- Hamiltonian with N degrees of freedom

$$
H(\mathbf{q}, \mathbf{p})=\sum_{i=1}^{N} p_{i} \dot{q}_{i}-L(\mathbf{q}(t), \dot{\mathbf{q}}(t))
$$

- Coordinates and the conjugate momenta

$$
\mathbf{q}(t)=\left(q_{1}(t), q_{2}(t), \cdots, q_{N}(t)\right), \mathbf{p}(t)=\left(p_{1}(t), p_{2}(t), \cdots, p_{N}(t)\right), p_{i}:=\frac{\partial L}{\partial \dot{q}_{i}}
$$

- Hamilton's equations of motion

$$
\frac{\partial H}{\partial p_{i}}=\dot{q}_{i}, \frac{\partial H}{\partial q_{i}}=-\dot{p}_{i}
$$

- Conservative systems: Hamiltonian $H(\mathbf{q}, \mathbf{p})=E$ is constant along the phase space trajectory $\xi(t)=(\mathbf{q}, \mathbf{p})$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} H(\boldsymbol{q}(t), \boldsymbol{p}(t))=\frac{\partial H}{\partial q_{i}} \dot{q}_{i}(t)+\frac{\partial H}{\partial p_{i}} \dot{p}_{i}(t)=\frac{\partial H}{\partial q_{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial H}{\partial p_{i}} \frac{\partial H}{\partial q_{i}}=0
$$

The Phase Space

- The phase space vector $\xi(t)$ specifies the trajectory of a particle in phase space

$$
\xi(t)=(\mathbf{q}(t), \mathbf{p}(t))^{T}=\left(q_{1}(t), q_{2}(t), \cdots, q_{N}(t), p_{1}(t), p_{2}(t), \cdots, p_{N}(t)\right)^{T}
$$

- 2 N -dimensional gradient

$$
\nabla:=\frac{\partial}{\partial \xi}=\left(\frac{\partial}{\partial q_{1}}, \frac{\partial}{\partial q_{2}}, \cdots, \frac{\partial}{\partial q_{N}}, \frac{\partial}{\partial p_{1}}, \frac{\partial}{\partial p_{2}}, \cdots, \frac{\partial}{\partial p_{N}}\right)^{T}
$$

- With this notation Hamilton's equations may be written as

$$
\dot{\xi}=\binom{\frac{\partial}{\partial \mathbf{p}} H}{-\frac{\partial}{\partial \mathbf{q}} H}=\mathbf{J} \nabla H(\xi), \quad \mathbf{J}:=\left(\begin{array}{rr}
\mathbf{0} & \mathbf{1} \\
-\mathbf{1} & \mathbf{0}
\end{array}\right)
$$

Properties of the Phase Space Trajectories

- For conservative systems ($E=$ const.), the trajectory $\xi(t)$ is confined to the (2 N -1)-dimensional energy shell
- Because of the uniqueness of Hamilton's equations of motion for a given initial condition ξ_{0}, a phase space trajectory $\xi(t)$ can never cross itself
- A trajectory is called periodic if $\xi(t+T)=\xi(t)$ for some $0<T<\infty$
- Liouville's Theorem
$>$ The divergence of the Hamiltonian flux $\nabla H(\xi, t)$ vanishes

$$
\nabla \cdot \dot{\xi}=\sum_{i}\left(\frac{\partial \dot{q}_{i}}{\partial q_{i}}+\frac{\partial \dot{p}_{i}}{\partial p_{i}}\right)=0
$$

\Leftrightarrow The phase space volume $\mathrm{d} \Gamma$ is invariant under canonical transformations

$$
\mathrm{d} \Gamma=\left(\prod_{i=1}^{N} \mathrm{~d} q_{i}\right)\left(\prod_{i=1}^{N} \mathrm{~d} p_{i}\right)=\left(\prod_{i=1}^{N} \mathrm{~d} Q_{i}\right)\left(\prod_{i=1}^{N} \mathrm{~d} P_{i}\right)
$$

Definition of Integrability

- A system of N degrees of freedom is integrable, if there are at least N constants of motion that are in involution

$$
\begin{aligned}
& C_{n}(\mathbf{q}, \mathbf{p})=C_{n}=\text { const. }, \quad n=1, \cdots, N \\
& \left\{C_{n}, C_{m}\right\}=\sum_{i=1}^{N}\left(\frac{\partial C_{n}}{\partial p_{i}} \frac{\partial C_{m}}{\partial q_{i}}-\frac{\partial C_{n}}{\partial q_{i}} \frac{\partial C_{m}}{\partial p_{i}}\right)=0
\end{aligned}
$$

- For conservative systems the Hamiltonian itself is a constant of motion

$$
C_{1}=E=H(\mathbf{q}, \mathbf{p})
$$

- Each separable system is integrable $E=\sum_{i=1}^{N} E_{i}=\sum_{i=1}^{N} H\left(q_{i}, p_{i}\right) \Rightarrow C_{i}=E_{i}$
- For some integrable systems a canonical transformation can be found such that $H(\mathbf{q}, \mathbf{p}) \rightarrow \widetilde{H}(\mathbf{P})$
- Generating function: $F=F(\mathbf{q}, \mathbf{P}, t), \frac{\partial F}{\partial q_{i}}=p_{i}, \frac{\partial F}{\partial P_{i}}=Q_{i}, \widetilde{H}=H+\frac{\partial F}{\partial t}$

Integrable Hamiltonian Systems

- Consider systems for which a canonical transformation exists such that

$$
\begin{aligned}
H(\mathbf{q}, \mathbf{p}) & \rightarrow \widetilde{H}(\mathbf{P}) \\
\dot{P}_{i} & =-\frac{\partial \widetilde{H}}{\partial Q_{i}}=0 \quad \rightarrow P_{i}(t)=\text { const } .
\end{aligned}
$$

- Equations of motion:

$$
\dot{Q}_{i}=\frac{\partial \widetilde{H}}{\partial P_{i}}=\text { const. } \rightarrow Q_{i}(t)=\omega_{i} t+\alpha_{i}
$$

- The generating function is given up to a constant by

$$
\frac{\partial S}{\partial \mathbf{q}}=\mathbf{p} \Rightarrow S(\mathbf{q})=\int_{q_{0}}^{q} \mathbf{p} \cdot \mathrm{~d} \mathbf{q}+\text { const } .=\sum_{i=1}^{N} \int_{q_{i}(0)}^{q_{i}(t)} p_{i} \mathrm{~d} q_{i}+\text { const } .
$$

- Generally for $N>1$ a solution can only be found for integrable systems, the simplest ones being separable systems with

$$
H(\mathbf{q}, \mathbf{p})=\sum_{i=1}^{N} h\left(q_{i}, p_{i}\right)
$$

Torus Variables I

- Einstein (1917): The phase space trajectories $\xi(t)$ of an integrable system with N independent degrees of freedom lie on a manifold, which has the structure of an N-torus
- An N-torus is a connected N-dimensional manifold M_{N} with one hole. For $N=1$ it is a circle, for $N=2$ it is a torus
- The constants of motion C_{n} define vector fields \mathbf{v}_{n} which are linearly independent and in the tangential plane of M_{N}

$$
\mathbf{v}_{n}=\mathbf{J} \cdot \nabla C_{n}, \quad \mathbf{v}_{1}=\mathbf{J} \cdot \nabla H=\dot{\boldsymbol{\xi}}
$$

- On an N-torus always exist N independent loops C_{n}, that cannot be reduced to a point or mapped onto one another
- These elementary loops may be described by angle variables $\Phi_{n} \epsilon[0,2 \pi)$

Torus (Action-Angle) Variables II

- Each loop C_{n} can be mapped onto a circle with radius I_{n} corresponding to the momenta conjugate to the angle variables Φ_{n}
- Action variables $I_{n}>0$:

$$
I_{n}=\frac{1}{2 \pi} \oint_{C_{n}} \mathbf{p d} \mathbf{q}, \quad n=1, \cdots, N
$$

- Canonical transformation:

$$
\begin{aligned}
\left(q_{i}, p_{i}\right) & \rightarrow\left(\Phi_{i}, I_{i}\right) \\
H(\mathbf{q}, \mathbf{p}) & \rightarrow \widetilde{H}(\mathbf{I})
\end{aligned}
$$

- Equations of motion for these 'torus variables'

$$
\begin{aligned}
& \dot{I}_{n}=-\frac{\partial \widetilde{H}}{\partial \Phi_{n}}=0 \Rightarrow I_{n}=\text { const. } \\
& \dot{\Phi}_{n}=\frac{\partial \widetilde{H}}{\partial I_{n}}=\text { const. }=\Omega_{n} \Rightarrow \Phi_{n}(t)=\Omega_{n} t+\alpha_{n}
\end{aligned}
$$

Periodic Orbits on an \boldsymbol{N}-Torus

- $N=2$: Trajectories move on a 2-torus with frequencies Ω_{1}, Ω_{2}.
- Ω_{1} / Ω_{2} irrational: trajectories never close and cover the torus surface uniformly
- $\Omega_{1} / \Omega_{2}=n / m$ rational: periodic orbits \Rightarrow trajectories are closed and never cover the whole torus surface
- Condition for the periodicity of a trajectory on an N -torus:

$$
\begin{aligned}
& \frac{\Omega_{i}}{\Omega_{j}}=\frac{n_{i}}{n_{j}} ; \quad n_{i}, n_{j} \in \mathrm{~N} \\
& \Omega_{i}=\frac{\partial \widetilde{H}}{\partial I_{i}}=\frac{2 \pi}{T} n_{i} ; \quad n_{i} \in \mathrm{~N} ; \quad i=1, \cdots, N
\end{aligned}
$$

- Note: Ω_{i} is constant but generally depends on \mathbf{I}

Classical Billiard

- Particle moves freely within the billiard along straight lines with constant velocity and is reflected specularly at boundary
- Shape of billiard determines chaoticity of classical dynamics

Integrable and Chaotic Billiards

- Integrable billiards:

- Constants of motion:
- Chaotic billiards:

$$
r(\varphi)=1+\varepsilon \cos (\varphi), \varepsilon=0.5
$$

Integrable and Chaotic Dynamics

Rectangular billiard (regular)
Bunimovich stadium (chaotic)

- Dynamical, exponential instability leading to unpredictability is a characteristic of chaos
- Deterministic chaos: sensitivity of the solutions of the equations of motion with respect to infinitesimal changes in the initial conditions

Poincaré Section Map (PSM)

- The Poincaré map is defined in terms of the arclength s_{n} and the momentum $p_{n}=|\mathbf{p}| \sin \phi_{n}$ at nth bounce with the boundary
- Energy conservation: $|\mathbf{p}|=$ const. $=1$

$$
P:\left(s_{n}, p_{n}\right) \rightarrow\left(s_{n+1}, p_{n+1}\right)
$$

PSM of Ellipse

rotations

librations

- Orbits encircling both foci touch an ellipse
- Orbits passing between the foci touch hyperbolas
- PSMs were generated by varying the initial angle ϕ

PSM of Stadium Billiard

- PSM was created by iterating one initial condition $\left(s_{0}, p_{0}\right)$ over a large number of bounces with the boundary / long time

PSM of Limaçon Billiard

- PSM was generated by varying the initial angle ϕ
- For $\varepsilon=0.5$ the PSM is similar to that of the stadium billiard

Ergodicity of the Classical Dynamics

- Energy shell: $\Omega=\{(\boldsymbol{q}, \boldsymbol{p}), H(\boldsymbol{q}, \boldsymbol{p})=E\}$
- Ergodicity: Almost all trajectories visit every part in the accessible phase space Ω
\Leftrightarrow Spatial and temporal averages coincide:

$$
\frac{\text { time spent in } \Omega_{0} \text { up to } T}{T} \rightarrow \frac{\operatorname{vol}\left(\Omega_{0}\right)}{\operatorname{vol}(\Omega)}(T \rightarrow \infty)
$$

Not ergodic:

Ergodic:

Central Question of Quantum Chaos

- How does the regular or chaotic behaviour of the classical dynamics manifest itself in those of the corresponding quantum system?
- Problem: a distinction between regularity and chaos in terms of the longtime evolution of trajectories is not possible in a quantum system
- Reason: Heisenberg's uncertainty relation $\Delta \mathrm{x} \Delta \mathrm{p} \geq \hbar / 2$
- But: due to the correspondence principle there must be a relation between a classical system and its quantum counter partner
\rightarrow quantum chaos

Quantum Billiard

- Schrödinger equation of a free particle

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(\boldsymbol{q}, t)=i \hbar \frac{\partial}{\partial t} \psi(\boldsymbol{q}, t)
$$

- Confinement to billiard boundary $\partial B \rightarrow$ Dirichlet conditions at boundary

$$
\psi(\boldsymbol{q}, t)=0 \text { for } \boldsymbol{q} \in \partial B
$$

- Time-independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi_{n}(\boldsymbol{q})=E_{n} \psi_{n}(\boldsymbol{q})
$$

-Eigenfunctions $\psi_{n}(\boldsymbol{q})$

- Eigenvalues E_{n}

Wave Functions of the Rectangular Billiard

Eigenvalues: $E(m, n)=\frac{\pi^{2}}{8}\left[\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right]$

Dirichlet-Dirichlet

$$
\Psi_{m, n}(x, y)=A \sin \left(\frac{m \pi x}{2 a}\right) \sin \left(\frac{n \pi y}{2 b}\right)
$$

$$
\psi=0 \text { at } \mathrm{x} \& \mathrm{y} \text { axes }
$$

m even, n even,

Neumann-Neumann

$$
\Psi_{m, n}(x, y)=A \cos \left(\frac{m \pi x}{2 a}\right) \cos \left(\frac{n \pi y}{2 b}\right)
$$

$$
\partial_{n} \psi=0 \text { at } \mathrm{x} \& \mathrm{y} \text { axes }
$$

Dirichlet-Neumann

$$
\Psi_{m, n}(x, y)=A \sin \left(\frac{m \pi x}{2 a}\right) \cos \left(\frac{n \pi y}{2 b}\right)
$$

m even, n odd,
Neumann-Dirichlet

$$
\Psi_{m, n}(x, y)=A \cos \left(\frac{m \pi x}{2 a}\right) \sin \left(\frac{n \pi y}{2 b}\right)
$$

Wave Functions of the Circle Billiard

- Eigenfunctions and eigenvalues:

$$
\psi_{n m}(r, \varphi)=J_{m}\left(k_{n m} r\right) e^{i m \varphi}, J_{m}\left(k_{n m} R\right)=0
$$

- Angular momentum of classical trajectory: $\sin \phi \approx \frac{m}{R k_{1 m}}$

Wave Functions of Circle and Limaçon Billiard for Increasing Energy

$$
n=100 \quad n=1000 \quad n=1500 \quad n=2000
$$

Ergodicity in Quantum Systems

- Probability that a quantum particle in state n is found in a part B_{0} of position space B :

$$
\mu_{n}\left(B_{0}\right)=\int_{B_{0}} \mathrm{~d}^{2} q\left|\psi_{n}(\boldsymbol{q})\right|^{2}
$$

- Quantum ergodicity:

$$
\mu_{n}\left(B_{0}\right) \rightarrow \frac{\operatorname{Area}\left(B_{0}\right)}{\operatorname{Area}(B)}
$$

- Exception: `scar' wave functions

Spectral Properties of Integrable Systems

Berry-Tabor Conjecture:

- The fluctuation properties in the eigenvalue spectra of a typical integrable system behave like independent random numbers from a Poisson process \rightarrow Based on Einstein-Brillouin-Keller (EBK) quantization

Integrable Systems: Einstein-Brillouin-Keller (EBK) Quantization

- EBK quantization: $I_{i}=\frac{1}{2 \pi} \oint_{C_{i}} p \mathrm{~d} q=\left(n_{i}+\frac{\alpha_{i}}{4}\right) \hbar, n_{i}=0,1,2, \cdots$
- Maslov index $\frac{\alpha_{i}}{4}=\left(\frac{\mu_{i}}{4}+\frac{b_{i}}{2}\right), \mu=\#$ turning points, $b=\#$ refl. at hard wall
- Applicable to N-dimensional integrable systems that can be described using torus variables
- EBK equation provides an implicit quantization condition for the energies

$$
E=\widetilde{H}(\mathbf{I})=\widetilde{H}(\hbar(\mathbf{n}+\boldsymbol{\alpha})) \Rightarrow E=E\left(n_{1}, \cdots, n_{N}\right)
$$

- Generally, the EBK eigenvalues yield a good approximation for the quantum eigenvalues in the semiclassical limit

Action-Angle Variables of a Rectangular Billiard

- Constants of motion

$$
E=\frac{p_{x}^{2}}{2}+\frac{p_{y}^{2}}{2},\left|p_{x}\right|=\text { const., }\left|p_{y}\right|=\sqrt{2 E-\left|p_{x}\right|^{2}}=\text { const } .
$$

- At each reflection one of the momenta $p_{i}(i=x, y)$ changes its sign $p_{i} \rightarrow-p_{i}$
- Action variables

$$
I_{1}=\frac{1}{2 \pi} \oint_{C_{x}} p_{x} d x=\frac{a}{\pi}\left|p_{x}\right|
$$

$$
I_{2}=\frac{1}{2 \pi} \oint_{C_{y}} p_{y} d y=\frac{b}{\pi}\left|p_{y}\right|
$$

- Hamiltonian

$$
H=\frac{\pi^{2}}{2}\left(\frac{I_{1}^{2}}{a^{2}}+\frac{I_{2}^{2}}{b^{2}}\right)
$$

- Angle variables

$$
\Phi_{1}(t)=\frac{\pi^{2} I_{1}}{a^{2}} t+\alpha_{1}, \Phi_{2}(t)=\frac{\pi^{2} I_{2}}{b^{2}} t+\alpha_{2}
$$

Rectangular Billiard

$$
\alpha_{1}=\alpha_{2}=1(2 \text { reflections at hard walls })
$$

$$
I_{1}=\frac{a}{\pi}\left|p_{x}\right|=\hbar\left(n_{1}+1\right), I_{2}=\frac{b}{\pi}\left|p_{y}\right|=\hbar\left(n_{2}+1\right), n_{i}=0,1, \cdots
$$

$$
E_{N, M}=\frac{\pi^{2} \hbar^{2}}{2}\left(\frac{N^{2}}{a^{2}}+\frac{M^{2}}{b^{2}}\right), N, M=1,2, \cdots \rightarrow \text { EBK eigenvalues exact! }
$$

- The trajectories are unfolded by reflecting the rectangular billiard at its boundaries
- Periodic folding \Leftrightarrow 2-torus

Trace Formula in Terms of Periodic Orbits Sieber et al., JPA 28, 5041 (1995)

- Spectral density of a quantum system: $\rho(E)=\sum_{n, m=1}^{\infty} \delta\left(E-E_{n m}\right)$
- Sum over periodic orbits with lengths $L_{p q}=2 \sqrt{p^{2} L_{x}^{2}+q^{2} L_{y}^{2}}$

$$
\begin{aligned}
\rho(E) & =\sum_{n, m=1}^{\infty} \delta\left(E-E_{n m}\right)=\frac{L_{x} L_{y}}{4 \pi}-\frac{L_{x}}{4 \pi k}-\frac{L_{y}}{4 \pi k}+\frac{1}{4} \delta(E) \\
& +\frac{L_{x} L_{y}}{4 \pi} \sum_{p, q \neq(0,0)} \sqrt{\frac{2}{\pi k L_{p q}}} \cos \left(k L_{p q}-\frac{\pi}{4}\right) \\
& -\frac{L_{x}}{2 \pi k} \sum_{p=1}^{\infty} \cos \left(2 k p L_{x}\right)-\frac{L_{y}}{2 \pi k} \sum_{q=1}^{\infty} \cos \left(2 k q L_{y}\right)
\end{aligned}
$$

- Weyl formula for the smooth part of the level density of 2D billiards

$$
\bar{\rho}(E)=\frac{L_{x} L_{y}}{4 \pi}-\frac{L_{x}}{4 \pi k}-\frac{L_{y}}{4 \pi k}
$$

Numerical Test of the Trace Formula for Rectangular Billiards

- : numerical eigenvalues
- : trace formula

$$
N^{f l u c}(k)=N(k)-N^{\text {smooth }}(k)
$$

- Length spectrum

$$
|\tilde{\rho}(l)|=\left|\int_{0}^{k_{\max }} \mathrm{d} k e^{i k l} \rho_{f l u c}(k)\right|
$$

Action-Angle Variables of a Circle Billiard

- Polar coordinates $\quad x=r \cos \phi, \quad \dot{x}=\dot{r} \cos \phi-r \dot{\phi} \sin \phi$

$$
y=r \sin \phi, \quad \dot{y}=\dot{r} \sin \phi+r \dot{\phi} \cos \phi
$$

- Hamiltonian

$$
H=E=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)
$$

- Conjugate momenta $p_{i}=\frac{\partial L(r, \phi ; \dot{r}, \dot{\phi})}{\partial \dot{q}_{i}} \Rightarrow p_{r}=\dot{r}, p_{\phi}=r^{2} \dot{\phi}=$ const. $=|\vec{L}| \Rightarrow H=\frac{1}{2}\left(p_{r}^{2}+\frac{p_{\phi}^{2}}{r^{2}}\right)$
- Action variables

$$
\begin{aligned}
& I_{\phi}=\frac{1}{2 \pi} \oint p_{\phi} \mathrm{d} \phi=p_{\phi}=|\vec{L}| \\
& I_{r}=\frac{1}{2 \pi} \oint p_{r} \mathrm{~d} r=\frac{1}{2 \pi} \int_{R_{1}}^{R} \sqrt{2 E-\frac{|\vec{L}|^{2}}{r^{2}}} \mathrm{~d} r=\frac{1}{\pi}\left(\sqrt{2 E R^{2}-|\vec{L}|^{2}}-|\vec{L}| \arccos \frac{|\vec{L}|}{\sqrt{2 E} R}\right)
\end{aligned}
$$

- Angle variables

$$
\begin{aligned}
& \omega_{\phi}=\dot{\Phi}_{\phi}=\frac{\partial E}{\partial I_{\phi}}=\frac{2 E}{\sqrt{2 E R^{2}-|\vec{L}|^{2}}} \arccos \frac{|\vec{L}|}{\sqrt{2 E} R} \\
& \omega_{r}=\dot{\Phi}_{r}=\frac{\partial E}{\partial I_{r}}=\frac{2 \pi E}{\sqrt{2 E R^{2}-|\vec{L}|^{2}}}
\end{aligned}
$$

Circle Billiard

$M_{r}=\#$ librations of the radial coordinate, $M_{\phi}=\#$ revolutions
$I_{\phi}=\left(M_{\phi}+\frac{\alpha_{\phi}}{4}\right) \hbar=M_{\phi} \hbar$

$I_{r}=\frac{\hbar}{\pi}\left(\sqrt{k^{2} R^{2}-M_{\phi}{ }^{2}}-\left|M_{\phi}\right| \arccos \frac{\left|M_{\phi}\right|}{k R}\right)=\hbar\left(M_{r}+\frac{1}{4}+\frac{1}{2}\right)=\hbar\left(M_{r}+\frac{3}{4}\right), k^{2}=\frac{2 E}{\hbar^{2}}$

- Spectrum produced by the EBK quantization is not exact!
- Example: closed orbits in circle billiard, characterized by (M_{p}, M_{ϕ})

$M_{r}=$ \# vertices of polygon
$M_{\phi}=\#$ revolutions around center

$(5,2)$

$(7,3)$

Trace Formula for Circle Billiard Berry \& Tabor, JPA 10, 371 (1977)

- Periodic orbits:

$$
\frac{\omega_{\phi}}{\omega_{r}}=\frac{1}{\pi} \arccos \left(\frac{M_{\phi}}{k R}\right)=\frac{M_{\phi}}{M_{r}}
$$

- Action of periodic orbits: $S(\mathbf{M})=2 \pi M_{\phi} I_{\phi}+2 \pi M_{r} I_{r}=2 k R M_{r} \sin \left(\frac{M_{\varphi}}{M_{r}} \pi\right)=k R s_{\mathbf{M}}$
- Trace formula:

$$
\rho^{f u c}(k R)=\sqrt{\frac{\pi}{2}} \sqrt{k R} \sum_{\mathrm{M}>0} m_{\mathrm{M}} \frac{s_{\mathrm{M}}^{3 / 2}}{M_{r}^{2}} \cos \left(k R s_{\mathrm{M}}-\frac{3}{2} M_{r} \pi-\frac{\pi}{4}\right), \quad m_{M}=\left\{\begin{array}{l}
1: M_{r}=2 M_{\varphi} \\
2: M_{r}>2 M_{\varphi}
\end{array}\right.
$$

- Convergence problem: as $M_{r} \rightarrow \infty$ for fixed M_{ϕ}, the length $R s_{\mathbf{M}} \rightarrow 2 \pi M_{\phi} R$

$(8,1)$

$(16,1)$
\Rightarrow Accumulation points of orbits at scaled actions of multiples of 2π

$(17,2)$

Numerical Test of the Trace Formula for Circle Billiards

- : numerical eigenvalues
- : trace formula

$$
N^{\text {fluc }}(k)=N(k)-N^{\text {smooth }}(k)
$$

Gutzwiller's Trace Formula for Chaotic Billiards

$$
\rho^{f l u c}(k)=\sum_{p o} \frac{l_{p o}}{\pi \mid \operatorname{det}\left(M_{p o}-1\right)^{1 / 2}} \cos \left(k l_{p o}-\mu_{p o} \frac{\pi}{2}\right)
$$

$l_{p o}$: length of periodic orbit po
$\mu_{p o}$: Maslov index of periodic orbit po
$M_{p o}$: Monodromy matrix

$$
M_{p o}=\widetilde{M}_{n} \cdot \tilde{M}_{n-1} \cdots \tilde{M}_{2} \cdot \widetilde{M}_{1}, \quad \tilde{M}_{i}=\left(\begin{array}{cc}
-1 & 0 \\
\frac{2}{R_{i} \cos \alpha_{i}} & -1
\end{array}\right)\left(\begin{array}{cc}
1 & l_{i} \\
0 & 1
\end{array}\right) \quad R_{i} \text { : Radius of curvature }
$$

- Trace formula was derived under the assumption that all involved periodic orbits should be isolated in phase space
\rightarrow applicable to chaotic systems
\rightarrow Martin Sieber's lectures

Spectral Properties of Robin Sector Billiard

- Robin BC

$$
\left[\tilde{\beta}+\frac{1}{2} \kappa(s)\right] \Phi_{j}(s)+\left.\partial_{n} \Phi_{j}(n, s)\right|_{n \rightarrow 0^{-}}=0
$$

- Shown are the symmetric solutions

[^0]
Spectral Properties of Chaotic Systems

Bohigas-Gianonni-Schmit Conjecture:

- The fluctuation properties in the eigenvalue spectra of a typical time-reversal invariant integer spin / time-reversal invariant 1/2 integer spin / time-reversal non-invariant chaotic system coincide with those of real-symmetric / quaternion real / complex Hermitian random matrices from the Gaussian ensembles (GOE / GSE / GUE)

Time-Reversal

- A classical Hamiltonian is called time-reversal invariant if H is invariant under the operation $t \rightarrow-t, \boldsymbol{x} \rightarrow \boldsymbol{x}, \boldsymbol{p} \rightarrow-\boldsymbol{p}, H(\boldsymbol{x}, \boldsymbol{p}) \rightarrow H(\boldsymbol{x},-\boldsymbol{p})$
- The Schrödinger equation is time-reversal invariant if to each solution

$$
i \hbar \frac{\partial}{\partial t} \psi(\boldsymbol{x}, t)=H \psi(\boldsymbol{x}, t)
$$

another, uniquely related solution $\psi^{\prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}=-t\right)$ exists

- Conventional time-reversal operator is the complex conjugation \mathcal{K}

$$
\begin{aligned}
& t \rightarrow-t, \boldsymbol{x} \rightarrow \boldsymbol{x}, \boldsymbol{p} \rightarrow-\boldsymbol{p} \\
& \psi(\boldsymbol{x}) \rightarrow \psi^{\star}(\boldsymbol{x})=\mathcal{K} \psi(\boldsymbol{x}), \mathcal{K}^{2}=1
\end{aligned}
$$

- Property of antinunitary, which implies antilinearity:

$$
\langle\mathcal{K} \psi \mid \mathcal{K} \phi\rangle=\langle\psi \mid \phi\rangle^{\star}=\langle\phi \mid \psi\rangle
$$

- A complex conjugation operator can be defined with respect to any presentation $\mathcal{K}=U \mathcal{K}^{\prime}$

Canonical Transformation for Hamiltonian without Time-Reversal Invariance

- Hamiltonian can be expressed by a Hermitian matrix with real eigenvalues

$$
\left(H_{\mu \nu}\right)^{\star}=\tilde{H}_{\mu \nu}=H_{\nu \mu}
$$

- A Hermitian matrix is diagonalized by a unitary transformation

$$
H_{\mu \nu}=\sum_{\lambda=1}^{N} U_{\mu \lambda} E_{\lambda} U_{\lambda \nu}^{\dagger}=\sum_{\lambda=1}^{N} U_{\mu \lambda} E_{\lambda} U_{\nu \lambda}^{\star}
$$

- Canonical transformation changes H but not its eigenvalues and does not destroy Hermiticity
- Let $H^{\prime}=A H A^{-1}=A E A^{-1}$, i.e., $H_{\mu \nu}^{\prime}=\sum_{\lambda=1}^{N} A_{\mu \lambda} E_{\lambda}\left(A^{-1}\right)_{\lambda \nu}$
- Hermiticity:

$$
\left(A H A^{-1}\right)^{\dagger}=A H A^{-1} \equiv\left[H, A^{\dagger} A\right]=0
$$

- Unitary matrices constitute the class of canonical transformations

$$
A^{\dagger} A=\mathbb{1}
$$

Canonical Transformation for Time-Reversal Invariant Hamiltonians

- Invariance of H under antiunitary time-reversal operator T

$$
[H, T]=0, T^{2}=1
$$

- T-invariant basis can be constructed from arbitrary $\left|\phi_{\mu}\right\rangle$ and complex a_{μ}

$$
\psi_{\mu}=a_{\mu} \phi_{\mu}+T a_{\mu} \phi_{\mu}, \text { with }\left\langle\psi_{\mu} \mid \phi_{\nu}\right\rangle=\delta_{\mu \nu}
$$

- With respect to the T-invariant basis the Hamiltonian is real symmetric

$$
\begin{aligned}
H_{\mu \nu} & =\left\langle\psi_{\mu} \mid H \psi_{\nu}\right\rangle=\left\langle T \psi_{\mu} \mid T H \psi_{\nu}\right\rangle^{\star} \\
& =\left\langle\psi_{\mu} \mid T H T^{2} \psi_{\nu}\right\rangle^{\star}=\left\langle\psi_{\mu} \mid T H T \psi_{\nu}\right\rangle^{\star}=H_{\mu \nu}^{\star}
\end{aligned}
$$

\Rightarrow Hamiltonian can be made real without being diagonalized

- Orthogonal matrices constitute the class of canonical transformations

Random Matrix Theory: Gaussian Ensembles

- The Gaussian orthogonal / symplectic / unitary ensembles are defined in the space of real symmetric / quaternion real / Hermitian matrices by :
- GOE: The joint probability is invariant under orthogonal transformations O

$$
P(H)=P\left(H^{\prime}\right), H^{\prime}=O H \tilde{O}, \tilde{O}=O^{-1}
$$

- GUE (GSE): The joint probability is invariant under unitary (+symplectic) transformations U

$$
P(H)=P\left(H^{\prime}\right), H^{\prime}=U H U^{\dagger}, U^{\dagger}=U^{-1}
$$

- The matrix elements are statistically independent

$$
P(H)=P_{11}\left(H_{11}\right) P_{22}\left(H_{22}\right) P_{12}\left(H_{12}\right) \ldots \ldots .
$$

- The probability density $P(H)$ has the same form for GOE, GSE and GUE

$$
P(H)=\mathcal{N} e^{-A T r H^{2}}
$$

Threefold way

- Quantum systems with violated time-reversal invariance
- Hamiltonian (unitary universality class):

$$
\hat{H}=\hat{H}^{\dagger} .
$$

- Quantum Systems with integer spin and preserved time-reversal invariance
- Time-reversal operator

$$
\hat{T}=\mathcal{C} \quad \hat{T}^{2}=1
$$

- Hamiltonian (orthogonal universality class):

$$
\hat{T} \hat{H} \hat{T}^{-1}=\hat{H} \quad \hat{H}=\hat{H}^{T}
$$

- Quantum systems with $1 / 2$-integer spin and preserved time-reversal invariance belong to the symplectic universality class

Hamiltonian with Symplectic Symmetry (GSE)

- Time-reversal operator of spin-1/2 systems $\hat{T}=\hat{Y} \mathcal{C}, \hat{Y}=\left(\begin{array}{cc}\hat{0}_{N} & -\mathbb{1}_{N} \\ \mathbb{1}_{N} & \hat{0}_{N}\end{array}\right)$
- Time-reversal invariance $\hat{T} \hat{H} \hat{T}^{-1}=\hat{H}$
- Hermiticity implies that $\hat{H}=\hat{H}^{\dagger}$ is symplectic

$$
\hat{H}=\hat{Y} \hat{H}^{T} \hat{Y}^{T}
$$

- The eigenvalues are Kramer's degenerate $\hat{T}^{2}=-1 \Rightarrow\langle\psi \mid \hat{T} \psi\rangle=0$
- Define basis

$$
\mathcal{B}=\{|1\rangle,|2\rangle \ldots,|N\rangle,|\ddot{T} 1\rangle,|\ddot{T} 2\rangle, \ldots,|\ddot{T} N\rangle\}
$$

- Symplectic Hamiltonian $\quad \hat{H}=\left(\begin{array}{cc}\hat{H}_{0} & \hat{V} \\ -\hat{V}^{*} & \hat{H}_{0}^{*}\end{array}\right), \hat{H}_{0}=\hat{H}_{0}^{\dagger}, \hat{V}=-\hat{V}^{T}$

Eigenvalue Distributions of $N \times N$ Random Matrices from the GEs

- Joint probability distribution of the eigenvalues of $N \times N$ dimensional real symmetric random matrices from the GOE $(\beta=1)$ / Hermitian random matrices from the GUE ($\beta=2$) / quaternion-real random matrices from the GSE ($\beta=4$)

$$
P_{N}\left(E_{1}, \cdots, E_{N}\right)=\mathcal{N}_{\beta} \prod_{\mu<\nu}^{N}\left|E_{\mu}-E_{\nu}\right|^{\beta} \exp \left(-A \sum_{\mu=1}^{N} E_{\mu}^{2}\right)
$$

- Ensemble-averaged level density

$$
\begin{aligned}
\langle\rho(E)\rangle & =\left\langle\sum_{i=1}^{N} \delta\left(E-x_{1}\right)\right\rangle \\
& \left.=N \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} P_{N}\left(E, x_{2}, \cdots, x_{N}\right)\right) \mathrm{d} x_{2} \cdots \mathrm{~d} x_{N}
\end{aligned}
$$

- Wigner's semicircle law

$$
\langle\rho(E)\rangle=\left\{\begin{array}{cc}
\frac{1}{\pi} \sqrt{2 N-E^{2}} & |E| \leq \sqrt{2 N} \\
0 & |E|>\sqrt{2 N}
\end{array}\right.
$$

Level Density and Integrated Level Density

- The level density fluctuates around a non-uniform average density $\langle\rho(E)\rangle$
\rightarrow System specific property, i.e., non-universal feature

Equivalence of Ensemble Averages and Spectral Averages

- Ergodicity: Ensemble average = spectral average
- Spectral averages are performed over different parts of the level sequence
- Uniform average level density $\bar{\rho}(E)=\bar{\rho}$ needed \rightarrow unfolding of spectra

Unfolding

- Replace E_{i} by $e_{i}=f\left(E_{i}\right)$
- The unfolded e_{i} should have unit average spacing / density in interval of ΔN levels

$$
\begin{aligned}
1 & =\frac{\Delta e}{\Delta N}=\frac{1}{\Delta N}[f(E+\Delta E / 2)-f(E-\Delta E / 2)] \\
& =\frac{\Delta E}{\Delta N} f^{\prime}(E)=f^{\prime}(E) /(\bar{\rho}(E))
\end{aligned}
$$

\Rightarrow unfolding implies replacement of E_{i} by the integrated level density evaluated up to E_{i}

$$
f(E)=\bar{N}(E)=\int_{-\infty}^{E} \mathrm{~d} E^{\prime} \bar{\rho}\left(E^{\prime}\right)
$$

- Unfolding:

$$
e_{i}=\bar{N}\left(E_{i}\right)
$$

Integrated Level Density of the Unfolded Eigenvalues

$$
N^{f l u c}\left(e_{n}\right)=N\left(e_{n}\right)-\bar{N}\left(e_{n}\right), \bar{N}\left(e_{n}\right)=e_{n}
$$

Nearest-Neighbor Spacing Distribution 'Wigner Surmise'

- The distribution of the spacings between adjacent eigenvalues may be derived using 2×2 random matrices ($\beta=1$: GOE, $\beta=2$: GUE, $\beta=4$: GSE)

$$
P(S) \propto \int_{-\infty}^{\infty} \mathrm{d} E_{+} \int_{-\infty}^{\infty} \mathrm{d} E_{-} \delta\left(S-\left|E_{+}-E_{-}\right|\right)\left|E_{+}-E_{-}\right|^{\beta} e^{-A\left(E_{+}^{2}+E_{-}^{2}\right)}
$$

- Normalize to average spacing one and $P(S)$ to one

$$
\langle S\rangle=\int_{0}^{\infty} \mathrm{d} S S P(S)=1, \int_{0}^{\infty} \mathrm{d} S P(S)=1
$$

- The result are the Wigner distributions:

$$
P(S)= \begin{cases}(S \pi / 2) \mathrm{e}^{-S^{2} \pi / 4} & \text { orthogonal } \\ \left(S^{2} 32 / \pi^{2}\right) \mathrm{e}^{-S^{2} 4 / \pi} & \text { unitary } \\ \left(S^{4} 2^{18} / 3^{6} \pi^{3}\right) \mathrm{e}^{-S^{2} 64 / 9 \pi} & \text { symplectic. }\end{cases}
$$

- Generally used for comparison of numerical and experimental data with random matrix predictions
- Very good approximation of exact distribution (see below)

n-Point Correlation- and Cluster Functions

- n-point correlation function: probability density to find a level around each of the points $E_{1}, E_{2}, \ldots, E_{n}$, while the positions of the remaining levels are unobserved

$$
\begin{aligned}
R_{n}\left(E_{1}, \ldots, E_{n}\right)= & \left\langle\sum_{i_{1} \neq i_{2} \neq \cdots \neq i_{n}=1}^{N} \delta\left(E_{1}-x_{i_{1}}\right) \delta\left(E_{2}-x_{i_{2}}\right) \cdots \delta\left(E_{n}-x_{i_{n}}\right)\right\rangle \\
= & \left.\frac{N!}{(N-n)!} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} P_{N}\left(E_{1}, E_{2}, \cdots, E_{n}, x_{n+1}, \cdots, x_{N}\right)\right) \mathrm{d} x_{n+1} \cdots \mathrm{~d} x_{N} \\
& \langle\rho(E)\rangle=R_{1}(E)
\end{aligned}
$$

- Each R_{n} is grouped into clusters depending on $E_{i,}, E_{i_{2}}, \cdots, E_{i_{i n}}, m \leq n$
- Irreducible cluster functions vanish for large $\left|E_{\mathrm{i}}-E_{\mathrm{j}}\right|$

$$
T_{n}\left(x_{1}, \cdots, x_{n}\right)=\sum_{G}(-1)^{n-m}(m-1)!\prod_{j=1}^{m} R_{G_{j}}\left(x_{k}, k \in G_{j}\right)
$$

- Unfolding necessary to obtain definite limits as $N \rightarrow \infty$

$$
Y_{n}\left(e_{1}, e_{2}, \cdots, e_{n}\right)=\lim _{N \rightarrow \infty} \frac{T_{n}\left(E_{1}, E_{2}, \cdots, E_{n}\right)}{R_{1}\left(E_{1}\right) R_{1}\left(E_{2}\right) \cdots R_{1}\left(E_{n}\right)}
$$

Long-Range Correlations

- Number variance $\Sigma^{2}(L)=\left\langle n^{2}\right\rangle-\langle n\rangle^{2}$
- Related to the 2-point cluster function by

$$
\Sigma^{2}(L)=L-2 \int_{0}^{L}(L-r) Y_{2}(r) \mathrm{d} r
$$

- Dyson-Mehta statistic (rigidity): least-mean square deviation of $N(e)$ from the straight line best fitting it in an interval of length L

$$
\Delta_{3}(L)=\frac{2}{L^{4}} \int_{0}^{L}\left(L^{3}-2 L^{2} r+r^{3}\right) \Sigma^{2}(r) \mathrm{d} r
$$

- The 2-point cluster function is known explicitly:

$$
Y_{2}\left(e=\left|e_{1}-e_{2}\right|\right)=\left\{\begin{array}{cc|}
s(e)^{2}-J(e) D(e) & \beta=1 \mathrm{GOE} \\
s(e)^{2} & \beta=1 \mathrm{GUE}
\end{array} \quad \begin{array}{l}
s(e)=\frac{\sin \pi e}{\pi e}, \quad I(e)=\int_{0}^{e} \mathrm{~d} e^{\prime} s\left(e^{\prime}\right) \\
D(e)=\frac{\partial s}{\partial e} \quad, J(e)=I(e)-\frac{1}{2} \operatorname{sgn}(e)
\end{array}\right.
$$

Spectral Properties of Uncorrelated Random Numbers from a Poisson Process

- Poissonian fluctuations: no correlations between neighboring levels!

$$
P\left(E_{1}, E_{2}, \cdots, E_{N}\right)=\left(\frac{1}{2 \Lambda}\right)^{N},-\Lambda \leq E_{i} \leq \Lambda
$$

- Constant level density:

$$
\rho(E)=\frac{1}{2 \Lambda}
$$

- Gap probability and nearest-neighbor spacing distribution are Poisson distributions:

$$
\begin{aligned}
E(s) & =\left(\frac{1}{2 \Lambda}\right)^{N}\left[\prod_{i=1}^{N} \int_{-\Lambda+\frac{\Lambda s}{N}}^{\Lambda-\frac{\Lambda s}{N}} \mathrm{~d} E_{1}\right] \\
& =\left(1-\frac{s}{N}\right)^{N} \xrightarrow{N \rightarrow \infty} e^{-s, P(s)}=\frac{\partial^{2} E(s)}{\partial^{2} s}=e^{-s}
\end{aligned}
$$

- All cluster functions Y_{n} with $n>1$ vanish

$$
\begin{aligned}
Y_{n}(r) & =0, n=2,3, \cdots N \\
\Sigma^{2}(L) & =L \\
\Delta_{3}(L) & =\frac{L}{15}
\end{aligned}
$$

Ratio Distributions

Y.Y. Atas, E. Bogomolny, O. Giraud et al., PRL 110, 084101 (2013)

- Consider ratio of two consecutive spacings of nearest-neighbors

$$
r_{i}=\frac{f_{i+1}-f_{i}}{f_{i}-f_{i-1}}
$$

- Advantage: ratios are dimensionless \rightarrow no unfolding required
- Ratio distribution of Gaussian ensembles ($\beta=1,2,4$):

$$
P_{W}(r)=\frac{1}{Z_{\beta}} \frac{\left(r+r^{2}\right)^{\beta}}{\left(1+r+r^{2}\right)^{1+(3 / 2) \beta}}
$$

- Ratio distribution of Poissonian random numbers:

$$
\mathcal{P}_{0}(r)=1 /(1+r)^{2}
$$

Thank you

for

your attention

Canonical Transformations

- Consider a transformation $\quad q_{i} \rightarrow Q_{i}(\mathbf{q}, \mathbf{p}, t)$

$$
\begin{aligned}
p_{i} & \rightarrow P_{i}(\mathbf{q}, \mathbf{p}, t) \\
H(\mathbf{q}, \mathbf{p}, t) & \rightarrow \widetilde{H}(\mathbf{Q}, \mathbf{P}, t)
\end{aligned}
$$

- Canonical transformation

$$
\frac{\partial \widetilde{H}}{\partial P_{i}}=\dot{Q}_{i}, \frac{\partial \widetilde{H}}{\partial Q_{i}}=-\dot{P}_{i}
$$

$$
\delta \int_{q_{i}\left(t_{1}\right)}^{q_{i}\left(t_{2}\right)}\left(\sum_{i} \mathrm{p}_{\mathrm{i}} \mathrm{~d} q_{i}-H d t\right)=\delta \int_{Q_{i}\left(t_{1}\right)}^{Q_{i}\left(t_{2}\right)}\left(\sum_{i} \mathrm{P}_{\mathrm{i}} \mathrm{~d} Q_{i}-\widetilde{H} d t\right)=0
$$

- Generating function $d F=\left(\sum_{i} \mathrm{p}_{\mathrm{i}} \mathrm{d} q_{i}-H d t\right)-\left(\sum_{i} \mathrm{P}_{\mathrm{i}} \mathrm{d} Q_{i}-\tilde{H} d t\right)$
- Example

$$
F=F(\mathbf{q}, \mathbf{P}, t), \frac{\partial F}{\partial q_{i}}=p_{i}, \frac{\partial F}{\partial P_{i}}=Q_{i}, \widetilde{H}=H+\frac{\partial F}{\partial t}
$$

Semiclassical Approximation for Level Density of the Rectangular Billiard

- Starting point of the derivation of the semiclassical level density is the EBK quantization $E_{n m}=\frac{n^{2} \pi^{2}}{L_{x}^{2}}+\frac{m^{2} \pi^{2}}{L_{y}^{2}}$

$$
\sum_{n, m=1}^{\infty} \delta\left(E-E_{n m}\right)=\frac{1}{4}\left[\sum_{n, m=-\infty}^{\infty} \delta\left(E-E_{n m}\right)-\sum_{n=-\infty}^{\infty} \delta\left(E-E_{n 0}\right)-\sum_{m=-\infty}^{\infty} \delta\left(E-E_{0 m}\right)+\delta\left(E-E_{00}\right)\right]
$$

- Employ Poisson's summation formula

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} f(n)=\sum_{M=-\infty}^{\infty} \int_{-\infty}^{+\infty} \mathrm{d} n f(n) e^{2 \pi i M n} \\
& \sum_{n, m=-\infty}^{\infty} \delta\left(E-E_{n m}\right)=\sum_{p, q=-\infty}^{\infty} \int_{-\infty}^{+\infty} \mathrm{d} n \int_{-\infty}^{+\infty} \mathrm{d} m \delta\left(E-\frac{n^{2} \pi^{2}}{L_{x}{ }^{2}}-\frac{m^{2} \pi^{2}}{L_{y}{ }^{2}}\right) e^{2 \pi i(p n+q m)} \\
& \frac{n \pi}{L_{x}}=\rho \cos \varphi, \quad \frac{m \pi}{L_{y}}=\rho \sin \varphi \\
& \sum_{n, m=-\infty}^{\infty} \delta\left(E-E_{n m}\right)=\frac{1}{2} \frac{L_{x} L_{y}}{\pi^{2}} \sum_{p, q=-\infty}^{\infty} \int_{0}^{2 \pi} d \varphi e^{i \pi\left(2 p L_{x} \sqrt{E} \cos \varphi+2 q L_{y} \sqrt{E} \sin \varphi\right)} \equiv \frac{1}{2} \frac{L_{x} L_{y}}{\pi} \sum_{p, q=-\infty}^{\infty} J_{0}\left(k 2 \sqrt{p^{2} L_{x}^{2}+q^{2} L_{y}^{2}}\right)
\end{aligned}
$$

Nearest-Neighbor Spacing Distributions

- Probability that an interval of length S in units of the mean spacing $2 \pi / N$ is empty

$$
E_{\beta}(S)=\left[\prod_{i=1}^{N} \underset{-\pi+\pi S / N}{\pi-\pi S / N} \mathrm{~d} \varphi_{i}\right] P_{\beta}\left(\left\{\varphi_{i}\right\}\right), P_{\beta}(S)=\frac{\partial^{2} E_{\beta}(S)}{\partial^{2} S}
$$

- CUE:

$$
E_{2}(S)=\operatorname{det}\left(\delta_{k l}-\frac{\sin (\pi(k-l) S / N)}{\pi(k-l)}\right) .
$$

- Expand in a Taylor series: $\quad E_{2}(S)=\sum_{l=0}^{\infty} E_{l} S^{l}$
- Taylor coefficients: $\quad E_{l}^{(\mathrm{UE})}=\sum_{n=1,2, \ldots}^{n^{2} \leq l} \pi^{l-n} \frac{(-1)^{(l+n) / 2}}{n!} \sum_{l_{1} \ldots l_{n}}^{1,2, \ldots} \delta\left(\sum_{i=1}^{n} l_{i}, \frac{l-n}{2}\right)$

$$
\begin{aligned}
& \cdot \sum_{t_{1}}^{0} \cdots l_{1} \cdots \sum_{t_{n}}^{00 \ldots l_{n}} \operatorname{det}\left(\frac{1}{2 l_{i}-t_{i}+t_{j}+1}\right) \prod_{k}^{1} \ldots n \\
& \cdot\left(\frac{1}{\left(2 l_{k}+1\right)!}\left(l_{k_{k}}^{n}\right)(-1)^{t_{k}}\right)
\end{aligned}
$$

Comparison of the Exact NND with the Wigner Surmise

- Kicked top: $H(t)=\frac{\pi}{2} J_{y}+k \frac{J_{z}^{2}}{2 j} \sum_{n=-\infty}^{\infty} \delta(t-n), \quad\left\langle\mathbf{J}^{2}\right\rangle=j(j+1), j=500,8.5 \leq k \leq 9.5$
- Stroboscopic temporal behavior described by unitary Floquet operator

$$
F=\exp \left(-i \frac{\pi}{2} J_{y}\right) \exp \left(-i k \frac{J_{z}^{2}}{2 j}\right)
$$

- 10^{5} eigenphases were computed

[^0]: Classical and Quantum Chaos | 36

