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Majorization-optimized quantum machine learning

Summary

Quantum reservoir computing (QRC) is a quantum machine learning (QML) algorithm that uses a
quantum reservoir to process datasets and extract information which is later fed to a classical
machine learning model.

The reservoir could be implemented as a quantum circuit in a noisy intermediate-scale quantum
(NISQ) computer. A recently developed criterion based on the majorization principle can be applied
to select optimal quantum reservoirs, rendering better results than other common models with
significantly less gates.

The presence of noise difficults QRC, correcting or mitigating the induced errors is costly. But, can we
benefit from noise? Surprisingly, we will show that under some specific circumstances, quantum noise
can be used to improve the performance of QRC. Certain noise types can be beneficial to machine
learning, while others should be prioritized for correction. This gives practical prescriptions for
successful implementations in nowadays hardware.
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Google Sycamore 53 qubits (2018)
Quantum supremacy (?) (2019)
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Google Sycamore 53 qubits (2018)
Quantum supremacy (?) (2019)

IBM Osprey 433 qubits (2022) ‘ |

Qubits number growth exploded in the last few years!
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27 qubits
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65 qubits
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More growth coming!
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Introduction - Quantum Circuits and Majorization

A quantum circuit consists of a series of quantum
logic gates (unitaries) applied to n qubits Q.
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Introduction - Quantum Circuits and Majorization

A quantum circuit consists of a series of quantum
logic gates (unitaries) applied to n qubits Q.
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Introduction - Quantum Circuits and Majorization

A quantum circuit consists of a series of quantum

logic gates (unitaries) applied to n qubits Q.
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A quantum circuit consists of a series of quantum
logic gates (unitaries) applied to n qubits Q.

We use random quantum circuits where gates from a
given family (we call G1={CNOT,H,X} to the example

Nature (London) 549, 203 (2017); A. Bouland, B.
Fefferman, C. Nirkhe, and U. Vazirani, Nat. Phys. 15, 159
(2019)].

preparation of the input state
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Besides the non universal and classically simulatable G1 family, we also use G2={CNOT,H,S] (Clifford, non
universal and simulatable) and G3={CNOT,H,T} (universal=approx. any quantum gate at desired precision) .
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Besides the non universal and classically simulatable G1 family, we also use G2={CNOT,H,S] (Clifford, non
universal and simulatable) and G3={CNOT,H,T} (universal=approx. any quantum gate at desired precision) .

* We also consider a family of two qubit gates G called matchgate circuits (MG). When acting on
nearest-neighbor lines only they are classically simulatable, otherwise they are universal.
p 0 0 ¢ :
- A and B have the same determinant and are
0 w =z P q woT . .
G(A,B) = , A= ( ) B= ( randomly chosen according to the Haar measure in
0 7@ the unitary group U(2).
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Besides the non universal and classically simulatable G1 family, we also use G2={CNOT,H,S] (Clifford, non
universal and simulatable) and G3={CNOT,H,T} (universal=approx. any quantum gate at desired precision) .

* We also consider a family of two qubit gates G called matchgate circuits (MG). When acting on
nearest-neighbor lines only they are classically simulatable, otherwise they are universal.

p 0 0 ¢ .
- A and B have the same determinant and are
0 w z 0 P q woT . .
G(A,B) = , A= ( ) B= ( randomly chosen according to the Haar measure in

¥ &9 the unitary group U(2).
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« And finally 3 families of diagonal circuits (non universal/non simulatable): D2 gates applied to pairs of qubits,

D3 gates are applied to 3 qubits, and Dn gates to all the qubits. &% 0 .0
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Principle of majorization: Application to random quantum circuits

Rail O. Vallgjos” and Fernando de Melo ©F
Centro Brasileiro de Pesquisas Fisicas (CBPF), Rua Doutor Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil

Gabriel G. Carlo®*
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‘We test the principle of majorization J. I. Latorre and M. A. Martin-Delgado, Phys. Rev. A 66, 022305 (2002).
in random circuits. Three classes of circuits were considered: (i) universal, (ii) classically simulatable, and (iii)
neither universal nor classically simulatable. The studied families are: {CNOT, H, T}, { cNoT, H, NOT}, {CNOT, H,
S} (Clifford), matchgates, and IQP (instantaneous quantum polynomial-time). We verified that all the families of
circuits satisfy on average the principle of decreasing majorization. In most cases the asymptotic state (number
of gates — o0) behaves like a random vector. However, clear differences appear in the fluctuations of the Lorenz
curves associated with asymptotic states. The fluctuations of the Lorenz curves discriminate between universal
and nonuniversal classes of random quantum circuits, and they also detect the complexity of some nonuniversal
but not classically efficiently simulatable quantum random circuits. We conclude that majorization can be used
as an indicator of complexity of quantum dynamics, as an alternative to, e.g., entanglement spectrum and out-
of-time-order correlators.



Introduction - Quantum Circuits and Majorization

PHYSICAL REVIEW A 104, 012602 (2021)

arXiv:2304.04894v1

Principle of majorization: Application to random quantum circuits
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Majorization-based benchmark of the complexity of quantum processors
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‘We test the principle of majorization J. I. Latorre and M. A. Martin-Delgado, Phy

in random circuits. Three classes of circuits were considered: (i) universal, (ii) clas Avenida del Libertador 8250, (14‘29) Buenos Aires, Argentina

neither universal nor classically simulatable. The studied families are: {CNOT, H, T} ) ) L ) ) ) N h .

S} (Clifford), matchgates, and IQP (instantaneous quantum polynomial-time). We v Here we investigate the use of the majorization-based indicator introduced in [R. O. Vallejos,
circuits satisfy on average the principle of decreasing majorization. In most cases t F. de Melo, and G. G. Cﬂ-fJ-O, Phy.‘v- Rev. A 104, 012602 (2021)] as a way to benchmark the
of gates — o00) behaves like a random vector. However, clear differences appear in t complexity within reach of quantum processors. By considering specific architectures and native

curves associated with asymptotic states. The fluctuations of the Lorenz curves dis gate sets of currently available technologies, we numerically simulate and characterize the operation

but not classically efficiently simulatable quantum random circuits, We conclude t of v.arious qugn_tum Processors. We characterize Lheir_ complexity for different native gatg sets,

as an indicator of complexity of quantum dynamics, as an alternative to, e.g., onta qubit connectivity and increasing number of gates. We identify and assess quantum complexity by

of-time-order correlators. comparing the performance of each device against benchmark lines provided by randomized Clifford
circuits and Haar-random pure states. In this way, we are able to specify, for each specific processor,
the number of native quantum gates which are necessary, on average, for achieving those levels of
complexity. Lastly, we study the performance of the majorization-based characterization in the
presence of distinct types of noise. We find that the majorization-based benchmark holds as long as
the circuits’ output states have, on average, high purity (2 0.9). In such cases, the indicator showed
no significant differences from the noiseless case.

and nonuniversal classes of random quantum circuits, and they also detect the comj
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curves associated with asymptotic states. The fluctuations of the Lorenz curves discriminate between universal

and nonuniversal classes of random quantum circuits, and they also detect the complexity of some nonuniversal
but not classically efficiently simulatable quantum random circuits. We conclude that majorization can be used
as an indicator of complexity of quantum dynamics, as an alternative to, e.g., entanglement spectrum and out-
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p.q € RY, we say that plis ‘majorized by q (or g ma-
jorizes p), denoted by p < q, if

any p; > 0 and Zi\; p; = 1, it follows that

k k
" ! .
<Y q, 1<k<N, (1)
; 2‘\ (1/N71/N7°°'71/N)‘<(pl:p27°°'7pN)‘<(1707"°:0)
ZV: o Z\: o ) These partial sums are called cummulants (Fq(k) or Fp(k))
i:lp" p i Their plots vs (k/N) are called Lorenz curves

Here, the superscript + denotes that the vector compo-
nents are sorted in non-increasing order. As we will
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curves associated with asymptotic states. The fluctuations of the Lorenz curves discriminate between universal
and nonuniversal classes of random quantum circuits, and they also detect the complexity of some nonuniversal
but not classically efficiently simulatable quantum random circuits. We conclude that majorization can be used
as an indicator of complexity of quantum dynamics, as an alternative to, e.g., entanglement spectrum and out-
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curves associated with asymptotic states. The fluctuations of the Lorenz curves discriminate between universal
and nonuniversal classes of random quantum circuits, and they also detect the complexity of some nonuniversal
but not classically efficiently simulatable quantum random circuits. We conclude that majorization can be used
as an indicator of complexity of quantum dynamics, as an alternative to, e.g., entanglement spectrum and out-
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Takeaway

Fluctuations of the Lorenz curves allow to classify circuit families in terms of their universality

and/or complexity (smallest and closest to Haar-n).
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Introduction - Quantum Reservoir Computing

NnpJ | Quantum Information wunenature.cominpiai

ARTICLE
Quantum reservoir processing

Sanjib Ghosh(®', Andrzej Opala®, Michat Matuszewski’, Tomasz Paterek’* and Timothy C. H. Liew'?

The concurrent rise of artificial intelligence and quantum information poses an opportunity for creating interdisciplinary
technologies like quantum neural networks. Quantum reservoir processing, introduced here, is a platform for quantum information
processing developed on the principle of reservoir computing that is a form of an artificial neural network. A quantum reservoir
processor can perform qualitative tasks like recognizing quantum states that are entangled as well as quantitative tasks like
estimating a nonlinear function of an input quantum state (e.g., entropy, purity, or logarithmic negativity). In this way, experimental
schemes that require measurements of multiple observables can be simplified to measurement of one observable on a trained
guantum reservoir processor.

npj Quantum Information (2019)5:35; https://doi.org/10.1038/541534-019-0149-8



Quantum reservoir computing and quantum extreme learning machines are
two emerging approaches that have demonstrated their potential both in
classical and quantum machine learning tasks. They exploit the quantumness
of physical systems combined with an easy training strategy, achieving an
excellent performance. The increasing interest in these unconventional
computing approaches is fueled by the availability of diverse quantum
platforms suitable for implementation and the theoretical progresses in the
study of complex quantum systems. In this review article, recent proposals
and first experiments displaying a broad range of possibilities are reviewed
when quantum inputs, quantum physical substrates and quantum tasks are
considered. The main focus is the performance of these approaches, on the
advantages with respect to classical counterparts and opportunities.

arvoir Computing

com/npjqi

ADVANCED
QUANTUM
TECHNOLOGIES

www.advquantumtech.com

Opportunities in Quantum Reservoir Computing and
Extreme Learning Machines

Pere Mujal, Rodrigo Martinez-Pefia, Johannes Nokkala, Jorge Garcia-Beni,
Gian Luca Giorgi, Miguel C. Soriano, and Roberta Zambrini*

Adv. Quantum Technol. 2021, 4, 2100027
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ARTICLE
Quantum reservoir proce

Sanjib Ghosh @', Andrzej Opala?, Michat Matuszews

Mach. Learn.: Sci. Technol. 1 (2020) 045027

LEARNING

Abstract

Excited states of molecules lie in the heart of photochemistry and chemical reactions. The recent
development in quantum computational chemistry leads to inventions of a variety of algorithms
that calculate the excited states of molecules on near-term quantum computers, but they require
more computational burdens than the algorithms for calculating the ground states. In this study,

~ we propose a scheme of supervised quantum machine learning which predicts the excited-state

properties of molecules only from their ground state wavefunction resulting in reducing the
computational cost for calculating the excited states. Our model is comprised of a quantum
reservoir and a classical machine learning unit which processes the measurement results of
single-qubit Pauli operators with the output state from the reservoir. The quantum reservoir
etfectively transforms the single-qubit operators into complicated multi-qubit ones which contain
essential information of the system, so that the classical machine learning unit may decode them
appropriately. The number of runs for quantum computers is saved by training only the classical
machine learning unit, and the whole model requires modest resources of quantum hardware that
may be implemented in current experiments. We illustrate the predictive ability of our model by
numerical simulations for small molecules with and without noise inevitable in near-term
quantum computers. The results show that our scheme reproduces well the first and second
excitation energies as well as the transition dipole moment between the ground states and excited
states only from the ground states as inputs. We expect our contribution will enhance the
applications of quantum computers in the study of quantum chemistry and quantum materials.

Predicting excited states from ground state wavefunction by
supervised quantum machine learning

Hiroki Kawai'” @ and Yuya O. Nakagawa’
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Introduction - Quantum Reservoir Computing

Could be encoded classical data
(time series for example)
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QRC Model

Our QR are random quantum circuits sampled from the families tested with the Majorization criterion.
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We solve a quantum chemistry problem: predicting the energy of the excited states of molecules, given
the ground state (Qquantum data).
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the ground state (Qquantum data).

Representing n qubits demands a classical vector of size 2" . NISQ devices of around 100 qubits
make the classical analogue totally intractable.
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Our QR are random quantum circuits sampled from the families tested with the Majorization criterion.

We solve a quantum chemistry problem: predicting the energy of the excited states of molecules, given
the ground state (Qquantum data).

Representing n qubits demands a classical vector of size 2" . NISQ devices of around 100 qubits
make the classical analogue totally intractable.

Example molecules LiH and H-O for bond lengths R_in € [0.5, 3.5] a.u., R_on € [0.5, 1.5] a.u.,

and ¢non = 104.45° . The electronic Hamiltonian H(R), the ground yo(R) state and the energies E1,Eoare
calculated in the qubit space (8 and 10) using the Jordan-Wigner transformation.
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QRC Model

Our QR are random quantum circuits sampled from the families tested with the Majorization criterion.

We solve a quantum chemistry problem: predicting the energy of the excited states of molecules, given
the ground state (Qquantum data).

Representing n qubits demands a classical vector of size 2" . NISQ devices of around 100 qubits
make the classical analogue totally intractable.

Example molecules LiH and H-O for bond lengths R_in € [0.5, 3.5] a.u., R_on € [0.5, 1.5] a.u.,

and ¢non = 104.45° . The electronic Hamiltonian H(R), the ground yo(R) state and the energies E1,Eoare
calculated in the qubit space (8 and 10) using the Jordan-Wigner transformation.

We train the model with the real vector X(R)={X1,Y1,Z1,---,Xs,Yn,Zs } from local Pauli operators P; (i qubit)
measurements on the ground states evolved with random circuits (400) for different R values, to

predict AE;=E;-E, (the target function) for unseen configurations R.
10



QRC Model

We use the ridge regression, a regularized linear model which minimizes the mean squared error:

MSEgr =

S (W X(f) - AEGE)| +alW

1=()

,\
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QRC Model

We use the ridge regression, a regularized linear model which minimizes the mean squared error:

N,

1 B L 12 __
Z [H - X(R:) — AE( H-;;)} +al||[W]|?

MSER = 3 2

Ns is the number of samples in the training set, W is the matrix of the linear model, a (107) is the
regularization parameter (prevents overfitting), and || - || is the L2 norm.
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QRC Model

We use the ridge regression, a regularized linear model which minimizes the mean squared error:

N, )
- -, - )
> [” - X(R:) aﬁ(hn;)} +al|W||?

=0

MSER = 3

Ns is the number of samples in the training set, W is the matrix of the linear model, a (107) is the
regularization parameter (prevents overfitting), and || - || is the L2 norm.

We have used Ns=90 in our tests which amounts to 30% of the whole 300 R dataset, in a
different region (to extrapolate).

11



QRC Model

We use the ridge regression, a regularized linear model which minimizes the mean squared error:

N, )
- -, - )
> [n . X(R;) — AE(R; )} Fal|[W )2

=0

MSER = 3

Ns is the number of samples in the training set, W is the matrix of the linear model, a (107) is the
regularization parameter (prevents overfitting), and || - || is the L2 norm.

We have used Ns=90 in our tests which amounts to 30% of the whole 300 R dataset, in a
different region (to extrapolate).

We implement the calculations using Qiskit and Sklearn (our code is available on GitHub).

11
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Solid lines LiH molecule and dashed lines H;O (this
latter is a harder task thus requires more gates).

The performance of the different circuits is similar in
both cases, and follows a Majorization classification.
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Performance of QRC - Majorization criterion

Lets think about a toy model of 2 qubits
The state of the system after the action of each circuit can be written as a linear combination of
multiPauli operatorsin{1 ® 1,1 ® X, 1 ®VY,1® Z,-- - , XQ® Z Y ®Z, Z Q Z}.
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multiPauli operatorsin{1 ® 1,1 ® X, 1 ®VY,1® Z,-- - , XQ® Z Y ®Z, Z Q Z}.

Since the Pauli space in the 2-qubit system is a 16-dimensional space, we use a dimensionality
reduction technique called UMAP. ANALYSIS

nature
L. McInnes, J. Healy, and J. Melville, “UMAP: uniform Rotethaulony
manifold approximation and projection for dimension
reduction,” (2020), arXiv:1802.03426
Dimensionality reduction for visualizing single-cell data
UMAP (Uniform Manifold Approximation and Projection) is a novel using UMAP
manifold learning technique for dimension reduction. UMAP is constructed Etienne Becht!, Leland McInnes®, John Healy?, Charles-Antoine Dutertre!, Immanuel W H Kwok!,
from a theoretical framework based in Riemannian geometry and algebraic e
topology. The result is a practical scalable algorithm that is applicable to
real world data. The UMAP algorithm is competitive with t-SNE for visu- VOLUME 37 NUMBER 1 JANUARY 2019
alization quality, and arguably preserves more of the global structure with
superior run time performance. Furthermore, UMAP has no computational
restrictions on embedding dimension, making it viable as a general purpose
dimension reduction technique for machine learning.
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The state of the system after the action of each circuit can be written as a linear combination of
multiPauli operatorsin{1 ® 1,1 ® X, 1 ®VY,1® Z,-- - , XQ® Z Y ®Z, Z Q Z}.

Since the Pauli space in the 2-qubit system is a 16-dimensional space, we use a dimensionality
reduction technique called UMAP.

ANALYSIS e
L. Mclnnes, J. Healy, and J. Melville, “UMAP: uniform Rotethaulony
manifold approximation and projection for dimension
reduction,” (2020), arXiv:1802.03426

Dimensionality reduction for visualizing single-cell data
using UMAP

Etienne Becht!, Leland McInnes®®, John Healy?, Charles-Antoine Dutertre!, Inmanuel W H Kwok!,
Lai Guan Ng!, Florent Ginhoux!® & Evan W Newell':

We design 4000 random circuits and see how this fills the Pauli space, compared to the uniform
distribution.
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Performance of QRC - Majorization criterion

G2 On e | We see that the G1 and G2 circuits fill a
200ates | SUbset of the Pauli space. As the

1 | number of circuit gates increase, they
concentrate in a dense region, biasing

results.

G3 fills the Pauli space uniformly and
resembles uniform sampling, improving

X2

—— with the number of gates.
MG

Matchgate circuits are similar to G3,
except for a small gap, this leads

to a slightly worse performance.

Diagonal circuits (which for 2 qubits all
coincide) also fill the whole Pauli space,
but not so uniformly; this agrees with a

X1 slighlty worse performance. =



Effects of noise in QRC - Quantum noise models

Quantum processors are affected by the environment ———»  €(p) = Z MypMl, p=Up Ut

m=1

We describe the state of the qubit system by a density matrix p after applying a gate U, which transforms
into €(p) after the action of quantum noise. The sum in m gives a non-unitary evolution that can be
thought of as coming from a trace performed on the environment (Operator sum or Kraus representation).
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Quantum processors are affected by the environment ———»  €(p) = Z MypMl, p=Up Ut
m=1
We describe the state of the qubit system by a density matrix p after applying a gate U, which transforms

into €(p) after the action of quantum noise. The sum in m gives a non-unitary evolution that can be
thought of as coming from a trace performed on the environment (Operator sum or Kraus representation).

. © T The amplitude damping channel (energy dissipation) is a model of
My = (o \/ﬁ) ;o My = (0 ‘g_) < »the decay of an excited two-level atom due to the spontaneous
! emission of a photon with probability p.

The phase damping channel models the loss of quantum 70 0 0
Information without loss of energy. B Vo =v1-p L M= \6_ o) M2=1{, /P

P p p The depolarizing channel introduces a Pauli error X, Y or Z
Jo=+/1—pL M, =/2x My= /By My=,/Ez <« » o ’
Mo=v1-pL M \/;X* My \/;Y’ Ms \/;Z with the same probability p/3.
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Mean squared error

Effects of noise in QRC - Beneficial and not
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Effects of noise in QRC - Beneficial and not

We can understand this behavior in the following way: the n qubit state can be written in terms of
multiPauli operators that are the direct product of single qubit ones as

1
\ p = Za-.;P.;, with a; = o trl Ben),

e(p) = Z b;P,, with b, = 2—1” tr[Pie(p)]-
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\ = Za..,-P.,-, with a; = % trl Ben),
The action of the noise channels on the

_ 1
single qubit Pauli operators is e(p) =) biP, withb; = o tlFie(p)]-

Amplitude Depolarizing Phase
damping damping

e(X) VI=pX (1-3p)X (1-p X
) vVIi=pY (1-3p)Y (1-pY
(7)) 1-p7Z (-ipz 7
) I+pZ I i

€(Pi) is always proportional to P;, except for (1) in the amplitude
damping channel case (it is said to be non unital)
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We can understand this behavior in the following way: the n qubit state can be written in terms of
multiPauli operators that are the direct product of single qubit ones as

\ = Za..,-P.,-, with a; = % trl Ben),
The action of the noise channels on the

_ 1
single qubit Pauli operators is e(p) = b;P. withb; = o tlFie(p)]-
Ampht_‘?de Depolarizing Phaf_“? e(P)) is always proportional to P;, except for €(l) in the amplitude
damping damping damping channel case (it is said to be non unital)

«X) vI-pX (1-3p)X (1-p)X  Forany Pauli operator P, the coefficient in the Pauli space with
eY) vI=pY (1-3p)Y (1-pY the depolarizing and phase damping channels is attenuated
(2) 0-pz (-ipz 2z

1 1
el) 1+pZ i I b; = on tr[P; e(p)] = on i tr(Pip) = a; a;, 0<a; <1,

It can be easily seen that for amplitude damping (acting on j qubit for example), when there is a non null
component ax associated to Py = Po® - QP .1 QIQP 1 ®---®P , , bi=(1-p) a + p ax (associated to P; =
Po®:---QP .1®ZOP .1®---®P ). Even if a=0, bi is not, adding an extra component in the Pauli space.



Expected value

1.001

0.751

0.50

—0.501

—0.751

—1.00

Effects of noise in QRC -

Noise effect on the Pauli space distribution

—e— noiseless

—e— amplitude damping
depolarizing

—e— phase damping

0 2 4 6 8 10 12 14
Pauli basis index

Beneficial and not

Two qubits toy model revisited
Distribution of the Pauli coefficients at the end of the

random circuit with 10 gates and an error rate
p=0.2

19



Expected value

1.001

0.751

0.50

—0.501

—0.751

—1.00

Effects of noise in QRC -

Noise effect on the Pauli space distribution

—e— noiseless

—e— amplitude damping
depolarizing

—e— phase damping

0 2 4 6 8 10 12 14
Pauli basis index

Beneficial and not

Two qubits toy model revisited

Distribution of the Pauli coefficients at the end of the
random circuit with 10 gates and an error rate
p=0.2

All noise models attenuate the non-zero coefficients
Shadowed area shows a region where the noiseless

simulation (and depolarizing and phase damping)
give zero expectation values

19



Expected value

1.001

0.751

0.50

—0.501

—0.751

—1.00

Effects of noise in QRC -

Noise effect on the Pauli space distribution

—e— noiseless

—e— amplitude damping
depolarizing

—e— phase damping

0 2 4 6 8 10 12 14
Pauli basis index

Beneficial and not

Two qubits toy model revisited

Distribution of the Pauli coefficients at the end of the
random circuit with 10 gates and an error rate
p=0.2

All noise models attenuate the non-zero coefficients

Shadowed area shows a region where the noiseless
simulation (and depolarizing and phase damping)
give zero expectation values

Amplitude damping circuit has non-zero expectation
values for the same operators, introducing non-zero
terms in the Pauli distribution (similar effect as
having more quantum gates in the circuit)
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X2

Effects of noise in QRC - Beneficial and not

Noiseless |Amplitude damping|
Depolarizing Phase damping\

X1

X1

4000 simulations of this toy model confirm that the
amplitude damping channel fills the Pauli space faster
than the other circuits, including the noiseless QR,
equivalently as having more quantum gates
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tasks. The optimal family of quantum circuits fills uniformly the Pauli space of operators.
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tasks. The optimal family of quantum circuits fills uniformly the Pauli space of operators.

This turns the majorization criterion into a powerful tool at the time to evaluate the quantum circuits
and device suitability for QML.

Under certain circumstances, noise could be beneficial to QML. We show that for error rates p < 0.0005,
an amplitude damping channel presence renders better performance than noiseless QRs for ML tasks.

The depolarizing channel strongly attenuates the Pauli components, so our prescription is that its
correction should be a priority.
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Conclusions
— LAVANGUARDIA

UNIVERSIDADES INVESTIGACION
El ruido es "un aliado inesperado” para la
computacion cuantica, dice un estudio de la UAM

And in Spanish newspapers!..

1. Taking advantage of noise in quantum reservoir computing L. Domingo,

G. Carlo, and F. Borondo, Sci Rep 13, 8790 (2023).

2. Optimal quantum reservoir computing for the noisy intermediate-scale

quantum era L. Domingo, G. Carlo, and F. Borondo, Phys. Rev. E
106, L043301 (2022).
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Majorization-optimized quantum machine learning

THANK YOUI!
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