
Majorization-optimized  
quantum machine learning

G. G. Carlo (CNEA-Conicet, Tandar Laboratory, Buenos Aires)
in collaboration with L. Domingo and F. Borondo from Universidad Autónoma de Madrid

School on Quantum Chaos, ICTP-IFT, Sao Paulo — 2023

1

~



Summary

Quantum reservoir computing (QRC) is a quantum machine learning (QML) algorithm that uses a 
quantum reservoir to process datasets and extract information which is later fed to a classical 
machine learning model. 

The reservoir could be implemented as a quantum circuit in a noisy intermediate-scale quantum 
(NISQ) computer. A recently developed criterion based on the majorization principle can be applied 
to select optimal quantum reservoirs, rendering better results than other common models with 
significantly less gates.  

The presence of noise difficults QRC, correcting or mitigating the induced errors is costly. But, can we 
benefit from noise? Surprisingly, we will show that under some specific circumstances, quantum noise 
can be used to improve the performance of  QRC.  Certain noise types can be beneficial to machine 
learning, while others should be prioritized for correction. This gives practical prescriptions for 
successful implementations in nowadays hardware.
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Google Sycamore 53 qubits (2018)
Quantum supremacy (?) (2019)

IBM Osprey 433 qubits (2022)

Qubits number growth exploded in the last few years!
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Recently, we were able to use a classical supercomputer
that simulates up to 35 qubits from Senai Cimatec, 
“Kuatomu”.

-Raúl O. Vallejos 
-Fernando de Melo
-Alexandre B. Tacla
-Nina Machado O’Neill
-GGC 
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These are some examples 
of the most commonly 
used single and two qubit 
quantum gates.

(CNOT gate)

(NOT gate)
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We use random quantum circuits where gates from a 
given family (we call G1={CNOT,H,X} to the example 
on the left) and the qubits to which they are applied 
are selected at random. 

Sampling from random quantum circuits is strongly 
believed to be a hard task for classical simulations, 
and as such it would be a clear demonstration of 
quantum advantage [A. W. Harrow and A. Montanaro, 
Nature (London) 549, 203 (2017); A. Bouland, B. 
Fefferman, C. Nirkhe, and U. Vazirani, Nat. Phys. 15, 159 
(2019)].
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Besides the non universal and classically simulatable G1 family, we also use G2={CNOT,H,S] (Clifford, non 
universal and simulatable) and G3={CNOT,H,T} (universal=approx. any quantum gate at desired precision) . 
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universal and simulatable) and G3={CNOT,H,T} (universal=approx. any quantum gate at desired precision) . 

● We also consider a family of two qubit gates G called matchgate circuits (MG). When acting on 
nearest-neighbor lines only they are classically simulatable, otherwise they are universal.

A and B have the same determinant and are 
randomly chosen according to the Haar measure in
the unitary group U(2).
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Besides the non universal and classically simulatable G1 family, we also use G2={CNOT,H,S] (Clifford, non 
universal and simulatable) and G3={CNOT,H,T} (universal=approx. any quantum gate at desired precision) . 

● We also consider a family of two qubit gates G called matchgate circuits (MG). When acting on 
nearest-neighbor lines only they are classically simulatable, otherwise they are universal.

A and B have the same determinant and are 
randomly chosen according to the Haar measure in
the unitary group U(2).

● And finally 3 families of diagonal circuits (non universal/non simulatable): D2 gates applied to pairs of qubits, 
D3 gates are applied to 3 qubits, and Dn gates to all the qubits.
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These partial sums are called cummulants (Fq(k) or Fp(k))
Their plots vs (k/N) are called Lorenz curves



Decreasing majorization is verified in all averaged cases (500 realizations)
since a Lorenz curve above others for all k/N majorizes these latter.  

In this Figure we show Lorenz curves for the G1 family of random circuits.

Most coincide asymptotically with Haar-n.
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Takeaway

Fluctuations of the Lorenz curves allow to classify circuit families in terms of their universality 
and/or complexity (smallest and closest to Haar-n).

Non universal/complex
G1,G2,D2(NN)

universal/complex
G3,MG,D3,Dn
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Input state |ϕ>

Entangler

Could be encoded classical data
(time series for example)
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Input state |ϕ>

Entangler

hi and Jij are sampled from 
Gaussian distributions 
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Input state |ϕ>

Entangler Measurement
X(|ϕ>)
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Input state |ϕ>

Entangler Measurement
X(|ϕ>)

Classical Machine Learning Unit

Prediction
Y(X)
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Example molecules LiH and H2O for bond lengths R_LiH  [0.5, 3.5] a.u., R_∈ OH  [0.5, 1.5] a.u., ∈
and ϕHOH = 104.45◦ . The electronic Hamiltonian H(R), the ground ψ0(R) state and the energies E1,E0 are 
calculated in the qubit space (8 and 10) using the Jordan-Wigner transformation.
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Our QR are random quantum circuits sampled from the families tested with the Majorization criterion. 

We solve a quantum chemistry problem: predicting the energy of the excited states of molecules, given 
the ground state (quantum data). 

Representing n qubits demands a classical vector of size 2n . NISQ devices of around 100 qubits 
make the classical analogue totally intractable.

Example molecules LiH and H2O for bond lengths R_LiH  [0.5, 3.5] a.u., R_∈ OH  [0.5, 1.5] a.u., ∈
and ϕHOH = 104.45◦ . The electronic Hamiltonian H(R), the ground ψ0(R) state and the energies E1,E0 are 
calculated in the qubit space (8 and 10) using the Jordan-Wigner transformation.

We train the model with the real vector X(R)={X1,Y1,Z1,···,Xn,Yn,Zn } from local Pauli operators Pi (i qubit) 
measurements on the ground states evolved with random circuits (400) for different R values, to 
predict ∆E1=E1-E0 (the target function) for unseen configurations R. 
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We use the ridge regression, a regularized linear model which minimizes the mean squared error:
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different region (to extrapolate).
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We use the ridge regression, a regularized linear model which minimizes the mean squared error:

We implement the calculations using Qiskit and Sklearn (our code is available on GitHub).

Ns is the number of samples in the training set, W is the matrix of the linear model, α (10 -7) is the 
regularization parameter (prevents overfitting), and || · || is the L2 norm. 

We have used Ns=90 in our tests which amounts to 30% of the whole 300 R dataset, in a 
different region (to extrapolate).
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Solid lines LiH molecule and dashed lines H2O (this 
latter is a harder task thus requires more gates). 
The performance of the different circuits is similar in 
both cases, and follows a Majorization classification. 
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Solid lines LiH molecule and dashed lines H2O (this 
latter is a harder task thus requires more gates). 
The performance of the different circuits is smilar in 
both cases, and follows a Majorization classification. 
G1 and G2 are the less complex circuits according to 
the majorization indicator, with poor performance in 
QML, worsening as the number of gates increase

G3 is the best performer, stabilizes around 200 gates

Matchgates are slightly worse than G3 but optimal 
performance comes earlier at around 20-50 gates  
D3 and Dn circuits are similar, although performance
of the D2 circuits is significantly worse 

Random Ising model is the worst when implemented
with gates (Trotter), G3 needs less than 2% of gates 
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Lets think about a toy model of 2 qubits
The state of the system after the action of each circuit can be written as a linear combination of 
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L. McInnes, J. Healy, and J. Melville, “UMAP: uniform
manifold approximation and projection for dimension 
reduction,” (2020), arXiv:1802.03426

Since the Pauli space in the 2-qubit system is a 16-dimensional space, we use a dimensionality 
reduction technique called UMAP.
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Lets think about a toy model of 2 qubits
The state of the system after the action of each circuit can be written as a linear combination of 
multiPauli operators in {1  1, 1  X, 1  Y, 1  Z, · · · , X  Z, Y  Z, Z  Z}.⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

L. McInnes, J. Healy, and J. Melville, “UMAP: uniform
manifold approximation and projection for dimension 
reduction,” (2020), arXiv:1802.03426

Since the Pauli space in the 2-qubit system is a 16-dimensional space, we use a dimensionality 
reduction technique called UMAP.

We design 4000 random circuits and see how this fills the Pauli space, compared to the uniform 
distribution.
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We see that the G1 and G2 circuits fill a 
subset of the Pauli space. As the 
number of circuit gates increase, they 
concentrate in a dense region, biasing 
results.

G3 fills the Pauli space uniformly and 
resembles uniform sampling, improving 
with the number of gates.

Matchgate circuits are similar to G3, 
except for a small gap, this leads
to a slightly worse performance. 

Diagonal circuits (which for 2 qubits all
coincide) also fill the whole Pauli space, 
but not so uniformly; this agrees with a 
slighlty worse performance.
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Quantum processors are affected by the environment

We describe the state of the qubit system by a density matrix ρ after applying a gate U, which transforms 
into ϵ(ρ) after the action of quantum noise. The sum in m gives a non-unitary evolution that can be 
thought of as coming from a trace performed on the environment (Operator sum or Kraus representation).  
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Quantum processors are affected by the environment

We describe the state of the qubit system by a density matrix ρ after applying a gate U, which transforms 
into ϵ(ρ) after the action of quantum noise. The sum in m gives a non-unitary evolution that can be 
thought of as coming from a trace performed on the environment (Operator sum or Kraus representation).  

The amplitude damping channel (energy dissipation) is a model of 
the decay of an excited two-level atom due to the spontaneous 
emission of a photon with probability p.

The phase damping channel models the loss of quantum 
Information without loss of energy.

The depolarizing channel introduces a Pauli error X, Y or Z 
with the same probability p/3.
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applying idle noise and perfect gates
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The same chemistry problem for LiH and G3 gates 
applying idle noise and perfect gates

For p = 0.0005 (green curve) all noisy amplitude 
damping reservoirs perform better than the 
noiseless ones for less than 135 gates

Performance of the noisy depolarizing and phase 
damping reservoirs is always worse than that
of the noiseless one, even for small p

For large numbers of gates all noisy reservoirs 
decrease their performance, seemingly going to 
the same growing behavior
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We can understand this behavior in the following way: the n qubit state can be written in terms of 
multiPauli operators that are the direct product of single qubit ones as

The action of the noise channels on the 
single qubit Pauli operators is

ϵ(Pi) is always proportional to Pi, except for ϵ(I) in the amplitude 
damping channel case (it is said to be non unital)

It can be easily seen that for amplitude damping (acting on j qubit for example), when there is a non null 
component ak associated to Pk = P0 ··· P ⊗ ⊗ j−1 I P ⊗ ⊗ j+1 ··· P ⊗ ⊗ n  , bi=(1-p) ai + p ak  (associated to Pi = 
P0 ··· P ⊗ ⊗ j−1 Z P ⊗ ⊗ j+1 ··· P ⊗ ⊗ n). Even if ai=0, bi is not, adding an extra component in the Pauli space.

For any Pauli operator Pi, the coefficient in the Pauli space with 
the depolarizing and phase damping channels is attenuated
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Two qubits toy model revisited 

Distribution of the Pauli coefficients at the end of the
random circuit with 10 gates and an error rate 
p = 0.2 
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Two qubits toy model revisited 

Distribution of the Pauli coefficients at the end of the
random circuit with 10 gates and an error rate 
p = 0.2 

All noise models attenuate the non-zero coefficients 

Shadowed area shows a region where the noiseless 
simulation (and depolarizing and phase damping)
give zero expectation values 

Amplitude damping circuit has non-zero expectation 
values for the same operators, introducing non-zero 
terms in the Pauli distribution (similar effect as 
having more quantum gates in the circuit)
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4000 simulations of this toy model confirm that the 
amplitude damping channel fills the Pauli space faster 
than the other circuits, including the noiseless QR, 
equivalently as having more quantum gates
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The QRs with higher complexity according to the majorization criterion provide better results in QML 
tasks. The optimal family of quantum circuits fills uniformly the Pauli space of operators.
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Under certain circumstances, noise could be beneficial to QML. We show that for error rates p  0.0005, ≲
an amplitude damping channel presence renders better performance than noiseless QRs for ML tasks.

The depolarizing channel strongly attenuates the Pauli components, so our prescription is that its 
correction should be a priority.

The QRs with higher complexity according to the majorization criterion provide better results in QML 
tasks. The optimal family of quantum circuits fills uniformly the Pauli space of operators.

This turns the majorization criterion into a powerful tool at the time to evaluate the quantum circuits 
and device suitability for QML.
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And in Spanish newspapers!..
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THANK YOU!
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