Kerr Black Holes from multi-loop Scattering Amplitudes

Manfred Kraus

F. Febres Cordero, G. Lin, M. S. Ruf, M. Zeng

ICTP-SAIFR São Paulo Gravitational Waves meet Amplitudes in the Southern Hemisphere 21. August 2023

Precision requirements for Waveforms

See also Maria Haneys talk last Monday!

The Landscape of methods

Last week we had talks:

- Mao Zeng: Overview of Amplitudes methods
- Justin Vines: Spinning Black Holes to all orders in spin

Now:

Spinning Black Holes with finite Spin representation and their classical Hamiltonian at 3PM!

The Stages of a Binary Black Hole Merger

$$r \gg r_s = \frac{2G(m_1+m_2)}{c^2}$$

Merger Numerical Relativity - ab initio, but very computing intense Ringdown Black Hole Perturbation Theory

During the Inspiral the dynamics are described by classical Hamiltonians

$$H = \sum_{i=1}^{2} \sqrt{\boldsymbol{p}^{2} + m_{i}^{2}} + V^{(1)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) + V^{(2)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{\boldsymbol{L} \cdot \boldsymbol{S}}{\boldsymbol{r}^{2}} + V^{(3)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{(\boldsymbol{p} \cdot \boldsymbol{S})^{2}}{\boldsymbol{r}^{2}} + V^{(4)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{\boldsymbol{S}^{2}}{\boldsymbol{r}^{2}} + V^{(5)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{(\boldsymbol{r} \cdot \boldsymbol{S})^{2}}{\boldsymbol{r}^{4}} + \cdots$$

During the Inspiral the dynamics are described by classical Hamiltonians

$$\begin{split} \mathcal{H} &= \sum_{i=1}^{2} \sqrt{\mathbf{p}^{2} + m_{i}^{2}} + \underbrace{V^{(1)}(\mathbf{r}^{2}, \mathbf{p}^{2})}_{\mathbf{r}^{2}} + V^{(2)}(\mathbf{r}^{2}, \mathbf{p}^{2}) \frac{\mathbf{L} \cdot \mathbf{S}}{\mathbf{r}^{2}} \\ &+ V^{(3)}(\mathbf{r}^{2}, \mathbf{p}^{2}) \frac{(\mathbf{p} \cdot \mathbf{S})^{2}}{\mathbf{r}^{2}} + V^{(4)}(\mathbf{r}^{2}, \mathbf{p}^{2}) \frac{\mathbf{S}^{2}}{\mathbf{r}^{2}} + V^{(5)}(\mathbf{r}^{2}, \mathbf{p}^{2}) \frac{(\mathbf{r} \cdot \mathbf{S})^{2}}{\mathbf{r}^{4}} + \cdots \\ \begin{array}{c} \text{OPN} & 1\text{PN} & 2\text{PN} & 3\text{PN} & 4\text{PN} & 5\text{PN} & 6\text{PN} \\ (1687) & (1938) & (1973) & (2000) & (2014) & (2020) & (2020) \\ \text{Newton} & \text{Einstein,Infeld} & \text{Kimura et al} & \text{Damour et al} & \text{Damour et al} & \text{Mastrolia et al} & \text{Blümlein et al} \\ \text{Blümlein et al} & \text{Blümlein et al} \\ \text{Hoffmann} & \text{Kimura et al} & \text{Damour et al} & \text{Mastrolia et al} & \text{Blümlein et al} \\ G^{2}(1) + \underbrace{v^{2}}_{1} + \underbrace{v^{4}}_{1} + \underbrace{v^{6}}_{1} + \underbrace{v^{8}}_{1} + \underbrace{v^{6}}_{1} + \underbrace{v^{8}}_{1} + \underbrace{v^{1}}_{1} + \underbrace{v^{2}}_{2} + \underbrace{v^{4}}_{1} + \underbrace{v^{2}}_{1} + \underbrace{v^{4}}_{1} + \underbrace{v^{4}}_{1} + \underbrace{v^{2}}_{1} + \underbrace{v^{4}}_{1} + \underbrace{v^{4}}_$$

During the Inspiral the dynamics are described by classical Hamiltonians

$$\begin{split} \mathcal{H} &= \sum_{i=1}^{2} \sqrt{\mathbf{p}^{2} + m_{i}^{2}} + \underbrace{\mathcal{V}^{(1)}(\mathbf{r}^{2}, \mathbf{p}^{2})}_{\mathbf{r}^{2}} + \mathcal{V}^{(2)}(\mathbf{r}^{2}, \mathbf{p}^{2}) \frac{L \cdot \mathbf{S}}{\mathbf{r}^{2}} \\ &+ \mathcal{V}^{(3)}(\mathbf{r}^{2}, \mathbf{p}^{2}) \frac{(\mathbf{p} \cdot \mathbf{S})^{2}}{\mathbf{r}^{2}} + \mathcal{V}^{(4)}(\mathbf{r}^{2}, \mathbf{p}^{2}) \frac{\mathbf{S}^{2}}{\mathbf{r}^{2}} + \mathcal{V}^{(5)}(\mathbf{r}^{2}, \mathbf{p}^{2}) \frac{(\mathbf{r} \cdot \mathbf{S})^{2}}{\mathbf{r}^{4}} + \cdots \\ \begin{array}{c} \text{OPN} & 1\text{PN} & 2\text{PN} & 3\text{PN} & 4\text{PN} & 5\text{PN} & 6\text{PN} \\ (1687) & (1938) & (1973) & (2000) & (2014) & (2020) & (2020) \\ \text{Newtore} & \text{Einstein,Infeld} & \text{Kimura et al} & \text{Damour et al} & \text{Damour et al} & \text{Mastrolia et al} & \text{Blimlein et al} \\ \text{Blimlein et al} & \text{Blimlein et al} & \text{Blimlein et al} \\ \hline & G^{2}(1 + v^{2} + v^{4} + v^{6} + v^{8} + v^{10} + \ldots)) & 1\text{PM} \\ \hline & G^{2}(1 + v^{2} + v^{4} + v^{6} + v^{8} + \cdots) \\ \hline & G^{3}(1 + v^{2} + v^{4} + v^{6} + \cdots) \\ \hline & G^{3}(1 + v^{2} + v^{4} + v^{6} + \cdots) \\ \hline & G^{4}(1 + v^{2} + v^{4} + \cdots) \\ \hline & G^{5}(1 + v^{2} + \cdots) \\ \hline & G^{6}(1 + \cdots) \\ \hline & G^{6}(1 + \cdots) \end{array}$$

During the Inspiral the dynamics are described by classical Hamiltonians

$$H = \sum_{i=1}^{2} \sqrt{\boldsymbol{p}^{2} + m_{i}^{2}} + V^{(1)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) + V^{(2)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{\boldsymbol{L} \cdot \boldsymbol{S}}{\boldsymbol{r}^{2}}$$
$$+ V^{(3)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{(\boldsymbol{p} \cdot \boldsymbol{S})^{2}}{\boldsymbol{r}^{2}} + V^{(4)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{\boldsymbol{S}^{2}}{\boldsymbol{r}^{2}} + V^{(5)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{(\boldsymbol{r} \cdot \boldsymbol{S})^{2}}{\boldsymbol{r}^{4}} + \cdots$$

Spin Hamilitonian much less known!

Post Newtonian

- S: 3PN $\mathcal{O}(G^4)$ [Levi et al arXiv:2208.14949, Mastrolia et al arXiv:2209.00611]
- S^2 : 5PN $\mathcal{O}(G^4)$ [Kim,Levi,Yin arXiv:2112.01509]
- S^3 : 4PN $\mathcal{O}(G^2)$ [Levi, Mougiakakos, Viera arXiv:1912.06276]
- S^4 : 5PN $\mathcal{O}(G^2)$ [Levi, Teng arXiv:2008.12280]

Post Minkowskian

- **S**²: 2PM [Bern et.al arXiv:2005.03071], [Kosmopoulos,Luna arXiv:2102.10137]
- **S**⁴: 2PM [Chen, Chung, Huang arXiv:2111.13639]
- **S**⁵: 2PM [Bern et al arXiv:2203.06202]
- S^{∞} : 2PM [Aoude, Haddad, Helset arXiv:2203.06197, arXiv:2205.02809]

During the Inspiral the dynamics are described by classical Hamiltonians

$$H = \sum_{i=1}^{2} \sqrt{\boldsymbol{p}^{2} + m_{i}^{2}} + V^{(1)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) + V^{(2)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{\boldsymbol{L} \cdot \boldsymbol{S}}{\boldsymbol{r}^{2}}$$
$$+ V^{(3)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{(\boldsymbol{p} \cdot \boldsymbol{S})^{2}}{\boldsymbol{r}^{2}} + V^{(4)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{\boldsymbol{S}^{2}}{\boldsymbol{r}^{2}} + V^{(5)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{(\boldsymbol{r} \cdot \boldsymbol{S})^{2}}{\boldsymbol{r}^{4}} + \cdots$$

Spin Hamilitonian much less known!

Post Newtonian

- S: 3PN $\mathcal{O}(G^4)$ [Levi et al arXiv:2208.14949, Mastrolia et al arXiv:2209.00611]
- S^2 : 5PN $\mathcal{O}(G^4)$ [Kim,Levi,Yin arXiv:2112.01509]
- S^3 : 4PN $\mathcal{O}(G^2)$ [Levi, Mougiakakos, Viera arXiv:1912.06276]
- **S**⁴: 5PN $\mathcal{O}(G^2)$ [Levi, Teng arXiv:2008.12280]

Post Minkowskian

- **S**²: 2PM [Bern et.al arXiv:2005.03071], [Kosmopoulos,Luna arXiv:2102.10137] 3PM [Febres Cordero, MK, Lin, Ruf, Zeng arXiv:2205.07357]
- **S**⁴: 2PM [Chen, Chung, Huang arXiv:2111.13639]
- **S**⁵: 2PM [Bern et al arXiv:2203.06202]
- **S**^{\pi}: 2PM [Aoude,Haddad,Helset arXiv:2203.06197,arXiv:2205.02809]

Point Particle Effective Field Theory

Massive particles coupled to Gravity!

• Lagrangian:

$$\mathcal{L} = \mathcal{L}_{\mathrm{EH}} + \mathcal{L}_{\mathrm{point-particle}} + \mathcal{L}_{\mathrm{finite-size}}$$

• Finite-size effects via tidal operators

$$\mathcal{L}_{\mathrm{finite-size}} \subset \sum c_{abc} \phi_i \nabla^a \phi_i \nabla^b R^c$$

• Spin d.o.f by including massive higher-spin fields

$$\phi_i \to \phi_i^{\mu_1 \dots \mu_N}$$

Idea in a Nutshell

$$A^{\text{tree}} = \frac{4\pi \ G}{E_1 E_2} \ \frac{m_1^2 m_2^2 (1 - 2\sigma^2)}{q^2} + \cdots$$
$$\sigma = \frac{p_1 \cdot p_2}{m_1 m_2}$$

The classical potential is then given by

$$V^{(0)}(\mathbf{r}^{2}, \mathbf{p}^{2}) = \int \frac{d^{3}q}{(2\pi)^{3}} e^{i\vec{q}\cdot\vec{r}} A^{\text{tree}} = -\frac{Gm_{1}m_{2}}{r} \left(\frac{m_{1}m_{2}}{E_{1}E_{2}}(2\sigma^{2}-1)\right)$$
$$= -\frac{Gm_{1}m_{2}}{r} + \mathcal{O}(\mathbf{v}^{2})$$

- Scattering amplitude approach provides all-order \boldsymbol{v}^2 corrections!
- Loop amplitudes provide higher-order $\mathcal{O}(G^n)$ corrections!

General Relativity with Matter

• Consider Einstein-Hilbert gravity coupled to massive scalar and vector particles

$$S[\phi, A^{\mu}, g_{\mu\nu}] = \int d^4x \,\sqrt{-g} \left[-\frac{2}{\kappa^2}R + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}m_{\phi}^2\phi^2 - \frac{1}{4}g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta}F_{\mu\nu} + \frac{1}{2}m_A^2g^{\mu\nu}A_{\mu}A_{\nu} \right]$$

• Expand spacetime metric around flat space

$$g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu} , \qquad \kappa = \sqrt{32\pi G}$$

• General relativity is non-linear

$$g^{\mu\nu} = \eta^{\mu\nu} - \kappa h^{\mu\nu} + \kappa^2 h^{\mu\lambda} h^{\nu}{}_{\lambda} + \mathcal{O}(\kappa^3)$$
$$\sqrt{-g} = 1 + \frac{\kappa}{2}h + \frac{\kappa^2}{8} \left(h^2 - 2h_{\mu\nu}h^{\mu\nu}\right) + \mathcal{O}(\kappa^3)$$

• Leads to quantum EFT of gravity with infinite many interaction terms

classical power counting

Expand Amplitude in $\boldsymbol{q} \sim \hbar$

$$\mathcal{M}^{\text{n-loop}} = G^{n+1}\left(\frac{c_0}{\boldsymbol{q}^2} + \frac{c_1}{|\boldsymbol{q}|} + c_2\log(\boldsymbol{q}^2) + \ldots\right)$$

Presence of finite Quantum-Spin complicates identification of classical terms

$$\mathbf{S}_{ ext{cl}}^2\simrac{1}{\hbar^2}$$
 but $\mathbf{S}_{ ext{QM}}^2=s(s+1)$ 1

We come back to this later ...

What do we need to compute?

$$A(p_1,\epsilon_1) + \phi(p_2) \rightarrow \phi(p_3) + A(p_4,\epsilon_4)$$

- only subset of the full amplitude contributes to classical physics $|\ell_1| \sim |\ell_2| \sim |q| \sim \hbar \ll m_A, m_\phi, \sqrt{s} \qquad \text{Spin: } \boldsymbol{S} \sim \frac{1}{\hbar} \quad q = p_4 - p_1$
- 1-loop:

• 2-loop:

● Relate: Qunatum Spin ⇔ Classical Spin

Fernando will talk on Thursday about the explicit computation!

Structure of the Amplitude

Form factor decomposition:

$$\mathcal{M}_{\lambda_1\lambda_4} = \sum_{n=1}^5 M_n \, \epsilon_\mu(p_1,\lambda_1) T_n^{\mu\nu} \epsilon_\nu^\star(p_4,\lambda_4)$$

with

$$p_{2} = \bar{p}_{2} + q/2 \qquad p_{3} = \bar{p}_{2} - q/2$$

$$T_{1} = (\epsilon_{1} \cdot \epsilon_{4}^{\star}) \qquad T_{2} = (\epsilon_{1} \cdot q)(\epsilon_{4}^{\star} \cdot q)$$

$$T_{3} = q^{2}(\epsilon_{1} \cdot \bar{p}_{2})(\epsilon_{4}^{\star} \cdot \bar{p}_{2}) \qquad T_{4/5} = (\epsilon_{1} \cdot \bar{p}_{2})(\epsilon_{4}^{\star} \cdot q) \mp (\epsilon_{1} \cdot q)(\epsilon_{4}^{\star} \cdot \bar{p}_{2})$$

$$T_{5} \text{ vanishes after IBP reduction}$$

 $p_1 = \bar{p}_1 - q/2$ $p_4 = \bar{p}_1 + q/2$

Extraction of form factors

Solve System of Equations for each phase space point:

$$\begin{pmatrix} \mathcal{M}_{++} \\ \mathcal{M}_{+-} \\ \mathcal{M}_{-+} \\ \mathcal{M}_{--} \\ \mathcal{M}_{LL} \end{pmatrix} = \begin{pmatrix} T_1^{++} & T_2^{++} & T_3^{++} & T_4^{++} & T_5^{++} \\ T_1^{+-} & T_2^{+-} & T_3^{+-} & T_4^{+-} & T_5^{+-} \\ T_1^{-+} & T_2^{-+} & T_3^{-+} & T_4^{-+} & T_5^{-+} \\ T_1^{--} & T_2^{--} & T_3^{--} & T_4^{--} & T_5^{--} \\ T_1^{LL} & T_2^{LL} & T_3^{LL} & T_4^{LL} & T_5^{LL} \end{pmatrix} \times \begin{pmatrix} M_1 \\ M_2 \\ M_3 \\ M_4 \\ M_5 \end{pmatrix}$$

How to match quantum spin onto classical spin? - I

• Expand relativistic $\epsilon^{\mu}(p)$ around rest-frame momenta

$$\epsilon_s^{\mu}(p) = \Lambda_{\nu}^{\mu}(p)\hat{\epsilon}_s^{\nu}, \qquad \Lambda_{\nu}^{\mu}(p) = \begin{pmatrix} \sqrt{1+v^2} & \mathbf{v}^T \\ \mathbf{v} & \delta^{ij} + \frac{1}{v^2}(\sqrt{1+v^2}-1)v^iv^j \end{bmatrix}, \end{pmatrix}$$

Expand Lorentzboost for $p=ar{p}_1\pm q/2$ for $q\sim \hbar\ll 1$

• Rest-frame Polarization vectors: $\hat{\epsilon}^{\mu}_s=(0,\hat{\epsilon}_s)$ and $|1,s
angle\equiv\hat{\epsilon}_s$

$$|1,1
angle=rac{1}{\sqrt{2}} \begin{pmatrix} -1\\ -i\\ 0 \end{pmatrix} \ , \qquad |1,0
angle= \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \ , \qquad |1,-1
angle=rac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -i\\ 0 \end{pmatrix} \ ,$$

• Relate rest-frame vectors to Spin: $(\mathbf{S}_i)_{jk} = -i\epsilon_{ijk}$

$$\begin{split} \langle 1, m_2, |\mathbb{1}|1, m_1 \rangle &= \left(\hat{\epsilon}_{m_1} \cdot \hat{\epsilon}_{m_2}^*\right), \\ i\epsilon_{ijk} \langle 1, m_2 | \boldsymbol{S}_k | 1, m_1 \rangle &= \hat{\epsilon}_{m_2}^{\star i} \hat{\epsilon}_{m_1}^j - \hat{\epsilon}_{m_1}^i \hat{\epsilon}_{m_2}^{\star j}, \\ \langle 1, m_2 | \boldsymbol{S}_i \boldsymbol{S}_j | 1, m_1 \rangle &= \delta_{ij} (\hat{\epsilon}_{m_1} \cdot \hat{\epsilon}_{m_2}^*) - \hat{\epsilon}_{m_1}^i \hat{\epsilon}_{m_2}^{\star j}, \\ \langle 1, m_2 | \boldsymbol{S}^2 | 1, m_1 \rangle &= 2 (\hat{\epsilon}_{m_1} \cdot \hat{\epsilon}_{m_2}^*) \end{split}$$

After expansion of Lorentz Boost:

$$T_{1} = -\langle O_{1} \rangle + \frac{1}{m_{A}^{2}(\gamma_{1}+1)} \left[\langle O_{2} \rangle - \langle O_{3} \rangle + \frac{\langle O_{4} \rangle}{2m_{A}^{2}(\gamma_{1}+1)} \right] + \mathcal{O}(\hbar^{2})$$

$$T_{2} = \langle O_{3} \rangle + \mathcal{O}(\hbar^{2})$$

$$T_{3} = -\frac{E^{2}}{m_{A}^{2}} \langle O_{4} \rangle + \mathcal{O}(\hbar^{2})$$

$$T_{4} = -\frac{E}{m_{A}} \langle O_{2} \rangle + \frac{E - m_{A}}{m_{A}} \langle O_{3} \rangle - \frac{E}{m_{A}^{3}(\gamma_{1}+1)} \langle O_{4} \rangle + \mathcal{O}(\hbar^{2})$$

with

$$egin{aligned} O_1 &= \mathbb{1} \ O_2 &= -i(oldsymbol{q} imes oldsymbol{p}) \cdot oldsymbol{S} \ O_3 &= rac{1}{2}oldsymbol{q}^2oldsymbol{S}^2 - (oldsymbol{q} imesoldsymbol{S})^2 \ O_4 &= oldsymbol{q}^2 \left(rac{1}{2}oldsymbol{p}^2oldsymbol{S}^2 - (oldsymbol{p} imesoldsymbol{S})^2
ight) \end{aligned}$$

Spin multipoles!

Our computational Approach

• Computation performed in the framework of Numerical Multi-loop Unitarity

• Compute quantum Amplitude

 $\mathcal{M} = \sum_{i,j} c_{ij} I_i T_j$ I_i - Master integral T_j - Polarization Tensor

• Expand $\{c_{ij}, I_i, T_j\}$ in \hbar to obtain asymptotic multi-pole expansion

$$\mathcal{M}^{2\text{-loop}} = G^3 \left[\left(\frac{c_0^{(1)}}{\boldsymbol{q}^2} + \frac{c_1^{(1)}}{|\boldsymbol{q}|} + c_2^{(1)} \log(\boldsymbol{q}^2) + \dots \right) \mathcal{O}_1 + \left(\frac{c_0^{(2)}}{\boldsymbol{q}^2} + \frac{c_1^{(2)}}{|\boldsymbol{q}|} + c_2^{(2)} \log(\boldsymbol{q}^2) + \dots \right) \mathcal{O}_2 + \dots \right]$$

$$\mathcal{M}^{(2)} = -\left(\frac{\kappa}{2}\right)^{6} \frac{1}{q^{2}} \left(\frac{\mu^{2}}{q^{2}}\right)^{2\epsilon} \left(\frac{e^{\gamma_{E}}}{4\pi}\right)^{-2\epsilon} \sum_{n=1}^{4} \sum_{k=0}^{2} M_{n}^{(2,k)} |\boldsymbol{q}|^{k} T_{n} + \mathcal{O}(|\boldsymbol{q}|) ,$$

Scalar coefficient:

$$\begin{split} M_{1}^{(2,0)} &= \frac{m_{A}^{4} m_{\phi}^{4} (1-2\sigma^{2})^{2}}{(8\pi)^{2} (\sigma^{2}-1)} \left[\frac{1-2\sigma^{2}}{\epsilon^{2}} + \frac{3}{\epsilon} \right] + \mathcal{O}(\epsilon^{0}) , \\ M_{1}^{(2,1)} &= -\mathrm{i}\pi \frac{3m_{A}^{3} m_{\phi}^{3} (m_{A}+m_{\phi})}{(16\pi)^{2} \sqrt{\sigma^{2}-1}} \left\{ \left(1-7\sigma^{2}+10\sigma^{4}\right) \left[\frac{1}{\epsilon} - 2\log(2) \right] - \frac{3+6\sigma^{2}-65\sigma^{4}+64\sigma^{6}}{3(\sigma^{2}-1)} \right\} + \mathcal{O}(\epsilon) , \\ M_{1}^{(2,2)} &= \frac{1}{\epsilon^{2}} \frac{m_{A}^{2} m_{\phi}^{4} (1-2\sigma^{2})}{(16\pi)^{2} (\sigma^{2}-1)} + \frac{1}{\epsilon} \left[\frac{m_{A}^{3} m_{\phi}^{3} (3+12\sigma^{2}-4\sigma^{4})}{(8\pi)^{2} \sqrt{\sigma^{2}-1}} \operatorname{arccosh}(\sigma) + \frac{m_{A}^{4} m_{\phi}^{2} (-3+4\sigma^{2})(1-8\sigma^{2}+8\sigma^{4})}{(16\pi)^{2} (\sigma^{2}-1)^{2}} \right. \\ &+ \frac{m_{A}^{2} m_{\phi}^{4} (-9+48\sigma^{2}-78\sigma^{4}+40\sigma^{6})}{(16\pi)^{2} (\sigma^{2}-1)^{2}} + \frac{m_{A}^{3} m_{\phi}^{3} \sigma(-59+156\sigma^{2}-162\sigma^{4}+68\sigma^{6})}{6(8\pi)^{2} (\sigma^{2}-1)^{2}} \right] + \mathcal{O}(\epsilon^{0}) \end{split}$$

Other coefficents M_2 , M_3 and M_4 are similar in size!

Structure of Scattering Amplitudes in the classical limit

$$\mathcal{M}^{\text{tree}} = G\left(\frac{c_0^{\text{cl}}}{\boldsymbol{q}^2} + \ldots\right)$$
$$\mathcal{M}^{1\text{-loop}} = G^2\left(\frac{c_1^{\text{scl}}}{\boldsymbol{q}^2} + \frac{c_1^{\text{cl}}}{|\boldsymbol{q}|} + c_1^{\text{Q}}\log(\boldsymbol{q}^2) + \ldots\right)$$
$$\mathcal{M}^{2\text{-loop}} = G^3\left(\frac{c_2^{\text{sscl}}}{\boldsymbol{q}^2} + \frac{c_2^{\text{scl}}}{|\boldsymbol{q}|} + c_2^{\text{cl}}\log(\boldsymbol{q}^2) + \ldots\right)$$

- Classical terms at any loop order
- Super-classical contributions have to be subtracted/cancelled
- Quantum corrections are suppressed by powers of \hbar

How to systematically extract a classical potential from that?

Non-relativistic, non-local, classical 3D EFT

[Cheung,Rothstein,Solon arXiv:1808.02489] [Bern,Luna,Roiban,Shen,Zeng arXiv:2005.03071]

$$\begin{split} L_{\rm EFT} &= \int_{\boldsymbol{k}} \hat{\phi}^{\dagger}(-\boldsymbol{k}) \left(i\partial_{t} - \sqrt{\boldsymbol{k}^{2} + m_{\phi}^{2}} \right) \hat{\phi}(\boldsymbol{k}) + \int_{\boldsymbol{k}} \hat{A}^{\dagger,i}(-\boldsymbol{k}) \left(i\partial_{t} - \sqrt{\boldsymbol{k}^{2} + m_{A}^{2}} \right) \hat{A}^{i}(\boldsymbol{k}) \\ &- \int_{\boldsymbol{k},\boldsymbol{k}'} V_{ij}(\boldsymbol{k},\boldsymbol{k}') \hat{A}^{\dagger,i}(\boldsymbol{k}') \hat{A}^{j}(\boldsymbol{k}) \hat{\phi}^{\dagger}(-\boldsymbol{k}') \hat{\phi}(-\boldsymbol{k}) \end{split}$$

Non-relativistic, non-local, classical 3D EFT

[Cheung,Rothstein,Solon arXiv:1808.02489] [Bern,Luna,Roiban,Shen,Zeng arXiv:2005.03071]

Non-relativistic, non-local, classical 3D EFT

[Cheung,Rothstein,Solon arXiv:1808.02489] [Bern,Luna,Roiban,Shen,Zeng arXiv:2005.03071]

$$L_{\rm EFT} = \int_{\boldsymbol{k}} \hat{\phi}^{\dagger}(-\boldsymbol{k}) \left(i\partial_{t} - \sqrt{\boldsymbol{k}^{2} + m_{\phi}^{2}} \right) \hat{\phi}(\boldsymbol{k}) + \int_{\boldsymbol{k}} \hat{A}^{\dagger,i}(-\boldsymbol{k}) \left(i\partial_{t} - \sqrt{\boldsymbol{k}^{2} + m_{A}^{2}} \right) \hat{A}^{i}(\boldsymbol{k})$$
$$- \int_{\boldsymbol{k},\boldsymbol{k}'} V_{ij}(\boldsymbol{k},\boldsymbol{k}') \hat{A}^{\dagger,i}(\boldsymbol{k}') \hat{A}^{j}(\boldsymbol{k}) \hat{\phi}^{\dagger}(-\boldsymbol{k}') \hat{\phi}(-\boldsymbol{k})$$
Matching coefficient
$$V_{ij}(\boldsymbol{k},\boldsymbol{k}') \sim \sum_{n=1}^{4} \sum_{L}^{\infty} |\boldsymbol{q}|^{L-2} \left(\frac{\mu^{2}}{\boldsymbol{q}^{2}} \right)^{L\epsilon} c_{L}^{(n)}(\boldsymbol{k}^{2}) O_{n}^{ij}$$

[Cheung, Rothstein, Solon arXiv:1808.02489] Non-relativistic, non-local, classical 3D EFT [Bern,Luna,Roiban,Shen,Zeng arXiv:2005.03071] $L_{\rm EFT} = \int_{\mathbf{k}} \hat{\phi}^{\dagger}(-\mathbf{k}) \left(i\partial_t - \sqrt{\mathbf{k}^2 + m_{\phi}^2} \right) \hat{\phi}(\mathbf{k}) + \int_{\mathbf{k}} \hat{A}^{\dagger,i}(-\mathbf{k}) \left(i\partial_t - \sqrt{\mathbf{k}^2 + m_A^2} \right) \hat{A}^i(\mathbf{k})$ $-\int_{\boldsymbol{k},\boldsymbol{k}'} V_{ij}(\boldsymbol{k},\boldsymbol{k}') \hat{A}^{\dagger,i}(\boldsymbol{k}') \hat{A}^{j}(\boldsymbol{k}) \hat{\phi}^{\dagger}(-\boldsymbol{k}') \hat{\phi}(-\boldsymbol{k})$ Matching coefficient $V_{ij}(\boldsymbol{k}, \boldsymbol{k}') \sim \sum_{l=1}^{4} \sum_{l=1}^{\infty} |\boldsymbol{q}|^{L-2} \left(\frac{\mu^2}{\boldsymbol{q}^2}\right)^{L\epsilon} c_L^{(n)}(\boldsymbol{k}^2) O_n^{ij}$ Spin Operators $O_2 = -i(\boldsymbol{q} \times \boldsymbol{p}) \cdot \boldsymbol{S}$, $O_3 = \frac{1}{2} \boldsymbol{q}^2 \boldsymbol{S}^2 - (\boldsymbol{q} \cdot \boldsymbol{S})^2 ,$ $O_4 = oldsymbol{q}^2 \left(rac{1}{2} oldsymbol{p}^2 oldsymbol{S}^2 - (oldsymbol{p} \cdot oldsymbol{S})^2
ight)$

• EFT given by iterated Bubble diagrams

[Cheung,Rothstein,Solon arXiv:1808.02489]

- Form factor decomposition: $\mathcal{M}_{\rm EFT} = \sum_{n=1}^{4} M_{\rm EFT}^{(n)} O_n \rightarrow \text{Projectors}$
- Follow stragegy:
 - integrate ℓ_n^0 by contours

$$\Delta(\ell) = i \int \frac{d\ell^0}{2\pi} \frac{1}{(E_1 + \ell^0) - \sqrt{E_1^2 + Y_1}} \frac{1}{(E_2 - \ell^0) - \sqrt{E_2^2 + Y_1}}$$
$$= \frac{1}{E_1 + E_2 - \sqrt{E_1^2 + Y_1} - \sqrt{E_2^2 + Y_1}}$$

• Expand around $Y_n \ll 1$

$$2E_1E$$

$$\Delta(\ell) = -\frac{2E_1E_2}{E_1 + E_2}\frac{1}{Y_1} + \mathcal{O}(Y_1^0)$$

- Perform Potential Region expansion: $|\boldsymbol{\ell}_i| \sim |\boldsymbol{q}| \sim \hbar \ll |\boldsymbol{p}|, m_{A}, m_{\phi}$
- Insert expressions for master integrals
- First time fully in Dimensional Regularization

[Parra-Martinez, Ruf, Zeng 2020]

 $Y_1 = (\ell + p)^2 - p^2$

Conservative Potential: Scalar Term

• $O_1 = 1$ yields spinless Hamiltonian

$$H = \sum_{i=1}^{2} \sqrt{\boldsymbol{p}^{2} + m_{i}^{2}} + V^{(1)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}), \quad \text{with} \quad V^{(1)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) = \sum_{i=1}^{3} c_{i}^{(1)}(\boldsymbol{k}^{2}) \left(\frac{G}{r}\right)^{i}$$

 $c_{1}^{(1)}(\mathbf{k}^{2}) = \frac{m_{A}^{2}m_{\phi}^{2}}{E_{1}E_{2}} \left(1 - 2\sigma^{2}\right), \qquad c_{2}^{(1)}(\mathbf{k}^{2}) = \frac{3(m_{\phi} + m_{A})m_{\phi}^{2}m_{A}^{2}}{4E_{1}E_{2}} (1 - 5\sigma^{2}), \\ c_{3}^{(1)}(\mathbf{k}^{2}) = \frac{m_{A}^{2}m_{\phi}^{2}}{E_{1}E_{2}} \left[-\frac{2}{3}m_{A}m_{\phi} \left(\frac{\arccos(\sigma)}{\sqrt{\sigma^{2} - 1}} \left(-12\sigma^{4} + 36\sigma^{2} + 9\right) + 22\sigma^{3} - 19\sigma\right) \right) \\ - 2(m_{\phi}^{2} + m_{A}^{2}) \left(6\sigma^{2} + 1\right) \right] + \frac{3Em_{A}^{2}m_{\phi}^{2}}{4E_{1}E_{2}} (m_{A} + m_{\phi}) \frac{(1 - 2\sigma^{2})(1 - 5\sigma^{2})}{(\sigma^{2} - 1)} \\ - \frac{3m_{A}^{4}m_{\phi}^{4}}{E_{1}E_{2}\mathbf{k}^{2}},$

Agrees with [Bern, Cheung, Roiban, Shen, Solon, Zeng arXiv:1901.04424]

Conservative Potential: Spin-Orbit Term

•
$$O_2 = -i(\boldsymbol{q} \times \boldsymbol{p}) \cdot \boldsymbol{S}$$
 yields the spin-orbit coupling.

$$H = \sum_{i=1}^2 \sqrt{\boldsymbol{p}^2 + m_i^2} + V^{(2)}(\boldsymbol{r}^2, \boldsymbol{p}^2) \frac{\boldsymbol{L} \cdot \boldsymbol{S}}{\boldsymbol{r}^2}, \quad \text{with} \quad V^{(2)}(\boldsymbol{r}^2, \boldsymbol{p}^2) = \sum_{i=1}^3 c_i^{(2)}(\boldsymbol{k}^2) \left(\frac{\boldsymbol{G}}{\boldsymbol{r}}\right)^i$$

$$c_i^{(2)}(\boldsymbol{k}^2) = c_{i,red}^{(2)}(\boldsymbol{k}^2) + c_{i,iter}^{(2)}(\boldsymbol{k}^2) + \frac{c_i^{(1)}(\boldsymbol{k}^2)}{m_A^2(\gamma_1 + 1)}$$

$$c_{1,red}^{(2)}(\boldsymbol{k}^2) = -\frac{2\sigma m_{\phi}}{E\xi}, \quad c_{2,red}^{(2)}(\boldsymbol{k}^2) = \frac{m_{\phi}(4m_A + 3m_{\phi})\sigma(5\sigma^2 - 3)}{4E\xi(\sigma^2 - 1)},$$

$$c_{3,red}^{(2)}(\boldsymbol{k}^2) = \frac{m_{\phi}}{E\xi(\sigma^2 - 1)^2} \left[-2m_A^2\sigma(3 - 12\sigma^2 + 10\sigma^4) - \left(\frac{83}{6} + 27\sigma^2 - 52\sigma^4 + \frac{43}{4}\sigma^6\right) m_A m_{\phi} - m_{\phi}^2\sigma\left(\frac{7}{2} - 14\sigma^2 + 12\sigma^4\right) + \frac{(4m_A + 3m_{\phi})E}{4}\sigma(2\sigma^2 - 1)(5\sigma^2 - 3) + 4m_A m_{\phi}\sigma(\sigma^2 - 6)(2\sigma^2 + 1)\sqrt{\sigma^2 - 1} \operatorname{arccosh}(\sigma) \right],$$

$$c_{1,iter}^{(2)}(\boldsymbol{k}^2) = 0, \quad c_{2,iter}^{(2)}(\boldsymbol{k}^2) = E\xi c_1^{(2)}\frac{\partial c_1^{(1)}}{\partial k^2} + c_1^{(1)}\left(E\xi \frac{\partial c_1^{(2)}}{\partial k^2} + \frac{c_1^{(2)}\left(\frac{2\xi^2}{k^2} + \frac{1}{\xi} - 3\right)}{2E}\right),$$

$$c_{2,iter}^{(2)}(\boldsymbol{k}^2) = \left(c_1^{(1)}\right)^2 \left(-\frac{2}{3}E^2\xi^2\frac{\partial^2 c_1^{(2)}}{\partial (k^2)^2} + \left(\xi\left(3 - \frac{E^2\xi}{2}\right) - 1\right)\frac{\partial c_1^{(2)}}{\partial k^2} + c_1^{(2)}\left(\frac{\frac{1}{2\xi} - 2}{E^2} + \frac{3\xi - 1}{k^2}\right)\right)\right)$$

$$+ c_1^{(1)}\left(c_1^{(2)}\left(\left(-\frac{3E^2\xi^2}{k^2} + 6\xi - 2\right)\frac{\partial c_1^{(1)}}{\partial k^2} - \frac{3}{4}E^2\xi^2\frac{\partial^2 c_1^{(1)}}{\partial k^2} + \frac{2}{2k^2}\frac{\partial^2 c_1^{(2)}}{\partial k^2}\right)\right)$$

$$+ c_1^{(2)}\left(\frac{2}{3}E\xi\left(\frac{\partial c_2^{(2)}}{\partial k^2} - 2E\xi\frac{\partial c_1^{(1)}}{\partial k^2}\frac{\partial c_1^{(2)}}{\partial k^2}\right) + \frac{E^2\xi^2(c_1^{(2)})^2}{2k^2} + c_2^{(2)}\left(\frac{2\xi^2}{k^2} - \frac{1}{k^2} + \frac{\xi}{k}\xi\right)\right) - \frac{1}{6}E^2\xi^2\left(c_1^{(2)}\right)^3$$

$$+ c_1^{(2)}\left(\frac{2}{3}E\xi\left(\frac{\partial c_2^{(1)}}{\partial k^2} - 2E\xi\left(\frac{\partial c_1^{(1)}}{\partial k^2}\right)^2\right) + \frac{c_1^{(2)}\left(\frac{3E^2\xi}{k^2} + \frac{1}{\xi} - 3\right)}{3E}\right) + \frac{2}{3}E\xi c_2^{(1)}\frac{\partial c_1^{(2)}}{\partial k^2} + \frac{4}{3}E\xi c_2^{(2)}\frac{\partial c_1^{(1)}}{\partial k^2}.$$

Conservative Hamiltonian

- Coefficients of O_3 and O_4 much more involved!
- We determined the classical Hamiltonian up to $\mathcal{O}(G^3)$

$$H = \sum_{i=1}^{2} \sqrt{\boldsymbol{p}^{2} + m_{i}^{2}} + V^{(1)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) + V^{(2)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{\boldsymbol{L} \cdot \boldsymbol{S}}{\boldsymbol{r}^{2}}$$
$$+ V^{(3)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{(\boldsymbol{p} \cdot \boldsymbol{S})^{2}}{\boldsymbol{r}^{2}} + V^{(4)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{\boldsymbol{S}^{2}}{\boldsymbol{r}^{2}} + V^{(5)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{(\boldsymbol{r} \cdot \boldsymbol{S})^{2}}{\boldsymbol{r}^{4}}$$

With our Hamilton we reproduced observables at 3PM computed in world-line QFT formalism by [Jakobsen,Mogull arXiv:2201.07778]

Spin Universality

Spin Universality

• fixed spin-s amplitudes have access to spin multipoles up to \boldsymbol{S}^{2s}

$$\begin{split} \mathcal{A}(\phi_1\phi_2 \to \phi_1\phi_2) &\sim \mathbb{1} \qquad \mathcal{A}(\phi\psi \to \phi\psi) \sim \{\mathbb{1}, \boldsymbol{L} \cdot \boldsymbol{S}\} \\ \mathcal{A}(\phi V \to \phi V) &\sim \{\mathbb{1}, \boldsymbol{L} \cdot \boldsymbol{S}, (\boldsymbol{r} \cdot \boldsymbol{S})^2, (\boldsymbol{p} \cdot \boldsymbol{S})^2\} \end{split}$$

• Spin Universality:

(conjecture!)

Classical multipole coefficients are independent of the nature of the test particle!

• For arbitrary spin there should be a fifth contribution from

$$\mathcal{O}_5 = oldsymbol{q}^2 oldsymbol{S}^2 \sim rac{\hbar^2}{\hbar^2} = 1$$
 but $\mathcal{O}_5^{ ext{fixed-spin}} = oldsymbol{q}^2 oldsymbol{S}^2 = oldsymbol{q}^2 s(s+1)$ 1

• 1-Loop example: the classical contributions live at $1/|m{q}|$

$$\mathcal{M}_{cl} = \frac{1}{|\boldsymbol{q}|} \left[c_0 \mathbb{1} + c_5(\boldsymbol{q}^2 \boldsymbol{S}^2) + \ldots \right] = \frac{1}{|\boldsymbol{q}|} \left[c_0 + c_5 \boldsymbol{q}^2 s(s+1) \right] \ \mathbb{1} + \ldots$$

• \Rightarrow The S^2 contribution lives for fixed-spin at subleading q^2 with respect to 1 • \Rightarrow Mixes with quantum corrections to the 1 operator at $\mathcal{O}(|q|)!$

 $\circ \ \Rightarrow$ How to disentangle this mess?!

Observation

• Compute \hbar expansion of scalar-scalar Amplitude

$$\mathcal{A}(\phi_1\phi_2 o \phi_1\phi_2) \sim \mathbb{1}\left(rac{a^{
m scl}}{|oldsymbol{q}|^2} + rac{a^{
m cl}}{|oldsymbol{q}|} + a_0\log(oldsymbol{q})^2 + a_1|oldsymbol{q}|
ight)$$

• Compute \hbar expansion of scalar-vector Amplitude of $\mathcal{O}_1 = \mathbb{1}$

$$\mathcal{A}(\phi_1 V o \phi_1 V) \sim \mathbb{1}\left(rac{b^{ ext{scl}}}{|oldsymbol{q}|^2} + rac{b^{ ext{cl}}}{|oldsymbol{q}|} + b_0 \log(oldsymbol{q})^2 + b_1 |oldsymbol{q}|
ight) + \dots$$

Spin-Universality:

Superclassical and classical terms are identical $ightarrow a^{
m scl}=b^{
m scl}$ and $a^{
m cl}=b^{
m cl}$

- a_0 and b_0 are pure quantum corrections
- a_1 is pure quantum correction, b_1 is mixed quantum/classical

$$b_1 \equiv a_1 + s(s+1)c_5 \qquad \text{Why?!}$$

• After subtracting the scalar quantum corrections $c_5 O_5$ agrees with the literature!

$$s(s+1)c_5|\boldsymbol{q}| \ \mathbb{1} = rac{c_5}{|\boldsymbol{q}|} \boldsymbol{q}^2 s(s+1) \ \mathbb{1} = rac{c_5}{|\boldsymbol{q}|} (\boldsymbol{q}^2 \boldsymbol{S}^2)$$
 classical!

Summary & Outlook

Recent years has seen amazing synergies between Particle Physics and General Relativity!

• Scattering Amplitudes: obtain analytical results using a cocktail of methods

• computation of classical Hamiltonian up to S^2 terms at $\mathcal{O}(G^3)$

$$H = \sum_{i=1}^{2} \sqrt{\boldsymbol{p}^{2} + m_{i}^{2}} + V^{(1)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) + V^{(2)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{\boldsymbol{L} \cdot \boldsymbol{S}}{\boldsymbol{r}^{2}}$$
$$+ V^{(3)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{(\boldsymbol{p} \cdot \boldsymbol{S})^{2}}{\boldsymbol{r}^{2}} + V^{(4)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{\boldsymbol{S}^{2}}{\boldsymbol{r}^{2}} + V^{(5)}(\boldsymbol{r}^{2}, \boldsymbol{p}^{2}) \frac{(\boldsymbol{r} \cdot \boldsymbol{S})^{2}}{\boldsymbol{r}^{4}} + \cdots$$

Outlook

Our current Framework allows to study various aspects:

• higher spin contributions

 $V_1 V_2 \rightarrow V_1 V_2$ $\phi H^{\mu\nu} \rightarrow \phi H^{\mu\nu}$

• finite size effects

$$\Delta \mathcal{L} = \frac{c}{8} R_{\mu\nu\alpha\beta} F^{\mu\nu} F^{\alpha\beta}$$

- Radiation effects
- more loops
- Three-Body potentials?

(massive higher-spin representations)

spin-spin interactions

higher spin multipoles

(higher dim. operators)

NS equation-of-state

(external gravitons)

[Jones,Solon, arXiv:2208.02281]

$$\phi_1\phi_2\phi_3 \to \phi_1\phi_2\phi_3$$

Conceptually:

- Extracting systematically subleading S^2 operators from finite-spin amplitudes?
- Outlined procedure checked so far only at one-loop order