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Motivation and introduction (I)

The recent discovery of gravitational waves calls for new analytical
techniques to study the two-body problem.

We need waveform templates to extract the signal: the effective one-body
(EOB) [Buonanno, Damour] allows to combine analytical and numerical
techniques valid for different stages of the evolution of compact binaries

Today: focus on the inspiral phase, where we can model compact objects as
point particles in the spirit of effective field theory [Goldberger,Rothstein]
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Motivation and introduction (II)

The program is about scattering amplitudes meeting gravitational waves

but why amplitudes?

Amplitudes are gauge-invariant, universal objects which encode in a compact
way the perturbative scattering dynamics for point particles in a QFT and
can be efficiently computed in an analytic form. New perspective on GR!
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Motivation and introduction (III)

Question 1: How can we study classical bound states from QFT amplitudes
techniques?

This seems an hard question . . .
’It must be said that the theory of
relativistic effects and radiative cor-
rections in bound states is not yet in
an entirely satisfactory shape.’
(Weinberg, QFT I, page 560)

Amplitude-action relation, . . .

Question 2: How far can we push our analytic tools to understand the bound
dynamics from the scattering one?

Boundary to bound dictionary, . . .

Question 3: How important is the all-order resummation for scattering and
bound state observables?

Effective one body method, . . .
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The bound state equation in quantum mechanics (I)

How can we describe bound states of point particles? Start with the
(non-relativistic) hydrogen atom problem with a fixed potential.

We are familiar to the eigenvalue problem

H |ψ⟩ = E |ψ⟩ , H =
p2

2m
+ V , V (r) ∝ −g

r
,

which can be solved exactly (at all orders in the coupling g)

E > 0 ↔ scattering plane waveψ ∝ e i k⃗
>·x⃗ ↔ continuous spectrumEk⃗

E < 0 ↔ normalizable wavefunctionψ ∝ e−k⃗<·x⃗ ↔ discrete spectrumEn

Using perturbation theory this would correspond to an infinite sum
V + VGV + · · ·+ V (GV )n: bound states are intrinsically non-perturbative!
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The bound state equation in quantum mechanics (II)

The natural generalization of the previous picture to the non-relativistic
two-body problem is given by the ”ladder approximation”

which is actually used to study QED bound systems like positronium e+e−!

We can write it as an amplitude recursion relation

which is nothing else that the (quantum) Bethe-Salpeter equation!
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The bound state equation in quantum field theory

The Bethe-Salpeter equation is a non-perturbative recursion relation for 4-pt
amplitudes, which generate the bound state energy poles via the iteration of
a two-massive particle irreducible kernel K

Bethe- Salpeter

equation

M4(p1, p
′
1;P) = K(p1, p

′
1;P) +

∫
d̂4l K(p1, l ;P)G (l ,P)M4(l , p

′
1;P) ,

where G (l ,P) is the two-body propagator.

How can we take the classical limit?
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What is the classical expansion?

Framework: QFT scattering amplitudes techniques for the classical
gravitational interaction of two massive (spinless or spinning) point particles

Consider the conservative 4-pt amplitude: the classical expansion ℏ → 0 is
equivalent to considering the Heavy Particle Effective Theory (HEFT) scheme
[Damgaard,Aoude,Haddad,Helset;Brandhuber,Chen,Travaglini,Wen]

pµ1 := pµA + ℏ
q̄µ

2
, (p′1)

µ :=pµA − ℏ
q̄µ

2
, s= (pA + pB)

2 ,

pµ2 := pµB − ℏ
q̄µ

2
, (p′2)

µ :=pµB + ℏ
q̄µ

2
, t=− ℏ2 |⃗q̄|2 ,

where pA, pB are the classical momenta and q is the momentum transfer.
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The classical Bethe-Salpeter equation

We define the classical Bethe-Salpeter equation from quotienting diagrams by
symmetrization over internal graviton exchanges: [Adamo, RG]

Mcl
4,(n+1)(pA, pB , q)

=

{
Kcl(pA, pB , q) if n = 0
1

n+1

∫
d̂4l Kcl(pA, pB , l)Gcl(pA, pB , l)Mcl

4,(n)(pA, pB , q − l) if n ≥ 1
.

where the two-body propagator is replaced by its on-shell version

Gcl(pA, pB , l) = δ̂(2l · pA)δ̂(2l · pB) ,

and (n) is the number of classical two-massive particle irreducible diagrams.
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Exponentiation of the classical kernel: an exact solution

Going to impact parameter space

f̃ (xq) ≡
∫

d̂4qδ̂ (2pA · q) δ̂ (2pB · q) e i(q·xq)/ℏf (q) ,

the classical BSE becomes

M̃cl
4,(n+1)(pA, pB , x⊥) =

{
K̃cl(pA, pB , x⊥) if n = 0
1

n+1 K̃cl(pA, pB , x⊥)M̃cl
4,(n)(pA, pB , x⊥) if n ≥ 1

,

which means that the final solution exponentiates exactly

M̃cl
4 (pA, pB , x⊥) = eK̃cl(pA,pB ,x⊥) .

Natural generalization for spinning particles! [Adamo,RG; Haddad]

The analytic structure (poles, etc.) in momentum space arise completely from

iMcl
4 (pA, pB ; q⊥) =

4
√
(pA · pB)2 −m2

Am
2
B

ℏ2

∫
d2x⊥e

−iq̄⊥·x⊥
(
eK̃cl(pA,pB ,x⊥) − 1

)
.
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An example: classical kernel for spinless particles at 2PM

We can consider for example the classical kernel up to 2 PM

K̃cl,>(pA, pB , x⊥) =
i

ℏ

[
− 2GN log(µIR|x⊥|)mAmB

2y2 − 1√
y2 − 1

+
3π

4
G 2
NmAmB(mA +mB)

5y2 − 1√
y2 − 1

1

|x⊥|

]
,

which encodes the conservative dynamics of two spinless particles.

Note that the motion is restricted to a plane and completely determined by
the conserved quantities (E , L)!

E :=
E −mA −mB

µ
, L = p∞(E ,mA,mB)|x⊥| , y =

E 2 −m2
A −m2

B

2mAmB
,
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The Hamilton-Jacobi action from amplitudes (I)

Since E > 0 for scattering orbits and E < 0 for bound orbits, we introduce
the superscript > (resp. <) to denote an expression valid for scattering orbits
(resp. bound orbits). How do we perform an analytic continuation?

Natural connection of the kernel with the scattering Hamilton-Jacobi action

K̃>
cl (pA, pB ; x⊥) =

i

ℏ
I> (E , L) , I>r (E , L) =

∮
C>

dr pr (r , E , L) + Lπ ,

where pr is the radial momentum and C> is the contour of integration for
scattering orbits. This is the “amplitude-action” relation! [Bern et al.;
Damgaard,Plante,Vanhove; Kol,O’Connell,Telem; Adamo,RG]
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The Hamilton-Jacobi action from amplitudes (II)

There is a remarkable analytic continuation between the boundary conditions
for scattering and bound planar orbits [Kälin,Porto]∫

C>
r

= 2

∫ ∞

rm(E,L)
,

∫
C<
r

= 2

∫ r+(E,L)

r−(E,L)
,

r−(E , L)
E<0
= rm(E , L) , r+(E , L)

E<0
= rm(E ,−L) ,

thanks to which (pr is invariant under L → −L)

I<r (E < 0, L) = I>r (E < 0, L)− I>r (E < 0,−L) .

Alternatively, analytically continue in the rapidity y at fixed L [Adamo, RG;
Di Vecchia, Heissenberg, Russo, Veneziano]

I<r

(√
y2 − 1, L

)
= I>r

(
i
√
1− y2, L

)
+ I>r

(
−i
√

1− y2, L
)
.

This picture generalize to the case of aligned-spin particles L⃗//a⃗1, a⃗2, since
the motion still remains on the equatorial plane. [Kälin,Porto]

Today: What happens when L⃗ and a⃗ are oriented in generic directions?
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Today: What happens when L⃗ and a⃗ are oriented in generic directions?

Riccardo Gonzo (EDI) From scattering amplitudes to bound state observables GWs meet Amplitudes, 22 August 2023 14 / 30



Hamiltonian for geodesics in Kerr

Let’s consider the generic orbit in a Kerr black hole of spin a⃗ for a massive
point particle with orbital angular momentum L⃗ · a⃗ ̸= |L⃗||a⃗|

which are described by the geodesic Hamiltonian H(x , p) = 1/2 gµν
Kerrpµpν in

some convenient Boyer-Lindquist coordinates (t, r , θ, ϕ).
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The Hamilton-Jacobi action for generic Kerr orbits

Using the integrability of Kerr, we can generalize the H-J action for generic
orbits of a massive spinless probe in a Kerr black hole [Carter; RG,Shi]

I := Ir + Iθ , Ir =

∫
Cr

pr dr , Iθ =

∫
Cθ

pθ dθ ,

with the radial (resp.polar) momentum pr (resp.pθ) and contour Cr (resp. Cθ)

The momenta are expressed in terms of radial R(r) and polar potential Θ(θ)

pr ∝
√
R(r)

∆(r)
, pθ ∝

√
Θ(θ) ,

which are functions of the conserved charges (m,E , L,Q), with the Carter
constant being a measure of the motion of the particle off the equatorial plane

Q = |L⃗|2 − L2 − |p⃗|2(a · r̂)2 .
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Radial action for generic Kerr orbits (I)

The radial action for unbound and bound orbits is, respectively,

I>r = 2

∫ +∞

rm(E,L,a,LQ )

pr (E , L, a, LQ) , I<r = 2

∫ r+(E,L,a,LQ )

r−(E,L,a,LQ )

pr (E , L, a, LQ) ,

which are expressed in terms of LQ =
√
Q + L2 and E = (E 2 −m2)/m2.

With our radial potential we find the analytic continuation [RG,Shi]

r−(E , L, a, LQ)
E<0
= rm(E , L, a, LQ) , r+(E , L, a, LQ)

E<0
= rm(E ,−L,−a,−LQ) ,

which implies (pr is invariant under (a, L, LQ) → (−a,−L,−LQ))

I<r (E , L, a, LQ)
E<0
= I>r (E , L, a, LQ)− I>r (E ,−L,−a,−LQ) .
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Radial action for generic Kerr orbits (II)

The radial action for scattering orbits is

I>r =

√
E√

M2 − a2

∫ um

0

du

u2

4∏
j=1

(
1− u

uj

) 1
2
(

1

uB − u
− 1

uA − u

)
,

where we have defined the (inverse of) radial roots {uj}j=1,...,4 and

R(u) = −a2Q

u4

4∏
j=1

(u − uj) , uA =
M +

√
M2 − a2

a2
, uB =

M −
√
M2 − a2

a2
.

The exact all-order expression is (ϵ = IR-regulator > 0) [RG, Shi]

I>,ϵ
r =

m
√
E

u1−ϵ
m

√
M2 − a2

Γ(3/2)Γ(−1 + ϵ)

Γ(1/2 + ϵ)

×
[
1

uB
F

(4)
D

(
ϵ− 1,

{
1,−1

2
,−1

2
,−1

2

}
,
1

2
+ ϵ;

um
uB
,
um
u1
,
um
u2
,
um
u3

)
−(uB ↔uA)

]
.
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Polar action for generic Kerr orbits (I)

The most general polar action is [Kapec,Lupsasca; RG, Shi]∫
Cθ

= 2n

∣∣∣∣∣
∫ θ±

π/2

∣∣∣∣∣+ ηin

∣∣∣∣∣
∫ θin

π/2

∣∣∣∣∣− ηout

∣∣∣∣∣
∫ θout

π/2

∣∣∣∣∣ ,
where θin (resp. θout) is the initial (resp. final) polar angle, n is the number
of turning points, θ± are the roots of the polar potential and ηin, ηout = ±1.

For generic Kerr orbits of interest
for the amplitude community,

Iθ = 2n

∣∣∣∣∣
∫ θ±

π/2

∣∣∣∣∣pθ − ηout

∣∣∣∣∣
∫ θout

π/2

∣∣∣∣∣pθ ,
where we set θin = π/2 and
(n> , η>out) = (1,−1), (n< , η<out) =
(2,+1) are fixed by the PM expan-
sion of the equations of motion.
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Polar action for generic Kerr orbits (II)

We obtain the exact all order polar action

I>θ =
π

2

√
QU+F

(2)
D

(
1

2
,
{
1,−1

2

}
, 2;U+,

U+

U−

)
+
√

QU>
outF

(3)
D

(
1

2
,
{
1,−1

2
,−1

2

}
,
3

2
;U>

out,
U>
out

U+
,
U>
out

U−

)
,

where U± = cos2(θ±) and of the outgoing angle U>
out = cos2(θout) is

U>
out = U+ sn2

(
X>
0

∣∣∣U−

U+

)
,

X>
0 = −4um

√
−U−a2 F

(3)
D

(
1,
{1
2
,
1

2
,
1

2

}
,
3

2
;
um
u1
,
um
u2
,
um
u3

)
.

The polar action obeys the analytic continuation [RG, Shi]

I<θ (E , L, a, LQ ; n>, η>out)
E<0
= I>θ (E , L, a, LQ ; n<, η<out) .

Now it’s time to have fun and compute scattering and bound observables!

Riccardo Gonzo (EDI) From scattering amplitudes to bound state observables GWs meet Amplitudes, 22 August 2023 20 / 30



Polar action for generic Kerr orbits (II)

We obtain the exact all order polar action

I>θ =
π

2

√
QU+F

(2)
D

(
1

2
,
{
1,−1

2

}
, 2;U+,

U+

U−

)
+
√

QU>
outF

(3)
D

(
1

2
,
{
1,−1

2
,−1

2

}
,
3

2
;U>

out,
U>
out

U+
,
U>
out

U−

)
,

where U± = cos2(θ±) and of the outgoing angle U>
out = cos2(θout) is

U>
out = U+ sn2

(
X>
0

∣∣∣U−

U+

)
,

X>
0 = −4um

√
−U−a2 F

(3)
D

(
1,
{1
2
,
1

2
,
1

2

}
,
3

2
;
um
u1
,
um
u2
,
um
u3

)
.

The polar action obeys the analytic continuation [RG, Shi]

I<θ (E , L, a, LQ ; n>, η>out)
E<0
= I>θ (E , L, a, LQ ; n<, η<out) .

Now it’s time to have fun and compute scattering and bound observables!

Riccardo Gonzo (EDI) From scattering amplitudes to bound state observables GWs meet Amplitudes, 22 August 2023 20 / 30



Polar action for generic Kerr orbits (II)

We obtain the exact all order polar action

I>θ =
π

2

√
QU+F

(2)
D

(
1

2
,
{
1,−1

2

}
, 2;U+,

U+

U−

)
+
√

QU>
outF

(3)
D

(
1

2
,
{
1,−1

2
,−1

2

}
,
3

2
;U>

out,
U>
out

U+
,
U>
out

U−

)
,

where U± = cos2(θ±) and of the outgoing angle U>
out = cos2(θout) is

U>
out = U+ sn2

(
X>
0

∣∣∣U−

U+

)
,

X>
0 = −4um

√
−U−a2 F

(3)
D

(
1,
{1
2
,
1

2
,
1

2

}
,
3

2
;
um
u1
,
um
u2
,
um
u3

)
.

The polar action obeys the analytic continuation [RG, Shi]

I<θ (E , L, a, LQ ; n>, η>out)
E<0
= I>θ (E , L, a, LQ ; n<, η<out) .

Now it’s time to have fun and compute scattering and bound observables!
Riccardo Gonzo (EDI) From scattering amplitudes to bound state observables GWs meet Amplitudes, 22 August 2023 20 / 30



Azimuthal deflection angle for generic Kerr orbits

Once we have the H-J action, we can obtain the azimuthal deflection angle
by differentiation over L

∆ϕ+ π = − ∂I

∂L
= −∂Ir

∂L
− ∂Iθ
∂L

which gives in the perturbative expansion in GNM (a ≪ GNM)

∆ϕ =
2GNMmL(2E + 1)√

EL2Q
+

3πG 2
NM

2m2L(5E + 4)

4L3Q

+ a
√
E + 1

(
4GNMm2

√
E(L2Q − 2L2)

L4Q

)
+ . . .

Matches known result in the equatorial limit Q → 0 [Damgaard, Hoogeveen,
Luna, Vines], but the expansion is new for generic orbits! [RG,Shi]
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Polar deflection angle for generic Kerr orbits

From the r − θ equations of motion we get the polar deflection angle in the
perturbative expansion

∆θ√
Q

= −2GNMm(2E + 1)√
EL2Q

− 3πG 2
NM

2m2(5E + 4)

4L3Q

+ a
√
E + 1

(
8GNMm2L

√
E

L4Q

)
+ . . .

which vanish identically in the equatorial limit.

Matches expectations that when a → 0 we get ∆ϕ
a→0∼ −(L/

√
Q)∆θ at the

lowest order (the motion is happening on an inclined plane)!
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Time delay for generic null Kerr orbits

The time delay is obtained by differentiating over the energy E in the HJ
action. For generic null geodesics with fixed b relative to an observer with
b′ ≫ b but at the same energy E ′ = E [Camanho, Edelstein, Maldacena,
Zhiboedov; Accettulli Huber, Brandhuber, De Angelis, Travaglini]

∆T =
∂I

∂E

∣∣∣∣∣
LQ ,E

− ∂I

∂E

∣∣∣∣∣
L′
Q≫LQ ,E ′=E

= 4GNM log

(
L′Q
LQ

)
+

15πG 2
NM

2E

2LQ
+

64G 3
NM

3E 2

L2Q

− aLE

L4Q

(
8GNML2Q + 15πG 2

NM
2ELQ + 256G 3

NM
3E 2
)
+ . . .

which in the equatorial limit matches [Bautista, Guevara, Kavanagh, Vines].
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Fundamental frequencies for Kerr orbits

The H-J action provides an intrinsic definition of the fundamental frequencies
for the bound motion ωr , ωϕ, ωθ via the action-angle representation [Schmidt]:

ωr = − 1

Ω

∂Jθ
∂Q

, ωθ =
1

Ω

∂Jr
∂Q

, ωϕ =
1

Ω

(
∂Jr
∂L

∂Jθ
∂Q

− ∂Jr
∂Q

∂Jθ
∂L

)
,

with Ω := ∂Jr
∂H

Jθ
∂Q − ∂Jr

∂Q
∂Jθ
∂H , Jϕ = L, Jr =

∮
pr dr = I<r , Jθ =

∮
pθdθ = I

<(1)
θ .

From the amplitude perspective we want bound observables invariant under
the choice of the time coordinate, i.e. the frequency ratios [RG, Shi]

Kϕr :=
ωϕ

ωr
=
∂Jr/∂Q

∂Jθ/∂Q

∂Jθ
∂L

− ∂Jr
∂L

, K θr :=
ωθ

ωr
= −∂Jr/∂Q

∂Jθ/∂Q
.

corresponding to the precession of the periastron and of the orbital plane.
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Frequency ratios for Kerr orbits

The periastron advance is [RG,Shi]

Kϕr = 1 +
3G 2

NM
2m2(5E + 4)

4L2Q
+

aG 2
NM

2m3
√
E + 1(LQ − 3L)(5E + 2)

L4Q

+
3a2G 2

NM
2m4

32L6Q

[
L2(445E2 + 416E + 40)− LQ(LQ + 2L)(85E2 + 80E + 8)

]
,

which matches [Kälin,Porto] in the equatorial limit.

The precession of the orbital plane is

K θr = 1 +
3G 2

NM
2m2(5E + 4)

4L2Q
− 3aG 2

NM
2m3L

√
E + 1(5E + 2)

L4Q

+
3a2G 2

NM
2m4

32L6Q

[
L2(445E2 + 416E + 40)− L2Q(85E2 + 80E + 8)

]
.

As expected frequencies become degenerate in the spinless case ωθ
a→0→ ωϕ
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Radiative observables in the S-matrix formalism (I)

How can the previous picture be generalized in the presence of radiation?
Consider the 5-pt recursion with the emission of a positive energy graviton

and apply the symmetrization procedure [Adamo, RG, Ilderton]

A similar recursion holds for the emission of n gravitons.

Can we find an exact solution from the resummation?
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Radiative observables in the S-matrix formalism (II)

The classical 5−pt recursion relation is of the form

Mcl,µ1ν1

5,(1) (pA, pB ; q1, q2)
∣∣∣
Ek′

1
>0

=Kcl,µ1ν1

R (pA, pB ; q1, q2) ,

Mcl,µ1ν1

5,(n+1)(pA, pB ; q1, q2)
∣∣∣
Ek′

1
>0

=
1

n + 1

[ ∫
d̂4l Kcl(pA, pB ; l)G

cl(pA, pB ; l)Mcl,µ1ν1

5,(n) (pA, pB ; q1 − l , q2 + l)

+

∫
d̂4l Kcl,µ1ν1

R (pA, pB ;q1 − l , q2 + l)G cl(pA, pB ; l)Mcl
4,(n)(pA, pB ; l)

]
,

We can then solve the recursion by working in impact parameter space

f̃ (xq1 , xq2) ≡
∫

d̂4q1d̂
4q2δ̂ (2pA · q1) δ̂ (2pB · q2)

× δ̂ (q1 + q2 − k) e i(q1·xq1+q2·xq2 )/ℏf (q1, q2) ,

with momentum transfers (q1, q2) of initial and final pair of massive states.
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Radiative observables in the S-matrix formalism (III)

The classical S-matrix is [Cristofoli, RG, Moynihan, O’Connell, Ross, Sergola,
White; Britto, RG, Jehu; Di Vecchia, Heissenberg, Russo, Veneziano]

S̃cl
∣∣∣
Ek1

,...,EkN
>0

∼ eK̃
cl(pA,pB ;xq1 ,xq2 )e

∑
σ

∫
dΦ(k)K̃cl

R(pA,pB ;xq1 ,xq2 ,k
σ)a†σ(k)+h.c. ,

which includes a coherent state of gravitons representing the classical
gravitational wave (see D.Kosower’s talk).

Comments: 1) All amplitude observables for the two-body problem can
derived from such gauge-invariant representation; 2) Compact expression
which unifies the treatment of potential and radiative modes.

Open problem: can we understand the analytic continuation of the waveform?
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Summary and future directions

We derived the classical Bethe-Salpeter equation which describes
gravitational bound systems, both for particles with and without spin, using a
new physical principles for classical amplitudes

We solved the BS equation in impact parameter space, making a connection
with the Hamilton-Jacobi action via the amplitude-action relation

We discussed a generalization of the boundary to bound dictionary for generic
angular momentum orientations (i.e. including both radial and polar action),
focusing on a massive probe particle moving in a Kerr background

We provided all-order expressions for observables in the probe limit for the
scattering (azimuthal and polar deflection angles, time delay) and bound
(periastron advance, precession of the orbital plane) dynamics

Future directions: understand the amplitude-action relation for generic spin
orientations, generalized Carter constant for spinning particles, analytic
continuation for radiative observables, self-force from amplitudes, . . .
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