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: General Relativity

Non-Relativis

and the method of regions for bound binary systems

[Goldberger and Rothstein, Phys. Rev. D 73, 104029 (2006)]

Gnm
Orbital scale: w2~ 2N = rs~2GNM ~ rv?
r

GW scale: A~ r
v

rs ~ TV2 ~ AU°

=
In the nonrelativistic regime, v < 1, hierarchy of scales:
rs LK r KL A
Method of regions: huy = H,. + huw
~~

potential modes radiative modes

Hy, : off-shell modes scaling as (k°, k) ~ (v/r, 1/r)
By, : on-shell modes scaling as (k°, k) ~ (v/r,v/7)




The Far Zone (or Radiation Zone)

Integrating out the potential modes:

eiseff[zajbuu] = /DHMD eXP{iSEHJ,-GF[Huu + }_l;“,] —+ iSpp [ma(t)7 H;Lu + }_ll“’]}

1 _
= Seg = 5 /d4:c TH by

, A > r, makes Seg — Smult:
[Goldberger and Ross, Phys. Rev. D 81, 124015 (2010)]
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GW observables can be computed, e.g.:
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Nonlinear Effects: Emission and Radiation-Reaction

Emission diagrams

— IR and UV divergences

i Aot (0, K) — Renormalization group evolution
L Atail (W, =
[GLA, Foffa, Sturani, PRD 104, 084095 (2021)]

Self-energy diagrams

{FPNM"LL& ;"J\,Y.V\/\‘\-i — Im(Sseif) = Energy flux
4

— Re(Sseir) = Conservative contributions
1,7 1.0 1,J E 1,J

Computed for arbitrary multipole moments
[GLA, Foffa, Sturani, Phys. Rev. D 104, 124075 (2021)] w0 owax o
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Basic Framework

Consider an arbitrary source of size r emitting GWs with wavelength A.

In this long wavelength regime, the interaction of the system with gravity is given
by a multipolar coupling through the following effective action:
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= Radiation is sourced by the multipole moments I“/%* and JbliRa [R=1t1...1]

We work with standard GR in the harmonic gauge (I'* = gP°T%,.)
1
Sbulk = 2I\Z/derlﬂf»‘\/ [ (9) - 5b F”} )

where A2 = 327Gy




tional Field

The Classical Gravitational Field at a spacetime position x is given by
(hyw (z)) = / DheShy,, (z).
The most relevant role is played by the trace-reversed quantity fzuu, defined by

_ . 1
B = Pu®Phag,  with P = = (200 + 605 —mun®) .

When interactions are considered, the field h,, will have the generic form

dw efiwt+ik»x
huy = | — 55— XiAu(wk).
(@) /k%kQ_(wHa)Q X i Ay (0, )

In particular, in direct space, this takes the form
(hyv () = —167G N /dd“az’GR(t —t',x = x)T(a').

Hence, we have the identification

T () ~ iAu (w, k).




Gauge Condition an

It follows directly from the trace-reversed version of (hy.(z)) that

dw eikm

O @) == | G i

X kH Ay (w, k) .

Hence, we immediately see that, if the condition k“ﬁw = 0 is satisfied, we have
E* A (w, k) =0 = O (huw(z)) =0 and OMTy(x) =0.

The harmonic gauge condition: I'* = 0.
> Pertubatively in G, O(G?,): HRE) = AR p(=2) (D],

From this, it is easy to derive the important result: k*.A,, (w, k) x (w? — k2).

Thus: Physically relevant amplitudes ¢A,, are such that, on-shell (k = wn)

k' Ay (w,wh) =0 =

On-shell amplitudes: Useful to build hiTjT in the far field approximation, D > r:
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er Amplitudes

The computation of the gravitational amplitudes for the Energy E and angular
momentum J°¢ which in d = 3 can be represented by L; = %ei]-k Jilk | yields

ZASSO) =16rGNE(w), Zﬁéﬁo) = 647TGNi]€i€ijk.Lj (w), ’LA;%O) =0.
The gauge condition is verified in this case, following from

wE(w) =0, wL;(w) =0.

= Satisfied at this perturbative order by admitting that E, L; are conserved.

The leading-order electric and magnetic multipole amplitudes read

Z./IELIV) = —167TGN(—i)rcg)kRIin(w)aM,,,ij ,

iAS) = —87G N (—i) et krka JU R (W)bLy i -

2
ago,ij = kikj, aok,ij = —wk;dik , Akl i = w6050 -

boo,ib =0, bok,ib = kidpk » bri,ib = —w (i b1 + 010k ) -

= In this case, the Ward identities are trivially satisfied.




The M-tail amplitude is divergent for d — 3 and its radiative, TT, on-shell part is
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where e = d — 3, x = —eYw?/pm, and length scale u~! defined by Gg = Gyp~¢.

In particular, as expected, for the full amplitudes, we find

k”AEﬁ}m;taﬂ) (w,wn) =0.




The Angular Momentum Fa

For the angular momentum failed tail, the radiative, T'T, on-shell part is given by
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From the full amplitude, we have

k" A 0(w,wn) = 0.

K Ay (w,wm) = (— w;ﬁi( )[k w? e () /q ﬁ}

Hence, we notice that, since the integral in q is proportional to OR, this result
vanishes on account of the tracelessness of 1“2 unless r = 0, in which

k#"iu”r:o = 16miG 3 kaw* T T (W) .

The presence of this “anomaly”can be linked to the term in blue above.




5 Equation in Pertu

Variation of the Einstein-Hilbert plus gauge-fixing action, with metric expanded as
Guv = Muv + h/,LVv yields

SEHLGE ~ Az/d% (h&%h + h20*h +...)

= Ohuy = Nuwlh, h] + My [h bR 4 ... .

Perturbative expansion in Gy, with 2(™) denoting contributions of O(GY%,), gives

Rty =0,
7(2) _ W p
ORZ) = Ny [nD, )],

DBL?»V) = N B, 1@ 4 My, [hD, RO p D]

= Explicit check for hEL‘]V_ftaH)

a solution of the perturbed Einstein’s equation DBELQV) = N,W[h“) , h(1>].

, for the electric quadrupole, shows that it is indeed




Equations of Motion for the Full Problem

The problem of solving perturbatively the Einstein field equations is translated
into solving simultaneously the two equations

Ohuy =Ap and  0%hu, =0.

Once we obtain a particular solution hﬁy of EIFLM, = Auv, we can alw@ys find a
homogeneous solution hzy that precisely cancels the divergence in 0% hy .

A general solution to the homogeneous equation, based on O(9* Bu,,) =0, can be
always obtained in terms of four SFT tensors, say N, Pr,Qr, Rr, such that

_— o
ORk, =0  and Rl = —0"RE,.

’ = General solution to the problem is h;,, = hfw + hﬁl,.

In terms of amplitudes, we have (A, = ik“ﬂ,w)

AP = ik Np(w),
=0

oo o0
AP =il ik Pr(w) + > [il_lkL—lQiL—l(w) + €iabi'kakr 1 Rpr—1(w)| -
1=0 =1




A solution éa,, to this, corresponding to the homogeneous solution and being
such that k*a,, = —k* Ay, reads

o0 = — L N(w) + ik [—gzva(m — = Qu(w) - 3Pa<w>} :

i , k o
ag; = ;Qi(w) + 3iwP;(w) = €iab ;aRb(w) +> i kL Nip a1 (W),
1=2

éij = —6ijP(w) + Zilil{ZJijkL_lPL_l(w) — Gk‘L_Qk(in)L,Q(w)
=2

—ikp_s [—iwNgp—2(w) — 3w Pijr_2(w) — Qijr—2(w)] — 2kaL—2€ab(iRj)bL72(w)} .

Qi = 167TiG?\,w4Ji|(“Il)i and Ry = fSﬂiG%\,w‘lebch“CIid.
From which the following results are obtained
agp =0
0; = —8miG W3 TR (k6 — kydiy) 7R

a;; = —16miGRwt ™




Self-energy Diagrams from En

By performing cuts in self-energy diagrams, we can see how this type of diagram is
related to the emission amplitudes present in the subdiagrams, e.g., notice that:
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iSef = 16A2/ Iij(w )Ikz(w)/m (—5)
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1 4
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The content of the last two lines is precisely the d-dimensional sum of the physical
polarizations €;;(k, h) over h = +, X, computed on the mass-shell k|2 = w?, so:

iSu = ~1o57 | 3o @) [ G (—5) [gemk, Wik h)}
- 72/ & iAo (w, k)] (k2 ) [i Ao (—w, —K)] .

= Product of two leading-order emission amplitudes.




Self-ene

More generally, for the gluing of two amplitudes A, and B, we have

1Seft

1 d
~ | 22 A (@, K) DIy, hpo|Bpo (—w, —k)
2 k 2

1 dw 1
zi/kﬁ,% (w0, K)Dlhis, ki) BET (—w, k) .

As a consequence of the Ward identity, the T'T part alone of the emission
amplitude is sufficient to reconstruct the self-energy diagram.

For the mass tail, gluing A(tall) to A(LO), we obtain
Sé;ftail) 2R 272 (r 4 3)(r + 4)
(r+1)(r+2)(2r +5)!

d B . 1

(e)

This allows one to derive explicit relations between v, ' and Kr42:

(e) 1 1 1 1 1
= . — —_ - = — 2 .
Yr Kr42 <2+r+3+r+4 2HT+% og

(m)

And similar to the magnetic case, connecting v, ’ and my42.




Diagram for the Angular Momentum Failed Tail

Since the J-failed tail presents no anomaly for » > 0 in the electric case, the
computation of the self-energy from standard EFT methods or by gluing of
amplitudes should result in the same expression. Indeed, we have:

ig(I—tail) _ 2 27(12 + 50r + 35r2 + 1073 + r4)
eff N+ 130 +2)3(r + 3)(1 +2r)(3 + 2r) (5 + 2r)(2r)!
d ) )
% Jb\a, / aw w7+2TIa,1R(w)Ib7,R(_w) . (T‘ > 0)
2m
For the quadrupole case, r = 0, we must glue the corrected amplitude
iMuv = 1Ay + ia,, previously obtained. In this case, we get:

—0. J—tai 1 . .
iSé;ffo,J tail) :—%G?\,J”k/dwﬁﬂ( )Ijk(—w)w7.

= Standard self-energy computation gives the coefficient 8/15. This is obtained by
just gluing ¢4, and thus, does not correspond to the physically correct value.

Interestingly, by setting » — 0 in the generic formula above (for r > 0) gives the
correct value 1/30.
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Conclusions

» We have studied Gravitational Scattering Amplitudes for leading-order
processes, the simple tail, and the angular momentum failed tail;

» We have identified, for the first time, a classical anomaly in the quadrupole
cases of the angular momentum failed tail;

» A fixing at the level of the amplitudes could be implemented by the
introduction of counter-terms, within a consistent framework.

Besides this,

» We have learned how emission amplitudes could be used to compute
self-energy diagrams;

» In this case, we were able to correct previous results for the conservative
dynamics stemming from the angular momentum failed tail.

= The work presented here is important to correctly account for the far-zone
effects of back-scattering in the conservative dynamics of compact binary systems.

= Particularly important in the completion of the 5PN dynamics.
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