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Non-Relativistic General Relativity

Hierarchy of scales and the method of regions for bound binary systems
[Goldberger and Rothstein, Phys. Rev. D 73, 104029 (2006)]

Orbital scale: v2 ∼
GNm

r
⇒ rs ∼ 2GNm ∼ rv2

GW scale: λ ∼
r

v

⇒ rs ∼ rv2 ∼ λv3

In the nonrelativistic regime, v ≪ 1, hierarchy of scales:

rs ≪ r ≪ λ

Method of regions: hµν = Hµν︸︷︷︸
potential modes

+ h̄µν︸︷︷︸
radiative modes

Hµν : off-shell modes scaling as (k0,k) ∼ (v/r, 1/r)

h̄µν : on-shell modes scaling as (k0,k) ∼ (v/r, v/r)
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The Far Zone (or Radiation Zone)

Integrating out the potential modes:

eiSeff [xa,h̄µν ] =

∫
DHµν exp{iSEH+GF[Hµν + h̄µν ] + iSpp[xa(t), Hµν + h̄µν ]}

⇒ Seff =
1

2

∫
d4xTµν h̄µν

Multipole expansion, λ ≫ r, makes Seff → Smult:
[Goldberger and Ross, Phys. Rev. D 81, 124015 (2010)]

Smult = −E

∫
dτ−

1

2

∫
dxµ Labω

ab
µ +

1

2

∞∑
n=0

∫
dτc

(I)
n Iaba1·an (τ)∇a1 · · ·∇anEab(x)

+
1

2

∞∑
n=0

∫
dτc

(J)
n Jaba1...an (τ)∇a1 · · ·∇anBab(τ)

GW observables can be computed, e.g.:

P =
1

2T

∑
pol

∫
d3k

(2π)3
|A(ω,k)|2
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Nonlinear Effects: Emission and Radiation-Reaction

Emission diagrams

– IR and UV divergences

– Renormalization group evolution

[GLA, Foffa, Sturani, PRD 104, 084095 (2021)]

Self-energy diagrams

– Im(Sself) ⇒ Energy flux

– Re(Sself) ⇒ Conservative contributions

Computed for arbitrary multipole moments
[GLA, Foffa, Sturani, Phys. Rev. D 104, 124075 (2021)]
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Basic Framework

Consider an arbitrary source of size r emitting GWs with wavelength λ.

Assumption: compact source ⇒ λ ≫ r .

In this long wavelength regime, the interaction of the system with gravity is given
by a multipolar coupling through the following effective action:

S0 =

∫
dt

1

2
Eh00−

1

2
Jb|ah0b,a−

∑
r≥0

(
c
(I)
r IijR∂RR0i0j +

c
(J)
r

2
Jb|iRa∂RR0iab

) ,

with c
(I)
r =

1

(r + 2)!
, c

(J)
r =

2(r + 2)

(r + 3)!
.

⇒ Radiation is sourced by the multipole moments IijR and Jb|iRa. [R = i1 . . . ir]

We work with standard GR in the harmonic gauge (Γµ ≡ gρσΓµ
ρσ .)

Sbulk = 2Λ2

∫
dd+1x

√
−g

[
R(g)−

1

2
ΓµΓ

µ

]
,

where Λ−2 ≡ 32πGN .
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The Gravitational Field

The Classical Gravitational Field at a spacetime position x is given by

⟨hµν(x)⟩ =
∫

Dh eiS[h]hµν(x) .

The most relevant role is played by the trace-reversed quantity h̄µν , defined by

h̄µν = Pµν
αβhαβ , with Pµν

αβ =
1

2

(
δαµδ

β
ν + δβµδ

α
ν − ηµνη

αβ
)
.

When interactions are considered, the field hµν will have the generic form

⟨hµν(x)⟩ =
∫
k

dω

2π

e−iωt+ik·x

k2 − (ω + ia)2
× iAµν(ω,k) .

This equation defines the Gravitational Scattering Amplitude iAµν .

In particular, in direct space, this takes the form

⟨h̄µν(x)⟩ = −16πGN

∫
dd+1x′GR(t− t′,x− x′)Tµν(x

′) .

Hence, we have the identification

Tµν(x) ∼ iĀµν(ω,k) .
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Gauge Condition and Ward Identity

It follows directly from the trace-reversed version of ⟨hµν(x)⟩ that

∂µ ⟨h̄µν(x)⟩ = −
∫
k

dω

2π

eik·x

k2 − (ω + ia)2
× kµĀµν(ω,k) .

Hence, we immediately see that, if the condition kµĀµν = 0 is satisfied, we have

kµĀµν(ω,k) = 0 =⇒ ∂µ ⟨h̄µν(x)⟩ = 0 and ∂µTµν(x) = 0 .

The harmonic gauge condition: Γµ = 0.

▶ Pertubatively in GN , O(Gn
N ): ∂µh̄

(n)
µν = λ[h(n−1), h(n−2), . . . , h(1)].

From this, it is easy to derive the important result: kµĀµν(ω,k) ∝ (ω2 − k2).

Thus: Physically relevant amplitudes iAµν are such that, on-shell (k ≡ ωn̂)

kµĀµν(ω, ωn̂) = 0 ⇒ This is the statement of the Ward identity.

On-shell amplitudes: Useful to build hTT
ij in the far field approximation,D ≫ r:

hTT
ij (x) ≡ ⟨h̄TT

ij (x)⟩ = −
1

4πD
Λijkl

∫
dω

2π
iĀkl(ω, ωn)e

−iωtret .
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Leading-order Amplitudes

The computation of the gravitational amplitudes for the Energy E and angular
momentum Jb|a, which in d = 3 can be represented by Li =

1
2
ϵijkJ

j|k, yields

iĀ(LO)
00 = 16πGNE(ω) , iĀ(LO)

0k = 64πGN ikiϵijkLj(ω) , iĀ(LO)
kl = 0 .

The gauge condition is verified in this case, following from

ωE(ω) = 0 , ωLi(ω) = 0 .

⇒ Satisfied at this perturbative order by admitting that E, Li are conserved.

The leading-order electric and magnetic multipole amplitudes read

iĀ(I)
µν = −16πGN (−i)rc

(I)
r kRIijR(ω)aµν,ij ,

iĀ(J)
µν = −8πGN (−i)rc

(J)
r kRkaJ

b|iRa(ω)bµν,ib .

a00,ij = kikj , a0k,ij = −ωkjδik , akl,ij = ω2δikδjl .

b00,ib = 0 , b0k,ib = kiδbk , bkl,ib = −ω(δikδbl + δilδbk) .

⇒ In this case, the Ward identities are trivially satisfied.
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The Simple Mass Tail

The M -tail amplitude is divergent for d → 3 and its radiative, TT, on-shell part is

A(e,tail)TT
ij = 32π(−i)rω3c

(I)
r G2

NEΛTT
ij ,klkRIklR(ω)×

(
1

ϵ
− κr+2 +

log x

2

)
,

A(m,tail)TT
ij = 32π(−i)rω2c

(J)
r G2

NEΛTT
ij ,klkRknJ

n|kRl(ω)×
(
1

ϵ
− πr+2 +

log x

2

)
,

with

κl =
2l2 + 5l + 4

l(l + 1)(l + 2)
+

l−2∑
i=1

1

i
, πl =

l − 1

l(l + 1)
+

l−1∑
i=1

1

i
,

where ϵ ≡ d− 3, x ≡ −eγω2/µπ, and length scale µ−1 defined by Gd = GNµ−ϵ.

In particular, as expected, for the full amplitudes, we find

kµA(e,m;tail)
µν (ω, ωn) = 0 .
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The Angular Momentum Failed Tail

For the angular momentum failed tail, the radiative, TT, on-shell part is given by

iA(e,J−ftail)
ij

TT =
32π(−i)rc

(I)
r ω2

(r + 1)(r + 2)(r + 3)(r + 4)
G2

NΛTT
ij,(kl)J

m|nkR−1I
pRk(ω)

×
{
kn
[
2(r2 + 4r + 6)δlmkpki1 − r(r2 + 5r + 10)δlpδi1mω2

]
+24δ0rδlmδnpki1ω

2

}
.

From the full amplitude, we have

kµĀµ0(ω, ωn) = 0 .

kµĀµl(ω, ωn) = (−i)r+1 c
(I)
r

2Λ4

(
iω

4

)[
kaω

2Ji|aIiRl(ω)

∫
q

qR

(q2 − ω2)

]
.

Hence, we notice that, since the integral in q is proportional to δR, this result
vanishes on account of the tracelessness of IiRl, unless r = 0, in which

kµĀµl

∣∣
r=0

= 16πiG2
Nkaω

4Ji|aIil(ω) .

The presence of this “anomaly”can be linked to the term in blue above.
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The Einstein’s Equation in Perturbation Theory

Variation of the Einstein-Hilbert plus gauge-fixing action, with metric expanded as
gµν = ηµν + hµν , yields

SEH+GF ∼ Λ2

∫
d4x (h∂2h+ h2∂2h+ . . . )

⇒ □h̄µν = Nµν [h, h] +Mµν [h, h, h] + . . . .

Perturbative expansion in GN , with h(n) denoting contributions of O(Gn
N ), gives

□h̄
(1)
µν = 0 ,

□h̄
(2)
µν = Nµν [h

(1), h(1)] ,

□h̄
(3)
µν = Nµν [h

(1), h(2)] +Mµν [h
(1), h(1), h(1)] ,

. . . .

⇒ Explicit check for h
(J−ftail)
µν , for the electric quadrupole, shows that it is indeed

a solution of the perturbed Einstein’s equation □h̄
(2)
µν = Nµν [h(1), h(1)].
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Equations of Motion for the Full Problem

The problem of solving perturbatively the Einstein field equations is translated
into solving simultaneously the two equations

□h̄µν = Λµν and ∂µh̄µν = 0 .

Once we obtain a particular solution hp
µν of □h̄µν = Λµν , we can always find a

homogeneous solution hh
µν that precisely cancels the divergence in ∂µh̄µν .

A general solution to the homogeneous equation, based on □(∂µh̄µν) = 0, can be
always obtained in terms of four SFT tensors, say NL, PL, QL, RL, such that

□h̄h
µν = 0 and ∂µh̄h

µν = −∂µh̄p
µν .

⇒ General solution to the problem is hµν = hp
µν + hh

µν .

In terms of amplitudes, we have (Āν ≡ ikµĀµν)

Ā0 =
∞∑
l=0

ilkLNL(ω) ,

Āi =
∞∑
l=0

il+1kikLPL(ω) +
∞∑
l=1

[
il−1kL−1QiL−1(ω) + ϵiabi

lkakL−1RbL−1(ω)
]
.
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The homogeneous Solution

A solution iaµν to this, corresponding to the homogeneous solution and being
such that kµāµν = −kµĀµν , reads

ā00 = −
i

ω
N(ω) + ika

[
−

i

ω
Na(ω)−

1

ω2
Qa(ω)− 3Pa(ω)

]
.

ā0i =
i

ω
Qi(ω) + 3iωPi(ω)− ϵiab

ka

ω
Rb(ω) +

∞∑
l=2

il−1kL−1NiL−1(ω) ,

āij = −δijP (ω) +
∞∑
l=2

il−1

{
2δijkL−1PL−1(ω)− 6kL−2k(iPj)L−2(ω)

− ikL−2

[
−iωNijL−2(ω)− 3ω2PijL−2(ω)−QijL−2(ω)

]
− 2kaL−2ϵab(iRj)bL−2(ω)

}
.

For the electric J-failed tail, we derive

Qal = 16πiG2
Nω4Ji|(aIl)i and Rb = −8πiG2

Nω4ϵbcdJ
i|cIid .

From which the following results are obtained

ā00 = 0

ā0i = −8πiG2
Nω3Jb|k(kjδib − kbδij)I

jk ,

āij = −16πiG2
Nω4Jm|(iIj)m .
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Self-energy Diagrams from Emission Amplitudes

By performing cuts in self-energy diagrams, we can see how this type of diagram is
related to the emission amplitudes present in the subdiagrams, e.g., notice that:
Self-energy for quadrupole-quadruple interaction from EFT methods

iSeff = −
1

16Λ2

∫
dω

2π
ω4Iij(ω)I

∗
kl(ω)

∫
k

1

k2 − ω2

(
−

i

2

)
×

1

2

[
δikδjl + δilδjk −

2

(d− 1)
δijδkl +

2

(d− 1)ω2
(kikjδkl + kkklδij)

−
1

ω2
(kikkδjl + kiklδjk + kjkkδil + kjklδik) +

4

cdω4
kikjkkkl

]
.

The content of the last two lines is precisely the d-dimensional sum of the physical
polarizations ϵij(k, h) over h = +,×, computed on the mass-shell |k|2 = ω2, so:

iSeff = −
1

16Λ2

∫
dω

2π
ω4Iij(ω)I

∗
kl(ω)

∫
k

1

k2 − ω2

(
−

i

2

)[∑
h

ϵij(k, h)ϵ
∗
kl(k, h)

]

=
1

2

∑
h

∫
k

dω

2π
[iA0(ω,k)]

(
−i

k2 − ω2

)
[iA0(−ω,−k)] .

⇒ Product of two leading-order emission amplitudes.
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Self-energy Diagrams from Emission Amplitudes

More generally, for the gluing of two amplitudes Aµν and Bµν , we have

iSeff =
1

2

∫
k

dω

2π
Aµν(ω,k)D[hµν , hρσ ]Bρσ(−ω,−k)

=
1

2

∫
k

dω

2π
ATT

ij (ω,k)D[hij , hkl]BTT
kl (−ω,−k) .

As a consequence of the Ward identity, the TT part alone of the emission
amplitude is sufficient to reconstruct the self-energy diagram.

For the mass tail, gluing A(tail)
µν to A(LO)

µν , we obtain

S
(e,tail)
eff = −G2

NE
2r+2(r + 3)(r + 4)

(r + 1)(r + 2)(2r + 5)!

×
∫

dω

2π
(ω2)r+3IijR(ω)IijR(−ω)

(
1

ϵ
− γ

(e)
r + log x

)
,

This allows one to derive explicit relations between γ
(e)
r and κr+2:

γ
(e)
r = κr+2 −

(
1

2
+

1

r + 3
+

1

r + 4
−

1

2
Hr+ 5

2
− log 2

)
.

And similar to the magnetic case, connecting γ
(m)
r and πr+2.
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Self-Energy Diagram for the Angular Momentum Failed Tail

Since the J-failed tail presents no anomaly for r > 0 in the electric case, the
computation of the self-energy from standard EFT methods or by gluing of
amplitudes should result in the same expression. Indeed, we have:

iS
(J−tail)
eff = G2

N

2r(12 + 50r + 35r2 + 10r3 + r4)

(r + 1)3(r + 2)3(r + 3)(1 + 2r)(3 + 2r)(5 + 2r)(2r)!

× Jb|a
∫

dω

2π
ω7+2rIaiR(ω)IbiR(−ω) . (r > 0)

For the quadrupole case, r = 0, we must glue the corrected amplitude
iMµν = iAµν + iaµν previously obtained. In this case, we get:

iS
(r=0,J−tail)
eff = −

1

30
G2

NJi|k
∫

dω

2π
Iij(ω)Ijk(−ω)ω7 .

⇒ Standard self-energy computation gives the coefficient 8/15. This is obtained by
just gluing iAµν , and thus, does not correspond to the physically correct value.

Interestingly, by setting r → 0 in the generic formula above (for r > 0) gives the
correct value 1/30.
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Conclusions

▶ We have studied Gravitational Scattering Amplitudes for leading-order
processes, the simple tail, and the angular momentum failed tail;

▶ We have identified, for the first time, a classical anomaly in the quadrupole
cases of the angular momentum failed tail;

▶ A fixing at the level of the amplitudes could be implemented by the
introduction of counter-terms, within a consistent framework.

Besides this,

▶ We have learned how emission amplitudes could be used to compute
self-energy diagrams;

▶ In this case, we were able to correct previous results for the conservative
dynamics stemming from the angular momentum failed tail.

⇒ The work presented here is important to correctly account for the far-zone
effects of back-scattering in the conservative dynamics of compact binary systems.

⇒ Particularly important in the completion of the 5PN dynamics.
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Thank you
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