Conservative Binary Dynamics from Gravitational Tail Emission Processes [& Anomalies in Classical Amplitudes]

Gabriel Luz Almeida

 $\langle gabriel.luz@fisica.ufrn.br \rangle$

Universidade Federal do Rio Grande do Norte - Brazil

[GLA, A Müller, S Foffa, R Sturani - arXiv:2307.05327]

Gravitational Waves meet Amplitudes in the Southern Hemisphere São Paulo, 21 Aug2023

Non-Relativistic General Relativity

Hierarchy of scales and the method of regions for bound binary systems [Goldberger and Rothstein, Phys. Rev. D 73, 104029 (2006)]

Orbital scale:
$$v^2 \sim \frac{G_N m}{r} \Rightarrow r_s \sim 2G_N m \sim rv^2$$

GW scale: $\lambda \sim \frac{r}{v}$

$$\Rightarrow$$
 $r_s \sim rv^2 \sim \lambda v^3$

In the nonrelativistic regime, $v \ll 1$, hierarchy of scales:

$$r_s \ll r \ll \lambda$$

Method of regions: $h_{\mu\nu} = \underbrace{H_{\mu\nu}}_{\text{potential modes}} + \underbrace{\bar{h}_{\mu\nu}}_{\text{radiative modes}}$

$$H_{\mu\nu}$$
: off-shell modes scaling as $(k^0, \mathbf{k}) \sim (v/r, 1/r)$
 $\bar{h}_{\mu\nu}$: on-shell modes scaling as $(k^0, \mathbf{k}) \sim (v/r, v/r)$

The Far Zone (or Radiation Zone)

Integrating out the potential modes:

$$e^{iS_{\rm eff}[x_a,\bar{h}_{\mu\nu}]} = \int \mathcal{D}H_{\mu\nu} \exp\{iS_{\rm EH+GF}[H_{\mu\nu} + \bar{h}_{\mu\nu}] + iS_{\rm pp}[x_a(t), H_{\mu\nu} + \bar{h}_{\mu\nu}]\}$$

$$\Rightarrow S_{\text{eff}} = \frac{1}{2} \int d^4 x \, T^{\mu\nu} \bar{h}_{\mu\nu}$$

Multipole expansion, $\lambda \gg r$, makes $S_{\text{eff}} \rightarrow S_{\text{mult}}$: [Goldberger and Ross, Phys. Rev. D 81, 124015 (2010)]

$$S_{\text{mult}} = -E \int d\tau - \frac{1}{2} \int dx^{\mu} L_{ab} \omega_{\mu}^{ab} + \frac{1}{2} \sum_{n=0}^{\infty} \int d\tau c_n^{(I)} I^{aba_1 \cdot a_n}(\tau) \nabla_{a_1} \cdots \nabla_{a_n} E_{ab}(x)$$
$$+ \frac{1}{2} \sum_{n=0}^{\infty} \int d\tau c_n^{(J)} J^{aba_1 \cdot \dots a_n}(\tau) \nabla_{a_1} \cdots \nabla_{a_n} B_{ab}(\tau)$$

GW observables can be computed, e.g.:

$$P = \frac{1}{2T} \sum_{\text{pol}} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} |\mathcal{A}(\omega, \mathbf{k})|^2$$

Emission diagrams

- IR and UV divergences
- Renormalization group evolution

[GLA, Foffa, Sturani, PRD 104, 084095 (2021)]

Self-energy diagrams

 $\overbrace{I,J}^{I,J} \overbrace{I,J}^{I,J} = \overbrace{I,J}^{I,J} \overbrace{I,J}^{I,J} = \overbrace{I,J}^{I,J} - \operatorname{Re}(S_{\operatorname{self}}) \Rightarrow \operatorname{Conservative contributions}$

Computed for arbitrary multipole moments [GLA, Foffa, Sturani, Phys. Rev. D **104**, 124075 (2021)]

Consider an arbitrary source of size r emitting GWs with wavelength λ .

Assumption: compact source $\Rightarrow \lambda \gg r$.

In this *long wavelength* regime, the interaction of the system with gravity is given by a multipolar coupling through the following effective action:

$$S_{0} = \int dt \left[\frac{1}{2} E h_{00} - \frac{1}{2} J^{b|a} h_{0b,a} - \sum_{r \ge 0} \left(c_{r}^{(I)} I^{ijR} \partial_{R} R_{0i0j} + \frac{c_{r}^{(J)}}{2} J^{b|iRa} \partial_{R} R_{0iab} \right) \right],$$

with
$$c_r^{(I)} = \frac{1}{(r+2)!}$$
, $c_r^{(J)} = \frac{2(r+2)}{(r+3)!}$

 \Rightarrow Radiation is sourced by the multipole moments I^{ijR} and $J^{b|iRa}$. $[R = i_1 \dots i_r]$

We work with standard GR in the harmonic gauge $(\Gamma^{\mu} \equiv g^{\rho\sigma}\Gamma^{\mu}_{\rho\sigma})$

$$S_{\rm bulk} = 2\Lambda^2 \int {\rm d}^{d+1} x \sqrt{-g} \left[R(g) - \frac{1}{2} \Gamma_\mu \Gamma^\mu \right] \,, \label{eq:Sbulk}$$

where $\Lambda^{-2} \equiv 32\pi G_N$.

The **Classical Gravitational Field** at a spacetime position x is given by

$$\langle h_{\mu\nu}(x) \rangle = \int \mathcal{D}h \, e^{iS[h]} h_{\mu\nu}(x) \, .$$

The most relevant role is played by the **trace-reversed** quantity $\bar{h}_{\mu\nu}$, defined by

$$\bar{h}_{\mu\nu} = P_{\mu\nu}{}^{\alpha\beta}h_{\alpha\beta} \,, \qquad \text{with} \qquad P_{\mu\nu}{}^{\alpha\beta} = \frac{1}{2} \left(\delta^{\alpha}_{\mu}\delta^{\beta}_{\nu} + \delta^{\beta}_{\mu}\delta^{\alpha}_{\nu} - \eta_{\mu\nu}\eta^{\alpha\beta} \right) \,.$$

When interactions are considered, the field $h_{\mu\nu}$ will have the generic form

$$\langle h_{\mu\nu}(x)\rangle = \int_{\mathbf{k}} \frac{d\omega}{2\pi} \frac{e^{-i\omega t + i\mathbf{k}\cdot\mathbf{x}}}{\mathbf{k}^2 - (\omega + i\mathbf{a})^2} \times i\mathcal{A}_{\mu\nu}(\omega, \mathbf{k}) \,.$$

This equation defines the **Gravitational Scattering Amplitude** $i\mathcal{A}_{\mu\nu}$.

In particular, in direct space, this takes the form

$$\langle \bar{h}_{\mu\nu}(x) \rangle = -16\pi G_N \int d^{d+1}x' G_R(t-t',\mathbf{x}-\mathbf{x}')T_{\mu\nu}(x') \,.$$

Hence, we have the identification

$$T_{\mu\nu}(x) \sim i\bar{\mathcal{A}}_{\mu\nu}(\omega,\mathbf{k}).$$

Gauge Condition and Ward Identity

It follows directly from the trace-reversed version of $\langle h_{\mu\nu}(x) \rangle$ that

$$\partial^{\mu} \left\langle \bar{h}_{\mu\nu}(x) \right\rangle = -\int_{\mathbf{k}} \frac{d\omega}{2\pi} \frac{e^{ik \cdot x}}{\mathbf{k}^2 - (\omega + i\mathbf{a})^2} \times k^{\mu} \bar{\mathcal{A}}_{\mu\nu}(\omega, \mathbf{k}) \,.$$

Hence, we immediately see that, if the condition $k^{\mu}\bar{\mathcal{A}}_{\mu\nu} = 0$ is satisfied, we have

$$k^{\mu}\bar{\mathcal{A}}_{\mu\nu}(\omega,\mathbf{k})=0 \implies \partial^{\mu}\langle \bar{h}_{\mu\nu}(x)
angle=0 \quad \text{and} \quad \partial^{\mu}T_{\mu\nu}(x)=0\,.$$

The harmonic gauge condition: $\Gamma^{\mu} = 0$.

► Pertubatively in G_N , $\mathcal{O}(G_N^n)$: $\partial^{\mu} \bar{h}^{(n)}_{\mu\nu} = \lambda[h^{(n-1)}, h^{(n-2)}, \dots, h^{(1)}].$

From this, it is easy to derive the important result: $k^{\mu}\bar{\mathcal{A}}_{\mu\nu}(\omega,\mathbf{k}) \propto (\omega^2 - \mathbf{k}^2)$.

Thus: Physically relevant amplitudes $i\mathcal{A}_{\mu\nu}$ are such that, on-shell $(\mathbf{k} \equiv \omega \hat{\mathbf{n}})$

 $k^{\mu}\bar{\mathcal{A}}_{\mu\nu}(\omega,\omega\hat{\mathbf{n}})=0 \qquad \Rightarrow \qquad \text{This is the statement of the Ward identity.}$

On-shell amplitudes: Useful to build h_{ij}^{TT} in the far field approximation, $D \gg r$:

$$h_{ij}^{TT}(x) \equiv \langle \bar{h}_{ij}^{TT}(x) \rangle = -\frac{1}{4\pi D} \Lambda_{ijkl} \int \frac{d\omega}{2\pi} \, i \bar{\mathcal{A}}_{kl}(\omega, \omega \mathbf{n}) e^{-i\omega t_{\rm ret}}$$

Leading-order Amplitudes

The computation of the gravitational amplitudes for the Energy E and angular momentum $J^{b|a}$, which in d = 3 can be represented by $L_i = \frac{1}{2} \epsilon_{ijk} J^{j|k}$, yields

$$i\bar{\mathcal{A}}_{00}^{(LO)} = 16\pi G_N E(\omega), \quad i\bar{\mathcal{A}}_{0k}^{(LO)} = 64\pi G_N i k_i \epsilon_{ijk} L_j(\omega), \quad i\bar{\mathcal{A}}_{kl}^{(LO)} = 0.$$

The gauge condition is verified in this case, following from

$$\omega E(\omega) = 0, \qquad \omega L_i(\omega) = 0.$$

 \Rightarrow Satisfied at this perturbative order by admitting that E, L_i are conserved.

The leading-order electric and magnetic multipole amplitudes read

$$\begin{split} i\bar{\mathcal{A}}_{\mu\nu}^{(I)} &= -16\pi G_N(-i)^r c_r^{(I)} k_R I^{ijR}(\omega) a_{\mu\nu,ij} \,, \\ i\bar{\mathcal{A}}_{\mu\nu}^{(J)} &= -8\pi G_N(-i)^r c_r^{(J)} k_R k_a J^{b|iRa}(\omega) b_{\mu\nu,ib} \,. \\ \\ \hline a_{00,ij} &= k_i k_j \,, \quad a_{0k,ij} = -\omega k_j \delta_{ik} \,, \quad a_{kl,ij} = \omega^2 \delta_{ik} \delta_{jl} \,. \\ b_{00,ib} &= 0 \,, \quad b_{0k,ib} = k_i \delta_{bk} \,, \quad b_{kl,ib} = -\omega (\delta_{ik} \delta_{bl} + \delta_{il} \delta_{bk}) \,. \end{split}$$

 \Rightarrow In this case, the Ward identities are trivially satisfied.

The Simple Mass Tail

The *M*-tail amplitude is divergent for $d \rightarrow 3$ and its radiative, TT, on-shell part is

$$\begin{aligned} \mathcal{A}_{ij}^{(e,\text{tail})TT} &= 32\pi (-i)^r \omega^3 c_r^{(I)} G_N^2 E \Lambda_{ij,kl}^{TT} k_R I^{klR}(\omega) \times \left(\frac{1}{\epsilon} - \kappa_{r+2} + \frac{\log x}{2}\right) \,, \\ \mathcal{A}_{ij}^{(m,\text{tail})TT} &= 32\pi (-i)^r \omega^2 c_r^{(J)} G_N^2 E \Lambda_{ij,kl}^{TT} k_R k_n J^{n|kRl}(\omega) \times \left(\frac{1}{\epsilon} - \pi_{r+2} + \frac{\log x}{2}\right) \,, \end{aligned}$$

with

$$\kappa_l = \frac{2l^2 + 5l + 4}{l(l+1)(l+2)} + \sum_{i=1}^{l-2} \frac{1}{i}, \qquad \pi_l = \frac{l-1}{l(l+1)} + \sum_{i=1}^{l-1} \frac{1}{i},$$

where $\epsilon \equiv d-3$, $x \equiv -e^{\gamma}\omega^2/\mu\pi$, and length scale μ^{-1} defined by $G_d = G_N \mu^{-\epsilon}$.

In particular, as expected, for the full amplitudes, we find

$$k^{\mu} \mathcal{A}_{\mu\nu}^{(e,m;\text{tail})}(\omega,\omega\mathbf{n}) = 0$$

The Angular Momentum Failed Tail

For the angular momentum failed tail, the radiative, TT, on-shell part is given by

$$\begin{split} i\mathcal{A}_{ij}^{(e,J-\text{ftail})TT} &= \frac{32\pi(-i)^r c_r^{(I)} \omega^2}{(r+1)(r+2)(r+3)(r+4)} G_N^2 \Lambda_{ij,(kl)}^{TT} J^{m|n} k_{R-1} I^{pRk}(\omega) \\ &\times \left\{ k_n \left[2(r^2+4r+6)\delta_{lm} k_p k_{i_1} - r(r^2+5r+10)\delta_{lp} \delta_{i_1m} \omega^2 \right] \right. \\ &\left. + 24\delta_{0r} \delta_{lm} \delta_{np} k_{i_1} \omega^2 \right\}. \end{split}$$

From the full amplitude, we have

$$\begin{split} k^{\mu}\bar{\mathcal{A}}_{\mu0}(\omega,\omega\mathbf{n}) &= 0\,.\\ k^{\mu}\bar{\mathcal{A}}_{\mu l}(\omega,\omega\mathbf{n}) &= (-i)^{r+1}\frac{c_{r}^{(I)}}{2\Lambda^{4}}\left(\frac{i\omega}{4}\right)\left[k_{a}\omega^{2}J^{i|a}I^{iRl}(\omega)\int_{\mathbf{q}}\frac{q_{R}}{(\mathbf{q}^{2}-\omega^{2})}\right]. \end{split}$$

Hence, we notice that, since the integral in \mathbf{q} is proportional to δ_R , this result vanishes on account of the tracelessness of I^{iRl} , unless r = 0, in which

$$k^{\mu}\bar{\mathcal{A}}_{\mu l}\Big|_{r=0} = 16\pi i G_N^2 k_a \omega^4 J^{i|a} I^{il}(\omega) \,.$$

The presence of this "anomaly" can be linked to the term in blue above.

The Einstein's Equation in Perturbation Theory

Variation of the Einstein-Hilbert plus gauge-fixing action, with metric expanded as $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, yields

$$S_{EH+GF} \sim \Lambda^2 \int d^4x \left(h\partial^2 h + h^2 \partial^2 h + \dots \right)$$

$$\Rightarrow \qquad \Box \bar{h}_{\mu\nu} = N_{\mu\nu} [h,h] + M_{\mu\nu} [h,h,h] + \dots$$

Perturbative expansion in G_N , with $h^{(n)}$ denoting contributions of $\mathcal{O}(G_N^n)$, gives

$$\begin{split} &\Box \bar{h}_{\mu\nu}^{(1)} = 0 \,, \\ &\Box \bar{h}_{\mu\nu}^{(2)} = N_{\mu\nu} [h^{(1)}, h^{(1)}] \,, \\ &\Box \bar{h}_{\mu\nu}^{(3)} = N_{\mu\nu} [h^{(1)}, h^{(2)}] + M_{\mu\nu} [h^{(1)}, h^{(1)}, h^{(1)}] \,, \end{split}$$

⇒ Explicit check for $h_{\mu\nu}^{(J-\text{ftail})}$, for the electric quadrupole, shows that it is indeed a solution of the perturbed Einstein's equation $\Box \bar{h}_{\mu\nu}^{(2)} = N_{\mu\nu}[h^{(1)}, h^{(1)}].$

Equations of Motion for the Full Problem

The problem of solving perturbatively the Einstein field equations is translated into solving simultaneously the two equations

$$\Box \bar{h}_{\mu\nu} = \Lambda_{\mu\nu} \quad \text{and} \quad \partial^{\mu} \bar{h}_{\mu\nu} = 0 \,.$$

Once we obtain a particular solution $h^{\mu}_{\mu\nu}$ of $\Box \bar{h}_{\mu\nu} = \Lambda_{\mu\nu}$, we can always find a homogeneous solution $h^{h}_{\mu\nu}$ that precisely cancels the divergence in $\partial^{\mu}\bar{h}_{\mu\nu}$.

A general solution to the homogeneous equation, based on $\Box(\partial^{\mu}\bar{h}_{\mu\nu}) = 0$, can be always obtained in terms of four SFT tensors, say N_L, P_L, Q_L, R_L , such that

$$\Box \bar{h}^{h}_{\mu\nu} = 0 \qquad \text{and} \qquad \partial^{\mu} \bar{h}^{h}_{\mu\nu} = -\partial^{\mu} \bar{h}^{p}_{\mu\nu} \,.$$

 \Rightarrow General solution to the problem is $h_{\mu\nu} = h^p_{\mu\nu} + h^h_{\mu\nu}$.

In terms of amplitudes, we have
$$(\bar{\mathcal{A}}_{\nu} \equiv ik^{\mu}\bar{\mathcal{A}}_{\mu\nu})$$

 $\bar{\mathcal{A}}^{0} = \sum_{l=0}^{\infty} i^{l}k_{L}N_{L}(\omega)$,
 $\bar{\mathcal{A}}^{i} = \sum_{l=0}^{\infty} i^{l+1}k_{i}k_{L}P_{L}(\omega) + \sum_{l=1}^{\infty} \left[i^{l-1}k_{L-1}Q_{iL-1}(\omega) + \epsilon_{iab}i^{l}k_{a}k_{L-1}R_{bL-1}(\omega)\right]$.

12/18

The homogeneous Solution

A solution $i\mathbf{a}_{\mu\nu}$ to this, corresponding to the homogeneous solution and being such that $k^{\mu}\bar{\mathbf{a}}_{\mu\nu} = -k^{\mu}\bar{A}_{\mu\nu}$, reads

$$\begin{split} \bar{\mathbf{a}}_{00} &= -\frac{i}{\omega} N(\omega) + ik_a \left[-\frac{i}{\omega} N_a(\omega) - \frac{1}{\omega^2} Q_a(\omega) - 3P_a(\omega) \right] \,. \\ \bar{\mathbf{a}}_{0i} &= \frac{i}{\omega} Q_i(\omega) + 3i\omega P_i(\omega) - \epsilon_{iab} \frac{k_a}{\omega} R_b(\omega) + \sum_{l=2}^{\infty} i^{l-1} k_{L-1} N_{iL-1}(\omega) \,, \\ \bar{\mathbf{a}}_{ij} &= -\delta_{ij} P(\omega) + \sum_{l=2}^{\infty} i^{l-1} \left\{ 2\delta_{ij} k_{L-1} P_{L-1}(\omega) - 6k_{L-2} k_{(i} P_{j)L-2}(\omega) \right. \\ &\left. - ik_{L-2} \left[-i\omega N_{ijL-2}(\omega) - 3\omega^2 P_{ijL-2}(\omega) - Q_{ijL-2}(\omega) \right] - 2k_{aL-2} \epsilon_{ab(i} R_{j)bL-2}(\omega) \right\} \end{split}$$

For the electric *J*-failed tail, we derive

$$Q_{al} = 16\pi i G_N^2 \omega^4 J^{i|(a} I^{l)i} \qquad \text{and} \qquad R_b = -8\pi i G_N^2 \omega^4 \epsilon_{bcd} J^{i|c} I^{id}$$

From which the following results are obtained

$$\begin{split} \bar{\mathbf{a}}_{00} &= 0\\ \bar{\mathbf{a}}_{0i} &= -8\pi i G_N^2 \omega^3 J^{b|k} (k_j \delta_{ib} - k_b \delta_{ij}) I^{jk} ,\\ \bar{\mathbf{a}}_{ij} &= -16\pi i G_N^2 \omega^4 J^{m|(iI^j)m} . \end{split}$$

Self-energy Diagrams from Emission Amplitudes

By performing cuts in self-energy diagrams, we can see how this type of diagram is related to the emission amplitudes present in the subdiagrams, e.g., notice that: Self-energy for quadrupole-quadruple interaction from EFT methods

$$\begin{split} iS_{\text{eff}} &= -\frac{1}{16\Lambda^2} \int \frac{d\omega}{2\pi} \omega^4 I_{ij}(\omega) I_{kl}^*(\omega) \int_{\mathbf{k}} \frac{1}{\mathbf{k}^2 - \omega^2} \left(-\frac{i}{2} \right) \\ &\times \frac{1}{2} \left[\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} - \frac{2}{(d-1)} \delta_{ij} \delta_{kl} + \frac{2}{(d-1)\omega^2} (k_i k_j \delta_{kl} + k_k k_l \delta_{ij}) \right. \\ &\left. - \frac{1}{\omega^2} (k_i k_k \delta_{jl} + k_i k_l \delta_{jk} + k_j k_k \delta_{il} + k_j k_l \delta_{ik}) + \frac{4}{c_d \omega^4} k_i k_j k_k k_l \right] \,. \end{split}$$

The content of the last two lines is precisely the *d*-dimensional sum of the physical polarizations $\epsilon_{ij}(\mathbf{k}, h)$ over $h = +, \times$, computed on the mass-shell $|\mathbf{k}|^2 = \omega^2$, so:

$$\begin{split} iS_{\text{eff}} &= -\frac{1}{16\Lambda^2} \int \frac{d\omega}{2\pi} \omega^4 I_{ij}(\omega) I_{kl}^*(\omega) \int_{\mathbf{k}} \frac{1}{\mathbf{k}^2 - \omega^2} \left(-\frac{i}{2} \right) \left[\sum_h \epsilon_{ij}(\mathbf{k},h) \epsilon_{kl}^*(\mathbf{k},h) \right] \\ &= \frac{1}{2} \sum_h \int_{\mathbf{k}} \frac{d\omega}{2\pi} \left[i\mathcal{A}_0(\omega,\mathbf{k}) \right] \left(\frac{-i}{\mathbf{k}^2 - \omega^2} \right) \left[i\mathcal{A}_0(-\omega,-\mathbf{k}) \right]. \end{split}$$

 \Rightarrow Product of two leading-order emission amplitudes.

Self-energy Diagrams from Emission Amplitudes

More generally, for the gluing of two amplitudes $\mathcal{A}_{\mu\nu}$ and $\mathcal{B}_{\mu\nu}$, we have

$$\begin{split} iS_{\text{eff}} &= \frac{1}{2} \int_{\mathbf{k}} \frac{d\omega}{2\pi} \mathcal{A}_{\mu\nu}(\omega, \mathbf{k}) \mathcal{D}[h_{\mu\nu}, h_{\rho\sigma}] \mathcal{B}_{\rho\sigma}(-\omega, -\mathbf{k}) \\ &= \frac{1}{2} \int_{\mathbf{k}} \frac{d\omega}{2\pi} \mathcal{A}_{ij}^{TT}(\omega, \mathbf{k}) \mathcal{D}[h_{ij}, h_{kl}] \mathcal{B}_{kl}^{TT}(-\omega, -\mathbf{k}) \,. \end{split}$$

As a consequence of the Ward identity, the TT part alone of the emission amplitude is sufficient to reconstruct the self-energy diagram.

For the mass tail, gluing $\mathcal{A}_{\mu\nu}^{(\mathrm{tail})}$ to $\mathcal{A}_{\mu\nu}^{(LO)}$, we obtain

$$\begin{split} S_{\text{eff}}^{(e,\text{tail})} &= -G_N^2 E \frac{2^{r+2}(r+3)(r+4)}{(r+1)(r+2)(2r+5)!} \\ & \times \int \frac{d\omega}{2\pi} (\omega^2)^{r+3} I^{ijR}(\omega) I^{ijR}(-\omega) \left(\frac{1}{\epsilon} - \gamma_r^{(e)} + \log x\right) \,, \end{split}$$

This allows one to derive explicit relations between $\gamma_r^{(e)}$ and κ_{r+2} :

$$\gamma_r^{(e)} = \kappa_{r+2} - \left(\frac{1}{2} + \frac{1}{r+3} + \frac{1}{r+4} - \frac{1}{2}H_{r+\frac{5}{2}} - \log 2\right)$$

And similar to the magnetic case, connecting $\gamma_r^{(m)}$ and π_{r+2} .

Self-Energy Diagram for the Angular Momentum Failed Tail

Since the J-failed tail presents no anomaly for r > 0 in the electric case, the computation of the self-energy from standard EFT methods or by gluing of amplitudes should result in the same expression. Indeed, we have:

For the quadrupole case, r = 0, we must glue the corrected amplitude $i\mathcal{M}_{\mu\nu} = i\mathcal{A}_{\mu\nu} + i\mathbf{a}_{\mu\nu}$ previously obtained. In this case, we get:

$$iS_{\rm eff}^{(r=0,J-{\rm tail})} = -\frac{1}{30}G_N^2 J^{i|k} \int \frac{d\omega}{2\pi} I^{ij}(\omega) I^{jk}(-\omega)\omega^7 \,. \label{eq:eff_eff}$$

 \Rightarrow Standard self-energy computation gives the coefficient 8/15. This is obtained by just gluing $i\mathcal{A}_{\mu\nu}$, and thus, does not correspond to the physically correct value.

Interestingly, by setting $r \to 0$ in the generic formula above (for r > 0) gives the correct value 1/30.

16 / 18

Conclusions

- ▶ We have studied Gravitational Scattering Amplitudes for leading-order processes, the simple tail, and the angular momentum failed tail;
- We have identified, for the first time, a classical anomaly in the quadrupole cases of the angular momentum failed tail;
- ▶ A fixing at the level of the amplitudes could be implemented by the introduction of counter-terms, within a consistent framework.

Besides this,

- ▶ We have learned how emission amplitudes could be used to compute self-energy diagrams;
- ▶ In this case, we were able to correct previous results for the conservative dynamics stemming from the angular momentum failed tail.

 \Rightarrow The work presented here is important to correctly account for the far-zone effects of back-scattering in the conservative dynamics of compact binary systems.

 \Rightarrow Particularly important in the completion of the 5PN dynamics.

Thank you

