Fakultät für Physik

Random Matrix Theory:
 from Single- to Many-Body Quantum Chaos

Lecture II - Mathematical Physics Aspects

Thomas Guhr

School on Quantum Chaos, São Paulo, Brazil
ICTP-SAIFR/IFT-UNESP, August 2023

Outline - Mathematical Physics Aspects

- more complicated random matrix models: transitions
- connection to harmonic analysis and spherical functions: Harish-Chandra's and Gelfand's
- ... and to exactly solvable systems
- supersymmetry as a new mathematical concept
- why is supersymmetry so powerful for random matrices and disordered systems ?

Random Matrix Models

Matrix Spaces

- no invariance under time-reversal: H Hermitean, $\beta=2$
- invariance under time-reversal:
- integer spin or half-odd spin with rotation symmetry: H real symmetric, $\beta=1$
- half-odd spin without rotation symmetry (Kramers):
H Hermitean selfdual, $\beta=4$
entries of H are real, complex, quaternionic for $\beta=1,2,4$
for mathematicians: symmetric spaces

$$
\begin{array}{lll}
\mathrm{U}(N) / \mathrm{O}(N) & \text { real symmetric } & \beta=1 \\
\mathrm{U}(N) / 1 & \text { Hermitean } & \beta=2 \\
\mathrm{U}(2 N) / \mathrm{Sp}(2 N) & \text { Hermitean selfdual } & \beta=4
\end{array}
$$

Dyson's Threefold Way

probability density and flat integration measure
$P_{N}^{(\beta)}(H) d[H] \sim \exp \left(-\frac{\beta}{4 v^{2}} \operatorname{tr} H^{2}\right) d[H]$
Gaussian Ensembles: GOE, GUE, GSE $(\beta=1,2,4)$
rotation invariance in matrix space \longrightarrow eigenvalues, angles
$H=U^{-1} E U, \quad U \in O(N), U(N), U S p(2 N) \quad(\beta=1,2,4)$
where $E=\operatorname{diag}\left(E_{1}, \ldots, E_{N}\right)$ and doubled for $\beta=4$
$P_{N}^{(\beta)}(H) d[H] \sim \exp \left(-\frac{\beta}{4 v^{2}} \operatorname{tr} E^{2}\right)\left|\Delta_{N}(E)\right|^{\beta} d[E] d \mu(U)$
with Vandermonde determinant $\quad \Delta_{N}(E)=\prod_{n<m}\left(E_{n}-E_{m}\right)$

Dyson (60's, 70's), Altland, Zirnbauer (90's)

Correlation Functions of k Levels

pdf of finding a level in each interval $\left[E_{p}, E_{p}+d E_{p}\right], p=1, \ldots, k$
$R_{k}^{(\beta)}\left(E_{1}, \ldots, E_{k}\right) \sim \int_{-\infty}^{+\infty} d E_{k+1} \ldots \int_{-\infty}^{+\infty} d E_{N}\left|\Delta_{N}(E)\right|^{\beta} \exp \left(-\frac{\beta}{4 v^{2}} \operatorname{tr} E^{2}\right)$
amazing: can be done in closed form
$R_{k}^{(2)}\left(E_{1}, \ldots, E_{k}\right)=\operatorname{det}\left[\sum_{n=0}^{N-1} \varphi_{n}\left(E_{p}\right) \varphi_{n}\left(E_{q}\right)\right]_{p, q=1, \ldots, k}$
φ_{n} oscillator wave function
for unitary case $\beta=2$, similar but more complicated for $\beta=1,4$

Unfolded Correlation Functions

unfolding and limit of infinitely many levels yield for level density
$X_{1}^{(\beta)}\left(\xi_{1}\right)=1$
and for the k-level correlation functions
$X_{k}^{(2)}\left(\xi_{1}, \ldots, \xi_{k}\right)=\operatorname{det}\left[\frac{\sin \pi\left(\xi_{p}-\xi_{q}\right)}{\pi\left(\xi_{p}-\xi_{q}\right)}\right]_{p, q=1, \ldots, k}$
for $\beta=2$, similar but more complicated for $\beta=1,4$
only differences, translation invariance

Transition Ensembles and Harmonic Analysis

Transitions Imply Non-Trivial Eigenvalues

ensemble of matrices $\boldsymbol{H}(\alpha)=\boldsymbol{H}^{(0)}+\alpha \boldsymbol{H}^{(\beta)}$
arbitrary $H^{(0)}$, but symmetric space of $H^{(\beta)}$ includes that of $H^{(0)}$
eigenvalues of $\boldsymbol{H}(\alpha)$ highly non-trivial
Gaussian probability density
$P^{(\beta)}\left(H^{(\beta)}, v\right)=\frac{1}{2^{N / 2}}\left(\frac{\beta}{\pi v^{2}}\right)^{\beta N(N-1)+N / 2} \exp \left(-\frac{\beta}{4 v^{2}} \operatorname{tr} H^{(\beta) 2}\right)$
express $\boldsymbol{H}^{(\beta)}$ as $\left(H(\alpha)-H^{(0)}\right) / \alpha$ use $H=H(\alpha)$ as integration variables, new Gaussian probability density $P^{(\beta)}\left(H-H^{(0)}, \alpha v\right)$
correct limit: $\quad \lim _{\alpha \rightarrow 0} P^{(\beta)}\left(H-H^{(0)}, \alpha v\right)=\delta\left(H-H^{(0)}\right)$

Group Integrals Inevitable

need joint pdf of eigenvalues of H, requires diagonalizations $H=U^{-1} E U$ and $H^{(0)}=V^{-1} E^{(0)} V$ and integration over diagonalizing matrices U and V,

$$
\begin{aligned}
& \int d \mu(U) \int d \mu(V) P^{(\beta)}\left(H-H^{(0)}, \alpha v\right) \\
& \quad \sim \exp \left(-\frac{\beta}{4 \alpha^{2} v^{2}} \operatorname{tr}\left(E^{2}+E^{(0) 2}\right)\right) \\
& \quad \int d \mu(U) \int d \mu(V) \exp \left(\frac{\beta}{2 \alpha^{2} v^{2}} \operatorname{tr} U^{-1} E U V^{-1} E^{(0)} V\right)
\end{aligned}
$$

invariance of the Haar measure $d \mu\left(U V^{-1}\right)=d \mu(U)$ implies that double group integral is equal to a single group integral

$$
\int d \mu(U) \exp \left(\frac{\beta}{2 \alpha^{2} v^{2}} \operatorname{tr} U^{-1} E U E^{(0)}\right)
$$

Group Integrals in Standard Notation

non-trivial group integrals have to be done
$\Phi_{N}^{(\beta)}(x, k)=\int d \mu(U) \exp \left(i \operatorname{tr} U^{-1} x U k\right)$
notation: x, k diagonal matrices of eigenvalues
more precisely: x, k are radial coordinates on symmetric spaces
also useful to include imaginary unit

Matrix Plane Waves

H and K are $N \times N$ matrices
matrix plane wave $\exp (i \operatorname{tr} H K)$ satisfies
$\Delta_{H} \exp (i \operatorname{tr} H K)=-\operatorname{tr} K^{2} \exp (i \operatorname{tr} H K)$
with Cartesian Laplacean over matrices
$\Delta_{H}=\operatorname{tr} \frac{\partial^{2}}{\partial H^{2}}=\sum_{n, m} c_{n m} \frac{\partial^{2}}{\partial H_{n m^{2}}}, \quad c_{n m}=$ const
matrix gradient $\partial / \partial H$ follows from H by replacing $H_{n m}$ with $\partial / \partial H_{n m}$ and inserting some factors $1 / 2$.

Integrating over Diagonalizing Groups

diagonalize $H=U^{-1} x U$ and $K=V^{-1} k V$

$$
\begin{array}{lll}
U, V \in O(N) & \text { if } H, K \text { real symmetric } & \beta=1 \\
U, V \in U(N) & \text { if } H, K \text { Hermitean } & \beta=2 \\
U, V \in U S p(2 N) & \text { if } H, K \text { Hermitean selfdual } & \beta=4
\end{array}
$$

integrate plane wave equation
$\Delta_{H} \exp (i \operatorname{tr} H K)=-\operatorname{tr} K^{2} \exp (i \operatorname{tr} H K)$
over diagonalizing matrix V of K, use $\operatorname{tr} K^{2}=\operatorname{tr} k^{2}$

$$
\Delta_{H} \int d \mu(V) \exp (i \operatorname{tr} H K)=-\operatorname{tr} k^{2} \int d \mu(V) \exp (i \operatorname{tr} H K)
$$

Gelfand's Spherical Functions

invariance of the Haar measure $d \mu\left(V U^{-1}\right)=d \mu(V)$ implies

$$
\begin{aligned}
\int d \mu(V) \exp (i \operatorname{tr} H K) & =\int d \mu(V) \exp \left(i \operatorname{tr} U^{-1} x U V^{-1} k V\right) \\
& =\int d \mu(V) \exp \left(i \operatorname{tr} x V^{-1} k V\right)
\end{aligned}
$$

Gelfand's spherical function
$\Phi_{N}^{(\beta)}(x, k)=\int d \mu(V) \exp \left(i \operatorname{tr} x V^{-1} k V\right)$
depends only on radial variables (eigenvalues) x, k
$\longrightarrow \quad$ may replace Δ_{H} by its radial part Δ_{X}

Matrix Bessel Functions

radial equation $\quad \Delta_{x} \Phi_{N}^{(\beta)}(x, k)=-\operatorname{tr} k^{2} \Phi_{N}^{(\beta)}(x, k)$
radial Laplacean $\quad \Delta_{x}=\sum_{n=1}^{N} \frac{1}{\left|\Delta_{N}(x)\right|^{\beta}} \frac{\partial}{\partial x_{n}}\left|\Delta_{N}(x)\right|^{\beta} \frac{\partial}{\partial x_{n}}$
with the Vandermonde determinant $\quad \Delta_{N}(x)=\prod_{n<m}\left(x_{n}-x_{m}\right)$
$\longrightarrow \quad \Delta_{x}=\sum_{n=1}^{N} \frac{\partial^{2}}{\partial x_{n}^{2}}+\sum_{n<m} \frac{\beta}{x_{n}-x_{m}}\left(\frac{\partial}{\partial x_{n}}-\frac{\partial}{\partial x_{m}}\right)$
$\longrightarrow \quad$ matrix generalization of Bessel operator
symmetry $\Phi_{N}^{(\beta)}(x, k)=\int d \mu(U) \exp \left(i \operatorname{tr} U^{-1} x U k\right)=\Phi_{N}^{(\beta)}(k, x)$

Vector and Matrix Bessel Functions

usual Bessel functions in two and three dimensional vector spaces
$J_{0}(z)=\int_{0}^{2 \pi} \exp (i z \cos \varphi) d \varphi \sim \sum_{\kappa=0}^{\infty}(-1)^{\kappa} \frac{(z / 2)^{2 \kappa}}{\kappa!\nu!}$
$j_{0}(z)=\int_{0}^{2 \pi} \int_{0}^{\pi} \exp (i z \cos \vartheta) \sin \vartheta d \vartheta d \varphi \sim \frac{\sin z}{z}$

Bessel functions in $N \times N$ matrix spaces
$\Phi_{N}^{(\beta)}(x, k)=\int d \mu(U) \exp \left(i \operatorname{tr} U^{-1} x U k\right)$
difficult objects, complexity depends strongly on β

Link to Exactly Solvable Systems

Hamiltonian Dynamics and Matrix Bessel Fuctions

ansatz $\quad \Phi_{N}^{(\beta)}(x, k)=\frac{\Theta_{N}^{(\beta)}(x, k)}{\left(\Delta_{N}(x) \Delta_{N}(k)\right)^{\beta / 2}}$
eigenvalue equation $\quad L_{x} \Theta_{N}^{(\beta)}(x, k)=\operatorname{tr} k^{2} \Theta_{N}^{(\beta)}(x, k)$
Hamilton or Schrödinger operator
$L_{x}=-\sum_{n=1}^{N} \frac{\partial^{2}}{\partial x_{n}^{2}}+\frac{\beta(\beta-2)}{2} \sum_{n<m} \frac{1}{\left(x_{n}-x_{m}\right)^{2}}$
view β as continuous parameter and the x_{n} as positions of N particles in one dimension $\quad \longrightarrow \quad$ Calogero-Sutherland

Jack polynomials, not symmetric under $x \leftrightarrow k$
no $n \neq m$ interaction for $\beta=2$

Harish-Chandra and Itzykson-Zuber Integrals

Itzykson-Zuber Integral

in the unitary case $\beta=2$ the matrix Bessel function can be calculated in closed form

$$
\begin{aligned}
\Phi_{N}^{(2)}(x, k) & =\int_{U(N)} d \mu(U) \exp \left(i \operatorname{tr} U^{-1} x U k\right) \\
& =\frac{\operatorname{det}\left[\exp \left(i x_{n} k_{m}\right)\right]_{n, m=1, \ldots, N}}{\Delta_{N}(x) \Delta_{N}(k)}
\end{aligned}
$$

with Vandermonde determinant $\quad \Delta_{N}(x)=\prod_{n<m}\left(x_{n}-x_{m}\right)$
reason is a separability of the radial Laplacean!
or, equivalently, absence of interaction in associated Hamilton (Schrödinger) operator

Harish-Chandra Integral

\mathcal{G} compact semi-simple Lie group, a, b fixed elements in Cartan subalgebra \mathcal{H}_{0} of \mathcal{G}

$$
\int_{\mathcal{G}} \exp \left(\operatorname{tr} U^{-1} a U b\right) d \mu(U)=\frac{1}{|\mathcal{W}|} \sum_{w \in \mathcal{W}} \frac{\exp (\operatorname{tr} w(a) b)}{\Pi(a) \Pi(w(b))}
$$

$\Pi(a)$ product of all positive roots of $\mathcal{H}_{0}, \mathcal{W}$ Weyl reflection group everything stays in the space of the Lie group and its algebra!
$\longrightarrow \quad$ Gelfand's and Harish-Chandra's spherical functions are very different objects
coincide only in the unitary case, because $\mathrm{U}(N) / 1 \equiv \mathrm{U}(N)$

Application to Time-Reversal Invariance Breaking

GOE $(\beta=1)$ and GSE $(\beta=4)$ preserve time-reversal invariance, thus there are two models for time-reversal invariance breaking

GOE-GUE transition
$\boldsymbol{H}(\alpha)=\boldsymbol{H}^{(1)}+\alpha \boldsymbol{H}^{(2)}$
GSE-GUE transition
$H(\alpha)=\boldsymbol{H}^{(4)}+\alpha \boldsymbol{H}^{(2)}$
using Itzykson-Zuber integral, all diagonalizing groups can be integrated out, yielding joint pdf of eigenvalues of $\boldsymbol{H}(\alpha)$
furthermore: eigenvalue integrals can be done in closed form, all k-level correlations written in terms of Pfaffian determinants

Supermathematics

Variables

k_{1} complex commuting variables $\quad z_{p}, p=1, \ldots, k_{1}$
k_{2} complex anticommuting variables $\quad \zeta_{p}, p=1, \ldots, k_{2}$
$\zeta_{p} \zeta_{q}=-\zeta_{q} \zeta_{p}, \quad$ in particular $\quad \zeta_{p}^{2}=0$
every function is a finite polynomial, for example for $k_{2}=2$
$f\left(\zeta_{1}, \zeta_{2}\right)=c_{0}+c_{11} \zeta_{1}+c_{12} \zeta_{2}+c_{2} \zeta_{1} \zeta_{2}$
complex conjugation $\zeta_{p} \longrightarrow \zeta_{p}^{*} \longrightarrow \zeta_{p}^{* *}=-\zeta_{p}$
$\zeta_{p} \zeta_{q}^{*}=-\zeta_{q}^{*} \zeta_{p}$
commuting and anticommuting variables commute
$z_{p} \zeta_{q}=\zeta_{q} z_{p} \quad$ and $\quad z_{p} \zeta_{q}^{*}=\zeta_{q}^{*} z_{p}$

Example: Strange Identities for Functions

functions such as exp or cos etc.. involving anticommuting variables can only be interpreted as power series
but, as the square of an anticommuting variable is zero, these power series must terminate
every function of anticommuting variables is a finite polynomial for example

$$
\begin{aligned}
\exp \left(\zeta_{p}^{*} \zeta_{p}\right) & =1+\zeta_{p}^{*} \zeta_{p}=\frac{1}{1-\zeta_{p}^{*} \zeta_{p}}=\sqrt{1+2 \zeta_{p}^{*} \zeta_{p}} \\
& =1+\sin \left(\zeta_{p}^{*} \zeta_{p}\right)=1+\ln \left(1+\zeta_{p}^{*} \zeta_{p}\right)
\end{aligned}
$$

these are identities !

Linear Algebra

supervectors $\psi=\left[\begin{array}{l}z \\ \zeta\end{array}\right]$ and supermatrices $\sigma=\left[\begin{array}{ll}a & \mu \\ \nu & b\end{array}\right]$
matrices a, b have commuting entries matrices μ, ν have anticommuting entries
$\sigma \psi=\left[\begin{array}{ll}a & \mu \\ \nu & b\end{array}\right]\left[\begin{array}{l}z \\ \zeta\end{array}\right]=\left[\begin{array}{l}a z+\mu \zeta \\ \nu z+b \zeta\end{array}\right]=\left[\begin{array}{l}z^{\prime} \\ \zeta^{\prime}\end{array}\right]=\psi^{\prime}$
supertrace $\quad \operatorname{str} \sigma=\operatorname{tr} a-\operatorname{tr} b \quad \longrightarrow \quad \operatorname{str} \sigma_{1} \sigma_{2}=\operatorname{str} \sigma_{2} \sigma_{1}$
superdeterminant $\quad \operatorname{sdet} \sigma=\frac{\operatorname{det}\left(a-\mu b^{-1} \nu\right)}{\operatorname{det} b}$
$\longrightarrow \quad \operatorname{sdet} \sigma_{1} \sigma_{2}=\operatorname{sdet} \sigma_{1} \operatorname{sdet} \sigma_{2}$

Analysis

derivative $\quad \frac{\partial \zeta_{p}}{\partial \zeta_{q}}=\delta_{p q} \quad$ and $\quad \frac{\partial \zeta_{p}^{*}}{\partial \zeta_{q}}=0$
Berezin integral $\int d \zeta_{p}=0 \quad$ and $\quad \int \zeta_{p} d \zeta_{p}=\frac{1}{\sqrt{2 \pi}}$
for example
$\int \exp \left(-a \zeta_{p}^{*} \zeta_{p}\right) d \zeta_{p}^{*} d \zeta_{p}=\int\left(1-a \zeta_{p}^{*} \zeta_{p}\right) d \zeta_{p}^{*} d \zeta_{p}=\frac{a}{2 \pi}$
apart from factors, derivative and integral are the same!
change of variables $\quad \psi \rightarrow \chi=\chi(\psi) \quad$ requires
Jacobian or Berezinian $\int f(\psi) d[\psi]=\int f(\psi(\chi))$ sdet $\frac{\partial \psi}{\partial \chi} d[\chi]$

Gaussian Integrals over Bosons and Fermions

matrix A has commuting entries
vector z has commuting entries ("Bosons") vector ζ has anticommuting entries ("Fermions")
$\int \exp \left(-i z^{\dagger} A z\right) d[z]=\operatorname{det}^{-1} \frac{A}{2 \pi}$
$\int \exp \left(-i \zeta^{\dagger} A \zeta\right) d[\zeta]=\operatorname{det} \frac{A}{2 \pi}$
σ is a supermatrix and ψ a supervector
$\int \exp \left(-\psi^{\dagger} \sigma \psi\right) d[\psi]=\operatorname{sdet}^{-1} \frac{\sigma}{2 \pi}$
$\longrightarrow \quad$ divergencies removed, renormalization (field theory)

Supersymmetry in Random Matrix Theory

Preparing for Supersymmetry: Generating Function

Gaussian ensembles ($\beta=1,2,4$) of $N \times N$ random matrices H, (formulae a bit simplified, apply in this form to $\beta=2$)
k-level correlation functions

$$
R_{k}^{(\beta)}\left(x_{1}, \ldots, x_{k}\right)=\int d[H] \exp \left(-\operatorname{tr} H^{2}\right) \prod_{p=1}^{k} \operatorname{tr} \frac{\mathbb{1}_{N}}{x_{p}^{ \pm}-H}
$$

can be written as derivatives

$$
R_{k}^{(\beta)}\left(x_{1}, \ldots, x_{k}\right)=\left.\frac{\partial^{k}}{\prod_{p=1}^{k} \partial J_{p}} Z_{k}^{(\beta)}(x+J)\right|_{J=0}
$$

of generating function

$$
Z_{k}^{(\beta)}(x+J)=\int d[H] \exp \left(-\operatorname{tr} H^{2}\right) \prod_{p=1}^{k} \frac{\operatorname{det}\left(H-x_{p}-J_{p}\right)}{\operatorname{det}\left(H-x_{p}+J_{p}\right)}
$$

Ensemble Average - FT in Ordinary Space

$$
\begin{aligned}
\frac{\operatorname{det}\left(H-x_{p}-J_{p}\right)}{\operatorname{det}\left(H-x_{p}+J_{p}\right)}=\int d\left[z_{p}\right] & \int \exp \left(-i z_{p}^{\dagger}\left(H-x_{p}+J_{p}\right) z_{p}\right) \\
& \int d\left[\zeta_{p}\right] \exp \left(-i \zeta_{p}^{\dagger}\left(H-x_{p}-J_{p}\right) \zeta_{p}\right)
\end{aligned}
$$

collect total dependence on random matrix H
ensemble average becomes Fourier transform in matrix space!

$$
\begin{aligned}
& \int d[H] \exp \left(-\operatorname{tr} H^{2}\right) \exp \left(-i \operatorname{tr} H \sum_{p=1}^{k}\left(z_{p} z_{p}^{\dagger}-\zeta_{p} \zeta_{p}^{\dagger}\right)\right) \\
& =\exp \left(-\operatorname{tr}\left(\sum_{p=1}^{k}\left(z_{p} z_{p}^{\dagger}-\zeta_{p} \zeta_{p}^{\dagger}\right)^{2}\right)=\exp \left(-\operatorname{str} B^{2}\right)\right.
\end{aligned}
$$

Ensemble Average - FT in Superspace

B is a $2 k \times 2 k(\beta=2)$ or $4 k \times 4 k(\beta=1,4)$ supermatrix, entries are all scalar products ordered in blocks
$B_{p q}=\left[\begin{array}{cc}z_{p}^{\dagger} z_{q} & z_{p}^{\dagger} \zeta_{q} \\ \zeta_{p}^{\dagger} z_{q} & \zeta_{p}^{\dagger} \zeta_{q}\end{array}\right]$
introduce supermatrix σ with the same symmetries and do another Fourier transform, now in superspace

$$
\begin{aligned}
\exp \left(-\operatorname{str} B^{2}\right) & =\int d[\sigma] \exp \left(-\operatorname{str} \sigma^{2}\right) \exp (-i \operatorname{str} \sigma B) \\
& =\int d[\sigma] \exp \left(-\operatorname{str} \sigma^{2}\right) \exp \left(-i \sum_{p=1}^{k} \psi_{p}^{\dagger}\left(\mathbb{1}_{N} \otimes \sigma\right) \psi_{p}\right)
\end{aligned}
$$

all integrals over $\psi_{p}=\left[\begin{array}{l}z_{p} \\ \zeta_{p}\end{array}\right]$ doable, yield superdeterminants !

Supersymmetric Representation of RMT

Gaussian ensemble ($\beta=1,2,4$) of $N \times N$ random matrices H k-level correlations

$$
R_{k}^{(\beta)}\left(x_{1}, \ldots, x_{k}\right)=\left.\frac{\partial^{k}}{\prod_{p=1}^{k} \partial J_{p}} Z_{k}^{(\beta)}(x+J)\right|_{J=0}
$$

generating function obeys the identity (yes, this is exact!)

$$
\begin{aligned}
Z_{k}^{(\beta)}(x+J) & =\int d[H] \exp \left(-\operatorname{tr} H^{2}\right) \prod_{p=1}^{k} \frac{\operatorname{det}\left(H-x_{p}-J_{p}\right)}{\operatorname{det}\left(H-x_{p}+J_{p}\right)} \\
& =\int d[\sigma] \exp \left(-\operatorname{str} \sigma^{2}\right) \operatorname{set}^{-N}(\sigma-x-J)
\end{aligned}
$$

where σ is a $2 k \times 2 k$ or $4 k \times 4 k$ supermatrix
$\longrightarrow \quad$ drastic reduction of dimensions, N explicit parameter

Relevant Supergroups and Symmetric Superspaces

Random Matrices and Corresponding Supermatrices

as we have seen, ensemble average over random matrices H in ordinary space becomes an ensemble average over supermatrices σ
diagonalization in the form
$\sigma=u^{-1} s u \quad, \quad s=\left[\begin{array}{cc}s_{1} & 0 \\ 0 & i s_{2}\end{array}\right] \quad \begin{aligned} & \text { "Bosonic" } \\ & \text { "Fermionic" eigenvalues }\end{aligned}$
inspite of this jargon, eigenvalues are always commuting !
the diagonalizing supermatrices u have commuting and anticommuting entries, they are elements of supergroups

Relevant Supergroups

for the GUE $(\beta=2)$
unitary supergroup $U\left(k_{1} \mid k_{2}\right)$ with $u^{\dagger} u=\mathbb{1} k_{1}+k_{2}$
$\longrightarrow \quad \mathrm{U}\left(k_{1} \mid k_{2}\right) \supset \mathrm{U}\left(k_{1}\right) \otimes \mathrm{U}\left(k_{2}\right)$
for the GOE and GSE $(\beta=1,4)$
unitary ortho-symplectic supergroup $\operatorname{UOSp}\left(k_{1} \mid 2 k_{2}\right) \quad$ with
$u^{\dagger} u=\mathbb{1}_{k_{1}+2 k_{2}} \quad$ and $\quad u^{T} M u=M$,
$M=\left[\begin{array}{ccc}1_{k_{1}} & 0 & 0 \\ 0 & 0 & 1_{k_{2}} \\ 0 & -1_{k_{2}} & 0\end{array}\right]$
$\longrightarrow \operatorname{UOSp}\left(k_{1} \mid k_{2}\right) \supset \mathrm{O}\left(k_{1}\right) \otimes \operatorname{USp}\left(2 k_{2}\right)$

Symmetric Ordinary and Super Spaces

random matrix H lives in symmetric ordinary spaces

$$
\begin{array}{lll}
\mathrm{U}(N) / \mathrm{O}(N) & \text { real symmetric } & \beta=1 \\
\mathrm{U}(N) / 1 & \text { Hermitean } & \beta=2 \\
\mathrm{U}(2 N) / \mathrm{Sp}(2 N) & \text { Hermitean selfdual } & \beta=4
\end{array}
$$

corresponding supermatrix σ lives in symmetric superspaces

$$
\begin{aligned}
& \mathrm{U}\left(k_{1} \mid k_{2}\right) / 1 \quad \text { for } \beta=2 \\
& \operatorname{GI}\left(k_{1} \mid 2 k_{2}\right) / \operatorname{OSp}\left(k_{1} \mid 2 k_{2}\right) \text { (two forms) for } \beta=1,4
\end{aligned}
$$

symmetric spaces have an angular or group part and a radial or eigenvalue part

Integrals over Unitary Supergroup $\mathbf{U}\left(k_{1} \mid k_{2}\right)$

supersymmetric generalization of Itzykson-Zuber integral
$\int d \mu(u) \exp \left(i \operatorname{str} u^{-1}\right.$ sur $)=\frac{\operatorname{det}\left[\exp \left(i s_{p 1} r_{q 1}\right)\right] \operatorname{det}\left[\exp \left(i s_{p 2} r_{q 2}\right)\right]}{B_{k_{1} k_{2}}(s) B_{k_{1} k_{2}}(r)}$
with $\quad B_{k_{1} k_{2}}(s)=\frac{\Delta_{k_{1}}\left(s_{1}\right) \Delta_{k_{2}}\left(i s_{2}\right)}{\prod_{p, q}\left(s_{p 1}-i s_{q 2}\right)}$
for $k_{1}=k_{2}=k$ get $B_{k k}(s)=B_{k}(s)=\operatorname{det}\left[\frac{1}{s_{p 1}-i s_{q 2}}\right]_{p, q=1, \ldots, k}$
for k_{1}, k_{2} equal to $N, 0$ or $0, N$ recover ordinary integral
$\int d \mu(U) \exp \left(i \operatorname{tr} U^{-1} x U k\right)=\frac{\operatorname{det}\left[\exp \left(i x_{n} k_{m}\right)\right]}{\Delta_{N}(x) \Delta_{N}(k)}$

Application to Random Matrix Problems

Exact Solutions

Exact Solutions for Transitions to GUE

ensemble of matrices $\quad H(\alpha)=\boldsymbol{H}^{(0)}+\alpha \boldsymbol{H}^{(2)}$
arbitrary $H^{(0)}$, space included in Hermitean space of $H^{(2)}$
generating function acquires the form

$$
\begin{array}{r}
Z_{k}^{(\beta)}(x+J, \alpha)=\int d[\sigma] \exp \left(-\frac{1}{\alpha^{2}} \operatorname{str}(\sigma-x-J)^{2}\right) \\
\operatorname{sdet}^{-1}\left(\mathbb{1}_{N} \otimes \sigma+H^{(0)} \otimes \mathbb{1}_{2 k}\right)
\end{array}
$$

supersymmetric Itzykson-Zuber integral yields immediately

$$
\begin{aligned}
Z_{k}^{(\beta)}(x+J, \alpha)= & \frac{1}{B_{k}(x+J)} \int d[s] B_{k}(s) \exp \left(-\frac{1}{\alpha^{2}} \operatorname{str}(s-x-J)^{2}\right) \\
& \operatorname{sdet}^{-1}\left(\mathbb{1}_{N} \otimes s+E^{(0)} \otimes \mathbb{1}_{2 k}\right) \\
= & \frac{1}{B_{k}(x+J)} \operatorname{det}\left[K_{N}\left((x+J)_{p 1},(x+J)_{q 2}, \alpha\right)\right]_{p, q=1, \ldots, k}
\end{aligned}
$$

with Kernel

$2 k$-fold integral collapses to determinant of twofold integrals they are given by the kernel

$$
\begin{gathered}
K_{N}\left(r_{p 1}, i r_{q 2}, \alpha\right)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{d s_{1} d s_{s}}{s_{1}-i s_{2}} \exp \left(-\frac{1}{\alpha^{2}}\left(\left(s_{1}-r_{1}\right)^{2}+\left(s_{2}-r_{2}\right)^{2}\right)\right) \\
\\
\prod_{n=1}^{N} \frac{i s_{2}+E_{n}^{(0)}}{s_{1}^{ \pm}+E_{n}^{(0)}}
\end{gathered}
$$

derivatives with respect to the J_{p} are easy, get all k-level correlation functions exactly

Regularity-Chaos Transition

unitary case: $\quad \boldsymbol{H}(\alpha)=\boldsymbol{H}^{(\text {regular })}+\alpha \boldsymbol{H}^{(2)}$
two-level correlation function $\quad X_{2}(\omega, \lambda)$ with $\quad \lambda=\alpha / D$

transition towards GUE spectral correlations very fast!

Built-in Structures of Supersymmetry

consider $\beta=2$
Hermitean $N \times N$ ordinary matrix $H=U^{\dagger} x U$
$d[H]=\Delta_{N}^{2}(x) d[x] d \mu(U) \quad$ where $\quad \Delta_{N}(x)=\prod_{n<m}\left(x_{n}-x_{m}\right)$
$\longrightarrow \quad$ level repulsion

Hermitean $2 k \times 2 k$ supermatrix $\sigma=u^{\dagger} s u$
$d[\sigma]=B_{k}^{2}(s) d[s] d \mu(u) \quad$ where
$B_{k}(s)=\operatorname{det}\left[\frac{1}{s_{p 1}-i s_{q 2}}\right]_{p, q=1, \ldots, k}$
$\longrightarrow \quad k$-level correlations, determinantal processes

Application to Random Matrix Problems

Supersymmetric Nonlinear sigma Model

Saddle Point Approximation for $k=2$ and Large N

asymptotic approach for two-level $(k=2)$ correlation functions for all $\beta=1,2,4$, write

$$
\begin{aligned}
Z_{k}^{(\beta)}(x+J) & =\int d[\sigma] \exp \left(-\operatorname{str} \sigma^{2}\right) \operatorname{sdet}^{-N}(\sigma-x-J) \\
& =\int d[\sigma] \exp (-L(\sigma))
\end{aligned}
$$

with "free energy" $L(\sigma)=\operatorname{str}\left(\sigma^{2}+N \ln (\sigma-x-J)\right)$
at $J=0, d L=0$ determines saddle points, $\quad 2 s_{0}+\frac{N}{s_{0}-x}=0$
solution $\quad s_{0}=\frac{x \pm i \sqrt{2 N-x^{2}}}{2}$
imaginary part is Wigner's semicircle !

Coset Supermanifolds and Nonlinear sigma Models

"massive" modes corresponding to the level densities are simple Gaussian integrals
remaining integrals explore surrounding space, correlation functions result from corresponding integrals over "massless" Goldstone modes, parametrized by supermatrices Q which are elements of the coset supermanifolds
$\mathrm{U}(1,1 \mid 2) /(\mathrm{U}(1 \mid 1) \times \mathrm{U}(1 \mid 1))$ for $\beta=2$
$\operatorname{UOSp}(2,2 \mid 4) /(\operatorname{UOSp}(2 \mid 2) \times \operatorname{UOSp}(2 \mid 2))$ for $\beta=1,4$
widely applicable, particularly in d-dimensional field theories

Supersymmetry and Disordered Systems

electron moves diffusively in a probe with scatterers (impurities)
 d dimensions, localization ?
random disorder potential

$$
\left\langle V(\vec{r}) V\left(\vec{r}^{\prime}\right)\right\rangle \sim \delta^{(d)}\left(\vec{r}-\vec{r}^{\prime}\right)
$$

field theory: supersymmetric non-linear σ model with action
$S[Q]=\operatorname{str} \int d^{d} r\left(\mathcal{D} \partial_{i} Q(\vec{r}) \partial_{i} Q(\vec{r})-i \omega \Lambda Q(\vec{r})\right)$
where $Q=Q(\vec{r})$ is supermatrix field in coset space

Harish-Chandra and Supersymmetry

supersymmetric Itzykson-Zuber integral (TG $(1991,1996))$
$\longrightarrow \quad$ most interesting remaining case is $\operatorname{UOSp}\left(k_{1} / 2 k_{2}\right)$
conjecture: Serganova (1992) and Zirnbauer (1996)
proof: Guhr, Kohler (2002)
Laplacean Δ_{A} over Lie superalgebra uosp $\left(k_{1} / 2 k_{2}\right)$ construct radial part Δ_{a} over Cartan subalgebra identify Harish-Chandra integrals as eigenfunctions of Δ_{a} realize that Δ_{a} is separable
$\longrightarrow \quad$ solution of eigenequation is trivial
proof also comprises Lie groups in ordinary space

What have we learned ?

Conclusions

- group integrals are needed to treat transitions
- integrals of Itzykson-Zuber, Gelfand and Harish-Chandra
- direct connection to exactly solvable systems
- supermathematics and the supersymmetry method
- exact solutions in the unitary case, in general asymptotic supersymmetric nonlinear sigma models

Thank You for Your Attention !

