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Outline — Mathematical Physics Aspects

@ more complicated random matrix models: transitions

@ connection to harmonic analysis and spherical functions:
Harish—Chandra’s and Gelfand's

@ ... and to exactly solvable systems
@ supersymmetry as a new mathematical concept

@ why is supersymmetry so powerful for
random matrices and disordered systems 7



Random Matrix Models



Matrix Spaces

@ no invariance under time—reversal: H Hermitean, § =2
@ invariance under time-reversal:

e integer spin or half-odd spin with rotation symmetry:
H real symmetric, f =1

o half-odd spin without rotation symmetry (Kramers):
H Hermitean selfdual, 8 = 4

entries of H are real, complex, quaternionic for 3 =1,2,4

for mathematicians: symmetric spaces

U(N)/O(N) real symmetric B
U(N)/1 Hermitean B
8

U(2N)/Sp(2N) Hermitean selfdual

1
2
4

Wigner, von Neumann (1929), Hua (50's)



Dyson’s Threefold Way

probability density and flat integration measure
B
PO (HYd[H] ~ exp (—Mtr H? ) d[H]
Gaussian Ensembles: GOE, GUE, GSE (5 =1,2,4)

rotation invariance in matrix space — eigenvalues, angles
H=UEU, UecO(N),UN),USp(2N) (B =1,2,4)
where E =diag(Ei,...,En) and doubled for 5 =4

POHIIH] ~ exp (4t €2 ) | () PelELen(V)

with Vandermonde determinant  An(E) =[], ,n(En — Em)

Dyson (60's, 70's), Altland, Zirnbauer (90's)



Correlation Functions of k Levels

pdf of finding a level in each interval [Ep, Ep+ dEp], p=1,....k

+o0 oo
RIEB)(EL...,Ek)N/dEk+1"'/dEN‘AN(E)IﬂeXP <4B‘/2trE2>

amazing: can be done in closed form

N-1

RO(Ey, ..., Ex) = det [Z on(Ep)en(Ey)
n=0

n oscillator wave function

for unitary case 3 =2, similar but more complicated for 5 =1,4



Unfolded Correlation Functions

unfolding and limit of infinitely many levels yield for level density

xP(g) =1

and for the k—level correlation functions

W(fp - fq) p,g=1,...k

for 8 =2, similar but more complicated for 5 =1,4

X, ... &) = det[

only differences, translation invariance

Mehta, Gaudin (60's), Dyson (70's)



Transition Ensembles and Harmonic Analysis



Transitions Imply Non—Trivial Eigenvalues

ensemble of matrices  H(a) = H© + aH®)
arbitrary H(®, but symmetric space of H®) includes that of H(®)
eigenvalues of H(«a) highly non—trivial

Gaussian probability density

PO (HE) ) = <5

BN(N—1)+N/2
2N/2 7rv2)

exp (—‘lﬁ‘/ztr H(Bp)

express H®) as (H(a) —H©)/a use H = H(a) as integration
variables, new Gaussian probability density P(¥)(H — H() av)

correct limit:  lim PO(H — HO av) = §(H — H©)

a—0



Group Integrals Inevitable

need joint pdf of eigenvalues of H, requires diagonalizations
H=UEU and H® = v-1EQV and integration over
diagonalizing matrices U and V,

/ dp(U) / du(V)PO(H - HO av)
~ exp <—4(§V2tr(E2 + E(0)2)>
/d,u(U)/d,u(V)exp (2 b str UTTEUVLEC )v>

invariance of the Haar measure du(UV~1) = du(U) implies that
double group integral is equal to a single group integral

/ du(U) exp < o 5 StrU” 1EUE(°)>



Group Integrals in Standard Notation

non—trivial group integrals have to be done
o (x, k) = / du(U) exp(itr U xUk)

notation: x, k diagonal matrices of eigenvalues

more precisely: x, k are radial coordinates on symmetric spaces

also useful to include imaginary unit



Matrix Plane Waves

H and K are N x N matrices
matrix plane wave exp(itr HK) satisfies
Apexp(itr HK) = —tr K2 exp(itr HK)

with Cartesian Laplacean over matrices
Ay = tr Z Crm——> 8H ,  Cpm = const

matrix gradient 0/0H follows from H by replacing Hp,, with
0/0Hpm and inserting some factors 1/2.



Integrating over Diagonalizing Groups

diagonalize H = U~'xU and K = V~1kV

U,V € O(N) if H, K real symmetric =1
U,V e U(N) if H, K Hermitean g=2
U,V € USp(2N) if H, K Hermitean selfdual /=4

integrate plane wave equation
Apexp(itr HK) = —tr K2 exp(itr HK)

over diagonalizing matrix V of K, use trK? =trk?

Ay / dp(V) exp(itr HK) = —tr k? / du( V) exp(itr HK)



Gelfand’s Spherical Functions

invariance of the Haar measure du(VU™!) = du(V) implies

/ dp(V) exp(itr HK) = / du(V) exp(itr U1 xUV1kV)

= / dpu(V) exp(itr xV1kV)

Gelfand'’s spherical function

¢S€)(Xa k) :/du(V) exp(itrxV_lkV)

depends only on radial variables (eigenvalues) x, k
—  may replace Apy by its radial part Ay



Matrix Bessel Functions
radial equation A,V (x, k) = —tr K20\ (x, k)

oo 0
radial Laplacean A, = ; W@T@JAN(X”B&
with the Vandermonde determinant  Apn(x) =[], p(Xn — Xm)
N 52

— AX_28X2+”<Zan—Xm <3Xn _8Xm>

n=1 """

—>  matrix generalization of Bessel operator

symmetry ') (x, k) = / dp(U) exp(itr U~ xUk) = & (k, x)



Vector and Matrix Bessel Functions

usual Bessel functions in two and three dimensional vector spaces

27 oo > 2K

Jo(z) = /exp(fzcow) dg ~ Z(‘l)ﬂ( ,fu)l
J = !
2w

sin z

Jo(2) ://exp(izcosﬂ)sin ddddy ~
00

Bessel functions in N x N matrix spaces

¢5\/6)(X7 k) = /du(U) exp(itr U~xUk)

difficult objects, complexity depends strongly on [



Link to Exactly Solvable Systems



Hamiltonian Dynamics and Matrix Bessel Fuctions

o) (x.k)
(An(x)An (k)P

ansatz ¢$\’IB) (x, k) =

eigenvalue equation Lxe%g)(x, k) = tr kZG)SVB)(x, k)

Hamilton or Schrodinger operator
N

9?2 p(B-2 1
LX:_Zaxz+ (2 )Z(X,, 2

n=1 n n<m o Xm)

view (3 as continuous parameter and the x, as positions of
N particles in one dimension —  Calogero—Sutherland

Jack polynomials, not symmetric under x < k

no n #* m interaction for g =2



Harish-Chandra and ltzykson—Zuber Integrals



Itzykson—Zuber Integral

in the unitary case (8 =2 the matrix Bessel function can be
calculated in closed form

¢$3)(X7k): / d,u(U)exp(itrU_lek)
u(N)

. det[eXp(ankm)]n,mzl,...,N
An(x)An(k)

with Vandermonde determinant  An(x) =[], (X0 — Xm)

reason is a separability of the radial Laplacean !

or, equivalently, absence of interaction in associated
Hamilton (Schrodinger) operator

Itzykson, Zuber (1980)



Harish-Chandra Integral

G compact semi—simple Lie group, a, b fixed elements in
Cartan subalgebra Hg of G

exp (tr w(a)b)
g/exp (tr U~taUb) du(U ywy Z AG)N( W(b))

M(a) product of all positive roots of Hg, W Weyl reflection group
everything stays in the space of the Lie group and its algebra !

—  Gelfand’s and Harish—Chandra’s spherical functions are very
different objects

coincide only in the unitary case, because U(N)/1 = U(N)

Harish-Chandra (1957)



Application to Time—Reversal Invariance Breaking

GOE (8 =1) and GSE (5 = 4) preserve time—reversal invariance,
thus there are two models for time—reversal invariance breaking

GOE-GUE transition
H() = HO 4 oH@)
GSE-GUE transition
H() = H® + oH?)

using ltzykson—Zuber integral, all diagonalizing groups can be
integrated out, yielding joint pdf of eigenvalues of H(«)

furthermore: eigenvalue integrals can be done in closed form, all
k—level correlations written in terms of Pfaffian determinants

Mehta, Pandey (1983)



Supermathematics



Variables

ki complex commuting variables  z,, p=1,...,k;
ko complex anticommuting variables  (,, p=1,..., k»
(plq = —C4Cp in particular (2 = 0

every function is a finite polynomial, for example for k, = 2

f(C1,() = o+ cii + clo + @1(

complex conjugation ¢, — (5 —> (= —(p

CpCS = _C; Cp

commuting and anticommuting variables commute

z,Cq = Cq2zp and ZPCC’; = C;Zp



Example: Strange ldentities for Functions

functions such as exp or cos etc.. involving anticommuting
variables can only be interpreted as power series

but, as the square of an anticommuting variable is zero, these
power series must terminate

every function of anticommuting variables is a finite polynomial

for example

o0(Gie) = 14GG = 1o = \1H 20
p

= 1+sin(C3¢) = 1+In(1+Ci¢p)

these are identities !



Linear Algebra

supervectors Y = [E] and supermatrices o = [z ’Z]

matrices a, b have commuting entries
matrices u, v have anticommuting entries

_la w||z| _Jaz+uc| _ 2| _
| A s~ R el R

supertrace stro =tra—trb — strojop =strojo;

det(a — ub~1v)

superdeterminant sdeto =
P det b

—— sdetojor = sdet oy sdet o»



Analysis

o o¢ ¢,
derivative —£ = and 2 =0
Berezin integral /dC =0 and /C d¢, = L
p= pahp = 5
for example

[eotscziaac, = [ (- a6 dgzacy = 2

apart from factors, derivative and integral are the same !
change of variables ¢ — x = x(¥) requires

Jacobian or Berezinian /f(1/))d[1/]] = / f(1(x))sdet gi}d[x]



Gaussian Integrals over Bosons and Fermions

matrix A has commuting entries
vector z has commuting entries (“Bosons”)
vector ¢ has anticommuting entries ( “Fermions™)

A
/exp(—izTAz)d[z] = detflz—

™

/ exp(—iCTAQ)d[¢] = det%

o is a supermatrix and 1 a supervector

[ ew(-viovydlu] = stec 17

—  divergencies removed, renormalization (field theory)



Supersymmetry in Random Matrix Theory



Preparing for Supersymmetry: Generating Function

Gaussian ensembles (8 =1,2,4) of N x N random matrices H,
(formulae a bit simplified, apply in this form to 5 = 2)

k—level correlation functions

Iy
xf,t—H

k
RA (... %) = /d[H]exp(trH2)Htr

p=1
can be written as derivatives
ok
ngl dJp

of generating function

RA(x,... %) = 7P (x + J)

J=0

u det(H — xp — Jp)
i det(H — xp + Jp)

ZP(x+) = / d[H] exp(—tr H?)



Ensemble Average — FT in Ordinary Space

det(H — x, — Jp)
det(H — x, + Jp) /d[zp]/exp —’ZT(H—Xp—i—J )Zp)

[ diGless(—ici(H ~ 5~ 5)6,)

collect total dependence on random matrix H
ensemble average becomes Fourier transform in matrix space !

/ d[H] exp(—tr H?) exp <—/tr H Z zpz CPCP)>

p=1

K 2
= exp(—tr (Z(zpz C,,Cp) ) = exp(—str B?)

p=1



Ensemble Average — FT in Superspace

Bis a2k x 2k (8 =2) or 4k x 4k (8 = 1,4) supermatrix,
entries are all scalar products ordered in blocks

B _ Z;Zq ZIECCI
PT T N hzg Clc
p4q  &pSq

introduce supermatrix o with the same symmetries and do another
Fourier transform, now in superspace

exp(—str B?) = /d[a] exp(—stro?) exp(—istr o B)

k
= /d[a] exp(—stro?) exp (—izwl(ﬂl\/ ®U)”¢p>

p=1

Zp

Cp

all integrals over 9, = [ ] doable, yield superdeterminants !



Supersymmetric Representation of RMT

Gaussian ensemble (5 =1,2,4) of N x N random matrices H
k—level correlations

8k
RIEB)(Xl,...,Xk) = ZIEB)(X+J)

k
Hp:l 8JP J=0
generating function obeys the identity (yes, this is exact!)

k

det(H — x, — J
ZP(x+J) = /d[H] op(-trH) ] ] detEH - JP%
p=1 P P

- / d[o] exp(—str 0?)sdet V(o — x — J)
where o is a 2k x 2k or 4k x 4k supermatrix
— drastic reduction of dimensions, N explicit parameter

Efetov (1983), Verbaarschot, Zirnbauer (1985)



Relevant Supergroups and Symmetric Superspaces



Random Matrices and Corresponding Supermatrices

as we have seen, ensemble average over random matrices H in
ordinary space becomes an ensemble average over supermatrices o

diagonalization in the form

eigenvalues

s1 O “Bosonic”
0 s “Fermionic’

o=u"tsu , s:[

inspite of this jargon, eigenvalues are always commuting !

the diagonalizing supermatrices u have commuting and
anticommuting entries, they are elements of supergroups



Relevant Supergroups

for the GUE (8 = 2)
unitary supergroup U(ki|ko) with ufu = Tk + ko
— U(k1|k2) D) U(k1)®U(k2)

for the GOE and GSE (5 = 1,4)
unitary ortho—symplectic supergroup UOSp(k1|2k2)  with

utu = 14,42k, and u"™Mu = M |
1y, 0 0

M=10 0 1k,
0 -1 O

— UOSp(kl‘kz) D) O(k1)® USp(2k2)

Kac (1977), Berezin (1983)



Symmetric Ordinary and Super Spaces

random matrix H lives in symmetric ordinary spaces

U(N)/O(N) real symmetric o]
U(N)/1 Hermitean B
U(2N)/Sp(2N) Hermitean selfdual g

1
2
4

corresponding supermatrix o lives in symmetric superspaces

U(k1|k2)/1 for B =2
Gl(k1|2k2)/OSp(k1|2k2) (two forms) for [ =1,4

symmetric spaces have an angular or group part
and a radial or eigenvalue part



Integrals over Unitary Supergroup U(k|k»)

supersymmetric generalization of ltzykson-Zuber integral

. _ det[exp(isp1rq1)] detexp(ispor,
/dM(U) exp(istr utsur) = [ (Bilquzl)Bk;[((r)( p2/q2)]
1K2 1K2

Ay (s1)Ay,(is2)
Hp,q(sp]- - i5q2)

with B/qu (S) =

1

for k1 = kp = k get Buk(s) = Bk(s) = det [}
Spl —15q2 1 p g=1,... k

for ki,ky equalto N,0 or 0,N recover ordinary integral

/du(U) exp(itr U™'xUk) = W

TG (1991, 1996)



Application to Random Matrix Problems

Exact Solutions



Exact Solutions for Transitions to GUE

ensemble of matrices  H(a) = H© 4+ aH®)

arbitrary H©) space included in Hermitean space of H(
generating function acquires the form
Z,E’B)(X +J,0) = /d[a] exp(—%str (0 —x— J)2>

sdet 1 (Iy @ o + HO @ 1)

supersymmetric ltzykson-Zuber integral yields immediately

1

(x4 1.0) = gy [ dlBus) e~ Spstr (s = x— I

sdet 71(]1/\/ ® s+ E© & ]12;()

— _ det [Kn((x + J)p1, (x + J) g2, )]

Bi(x + J) p.q=1,...k



. with Kernel

2k—fold integral collapses to determinant of twofold integrals

they are given by the kernel

+o00 +o00

. dsids, 1
Kn(rp1, irg2, ) / / . 552 —7((51 —n)’+(s2— r2)2)>

— 1

—0o0 —O0

derivatives with respect to the J, are easy,
get all k—level correlation functions exactly

TG (1996)



Regularity—Chaos Transition

unitary case:  H(a) = H(reeulan) L H(2)

two—level correlation function

0.6
Xo(w, A)

02

0.0

0.0 05 10 Ls 20

Xg(w, )\)

with A =a/D

0 40 80 120

transition towards GUE spectral correlations very fast !



Built—in Structures of Supersymmetry
consider § =2
Hermitean N x N ordinary matrix H = UTxU

d[H] = A} (x)d[x]dpu(U)  where  Ap(x) = J] (x0 — xm)

n<m

—  level repulsion

Hermitean 2k x 2k supermatrix o = ufsu

d[o] = B2(s)d[s]du(u)  where

o[t

—  k—level correlations, determinantal processes



Application to Random Matrix Problems

Supersymmetric Nonlinear sigma Model



Saddle Point Approximation for kK = 2 and Large N
asymptotic approach for two-level (k = 2) correlation functions
for all B =1,2,4, write
Z,E’B)(X +J) = /d[a] exp(—stro?)sdet V(o — x — J)
~ [ dirtexp(-L(e))

with “free energy” L(o) = str(c?+ Nlin(o —x — J))

at J =0, dL = 0 determines saddle points, 2sp + =0
S50 — X
) x £+ ivV2N — x2
solution sy = T E—

imaginary part is Wigner's semicircle !

Efetov (1983)



Coset Supermanifolds and Nonlinear sigma Models

“massive” modes corresponding to the level densities are simple
Gaussian integrals

remaining integrals explore surrounding space, correlation functions
result from corresponding integrals over “massless” Goldstone
modes, parametrized by supermatrices @ which are elements of the
coset supermanifolds

U(1,1]2)/(U(1]1) x U(1|1)) for B =2
UOSp(2,2|4)/(UOSp(2|2) x UOSp(2[2)) for B =1,4

widely applicable, particularly in d—dimensional field theories

Efetov (1983)



Supersymmetry and Disordered Systems
electron moves diffusively in a probe with scatterers (impurities)

0o o o ® o o, d dimensions, localization ?
[ J

random disorder potential

0 %%, o 0o, AL <V(F)V(F')>~(5(d)(F— 7')

field theory: supersymmetric non—linear ¢ model with action

S[Q] = str / ddr<D8;Q(F)8,~Q(F) — iw/\Q(F))

where Q = Q(r) is supermatrix field in coset space

Efetov (1983)



Harish—Chandra and Supersymmetry

supersymmetric ltzykson-Zuber integral (TG (1991,1996))
—  most interesting remaining case is UOSp(k1/2k2)

conjecture: Serganova (1992) and Zirnbauer (1996)
proof: Guhr, Kohler (2002)

Laplacean A4 over Lie superalgebra uosp(ki/2k>)
construct radial part A, over Cartan subalgebra

identify Harish—Chandra integrals as eigenfunctions of A,
realize that A, is separable

—  solution of eigenequation is trivial

proof also comprises Lie groups in ordinary space



What have we learned ?



Conclusions

group integrals are needed to treat transitions

integrals of ltzykson—Zuber, Gelfand and Harish-Chandra
direct connection to exactly solvable systems
supermathematics and the supersymmetry method

exact solutions in the unitary case, in general asymptotic
supersymmetric nonlinear sigma models



Thank You for Your Attention !
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