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Outline — Stochastic Scattering

some background: scattering theory

(quantum) chaotic or stochastic scattering

supersymmetry for distributions

exact results for scattering matrix elements

exact results for cross sections

comparison with microwave experiments

comparison with nuclear data



Introduction to Scattering Theory



Scattering Process

waves propagate in (fictitious) channels, scattered at target

scattering matrix S connects ingoing and outgoing waves

M channels,

S is M ×M

flux conservation

SS† = 1M = S†S

no direct reactions (a 6= b) −→ energy average S diagonal

transmission coefficients Ta = 1− |Saa|2



Scattering Experiments in Nuclear Physics

differential cross sections, squares of scattering matrix elements

this example: Richter et al. (1960’s)



Different Regimes in Nuclear Scattering

from isolated resonances towards Ericson regime of strongly
overlapping resonances

Clarke, Almqvist, Paul (1960’s)



Scattering Experiments with Classical Waves

microwaves

elastic
reveberations

direct measurement of the scattering matrix

Weaver, Ellegaard, Stöckmann, Richter, Shridar groups (90’s...10’s)



(Quantum) Stochastic/Chaotic Scattering



Mexico Approach to Stochastic Scattering

to study statistics, S itself modeled as a stochastic quantity
minimum information principle yields probability measure

P(S)dµ(S) ∼ dµ(S)

| detβ(M−1)+2(1M − S〈S〉†)|

no invariance under time–reversal: S unitary, β = 2

invariance under time–reversal:

spin–rotation symmetry: S unitary symmetric, β = 1
no spin–rotation symmetry: S unitary self–dual, β = 4

input: ensemble average 〈S〉, assume 〈S〉 = S

problem: energy and parameter dependence not clear !

Mello, Pereyra, Seligman (1980’s)



Microscopic Description of Scattering Process ...

H =
N∑

n,m=1

|n〉Hnm 〈m|+
M∑
a=1

∫
dE |a,E 〉E 〈a,E |

+
∑
n,a

(
|n〉
∫

dE Wna 〈a,E |+ c.c.

)

bound states
Hamiltonian H

N � 1 bound states |n〉

M channel states |a,E 〉

coupling Wna



... Yields Scattering Matrix

Sab(E ) = δab − i2πW †
aG (E )Wb

with matrix resolvent containing bound states Hamiltonian H

G (E ) =
1N

E1N − H + iπ
M∑
c=1

WcW
†
c

absence of direct reactions consistent with orthogonality

W †
aWb =

γa
π
δab

Mahaux, Weidenmüller (1969)



Heidelberg Approach to Stochastic Scattering

Hamiltonian H modeled as a Gaussian random matrix

P(H) ∼ exp

(
−Nβ

4v2
trH2

)
form of P(H) irrelevant on local scale of mean level spacing

−→ two universalities, experimental and mathematical

no invariance under time–reversal: H Hermitean, β = 2

invariance under time–reversal:

spin–rotation symmetry: H real symmetric, β = 1
no spin–rotation symmetry: H Hermitean self–dual, β = 4

Weidenmüller (1960’s)



Chaotic Statistics, Example: Compound Nucleus

regular

chaotic

spacing distribution p(s)

probability density to find two
adjacent levels in distance s

Bohigas, Haq, Pandey (1983)



Counter Example: Collective Excitations in Nuclei

single particle versus collective excitations

scissors mode oscillations, all neutrons ↔ all protons

−→ chaotic versus regular statistics

−→ crossover transitions are frequent !

Enders, TG, Huxel, von Neumann–Cosel, Rangacharyulu, Richter (2000)



Supersymmetry for Correlations



Correlation Functions in RMT

Gaussian ensemble (β = 1, 2, 4) of N × N random matrices H

k–level correlations are probability density to find a level
in each interval [xp, xp + dxp], p = 1, . . . , k

can be expressed with resolvent

R
(β)
k (x1, . . . , xk) =

∫
d [H] exp(−trH2)

k∏
p=1

tr
1N

H − xp1N

(notation is a bit simplified)



Generating Function for Correlations

introduce scalar source variables Jp

R
(β)
k (x1, . . . , xk) =

∂k∏k
p=1 ∂Jp

Z
(β)
k (x + J)

∣∣∣∣∣
J=0

and generating function

Z
(β)
k (x + J) =

∫
d [H] exp(−trH2)

k∏
p=1

det(H − xp − Jp)

det(H − xp + Jp)



Supersymmetric Representation

vectors zp, ζp with commuting and anticommuting entries

det(H − xp − Jp)

det(H − xp + Jp)
=

∫
d [zp] exp

(
iz†p(H − xp + Jp)zp

)
∫

d [ζp] exp
(
iζ†p(H − xp − Jp)ζp

)
average over H just Gaussian!

intermediate result is integral over zp, ζp, p = 1, . . . , k

but depends only on scalar products

z†pzq, ζ
†
pζq commuting

z†pζq, ζ
†
pzq anticommuting



Supermatrix Integral

Hubbard–Stratonovitch transformation: “use scalar products as
integration variables, remaining ones are trivial”

identity (yes, this is exact) for generating function

Z
(β)
k (x + J) =

∫
d [σ] exp(−strσ2)sdet−N(σ − x − J)

where σ is a 2k × 2k or 4k × 4k supermatrix

−→ drastic reduction of dimensions

Efetov (1983), Verbaarschot, Zirnbauer (1985), TG (1991,2006)



Scattering Matrix

Sab(E ) = δab − i2πW †
aG (E )Wb

does not depend on an invariant, but on resolvent matrix

G (E ) =
1N

E1N − H + iπ
M∑
c=1

WcW
†
c

introduce N × N matrix source variable J

Gnm(E ) =
∂

∂Jnm

det(G−1(E )− J)

det(G−1(E ) + J)

∣∣∣∣∣
J=0

determinants linear in H −→ supersymmetry method

Verbaarschot, Weidenmüller, Zirnbauer (1985)



Many Results Obtained in this Way, for Example

two–point correlation functions 〈Sab(E1)Scd(E2)〉

β = 1 Verbaarschot, Weidenmüller, Zirnbauer (1985)
β = 2 Savin, Fyodorov, Sommers (2006)

higher order correlations, perturbative time–invariance breaking

Davis, Boosé (1988, 1989), Davis, Hartmann (1990)

distribution of diagonal elements P(Saa(E ))

Fyodorov, Savin, Sommers (2005)

... but: does not work for distribution P(Sab(E )), a 6= b

−→ new method needed



Supersymmetry for Distributions



Distribution of Scattering Matrix Elements

Sab(E ) = δab − i2πW †
aG (E )Wb

wish to calculate distribution of real and imaginary part

℘s(Sab) = π
(
(−i)sW †

aGWb + i sW †
bG
†Wa

)
such that

x1 = ℘1(Sab) = ReSab(E ) and x2 = ℘2(Sab) = Im Sab(E )

distribution given by

Ps(xs) =

∫
d [H] exp(−trH2)δ(xs − ℘s(Sab)) , s = 1, 2



Characteristic Function

obtain distribution by Fourier backtransform of

Rs(k) =

∫
d [H] exp(−trH2) exp(−ik℘s(Sab))

insert definition of scattering matrix

Rs(k) =

∫
d [H] exp(−trH2) exp(−ikπW †AsW )

with W =

[
Wa

Wb

]
and As =

[
0 (−i)sG

i sG † 0

]
where As Hermitean, but contains H inverse

problem: have to invert As to perform H average !



Crucial Trick

Fourier transform in W space ! — Yields

exp(−ikπW †AsW )

∼
∫

d [z ] exp

(
i

2
(W †z + z†W )

)
det β/2A−1s exp

(
i

4πk
z†A−1s z

)

now use anticommuting variables

det β/2A−1s ∼
∫

d [ζ] exp

(
i

4πk
ζ†A−1s ζ

)

now H linear in exponent −→ supersymmetry applicable !

different rôle of commuting and anticommuting variables



Supermatrix Model

Hubbard–Stratonovitch transformation gives

Rs(k) =

∫
d [%] exp

(
− rstr %2 − β

2
str lnΞ− i

4
Fs
)

with 8/β × 8/β supermatrix % and r = 4βπ2k2N/v2

Ξ = %E ⊗ 1N +
i

4k
L⊗

M∑
c=1

WcW
†
c , %E = %− E

4πk
18/β

matrix L is some superspace metrik

Fs ∼ [W † 0†]Ξ−1
[
W
0

]
, projects onto boson–boson space

−→ symmetry breaking differs from the one for correlations



Supersymmetric Non–Linear sigma Model

limit N −→∞, unfolding by saddlepoint approximation
integrate out “massive” modes

left with integral over “Goldstone” modes Q,
free rotations, coset manifold in superspace

Rs(k) =

∫
dµ(Q) exp

(
− i

4
Fs

) M∏
c=1

sdet−β/2
(
18/β +

iγc
4πk

Q−1E L
)

integrate out all remaining anticommuting variables

left with ordinary integrals, two for β = 2, four for β = 1

−→ drastically reduced number of integration variables



Analytical Results versus Numerics



Reproducing the Circular Ensemble for β = 2

number of channels M = 2, energy E = 0,
width parameters γ1/D = 1, γ2/D = 1

real and imaginary parts always equally distributed for β = 2



Far Away from the Circular Ensemble for β = 2

number of channels M = 5, energy E/D = 1.2,
width parameters γj/D between 0.08...0.72

real and imaginary parts always equally distributed for β = 2



Towards Ericsson Regime for β = 2

average resonance width / mean level spacing Γ/D = 0.716 (top)
and Γ/D = 8.594 (bottom)



Towards Ericsson Regime for β = 1

average resonance width / mean level spacing Γ/D = 1.273 (top)
and Γ/D = 7.162 (bottom)

real and imaginary parts not equally distributed for β = 1



Comparison with Microwave Experiments



... vs Numerics and Experiment for β = 1

frequency range 10 . . . 11GHz,
average resonance width / mean level spacing Γ/D = 0.234



Analytical Result vs Experiment for β = 1

frequency range 24 . . . 25GHz,
average resonance width / mean level spacing Γ/D = 1.21



Distribution of Cross Sections



No Way Around the Joint Probability Density

cross section σab(E ) = |Sab(E )|2 = Re 2Sab(E ) + Im 2Sab(E )

need joint pdf P(Re Sab, ImSab) = P(Sab, S
∗
ab)

to calculate p(σab) =

∫
d2Sab P(Sab, S

∗
ab) δ(σab − |Sab|2)

good news: can extend previous calculation into complex plane

characteristic R(k, k∗) =

∫
d [H] exp(−trH2) exp(−iRe k∗Sab)

simply replace real k with complex k = k1 + ik2 everywhere

distribution p(σab(E )) =

∫
d2k R(k , k∗) J0(

√
σab(E )|k |)



Comparison with Microwave and Nuclear Data



Characteristic Functions for Microwave Data

Γ/D = 0.234 Γ/D = 1.21



Cross Section Distributions

microwaves Γ/D = 1.21 nuclear data 37Cl(p,α)34S

p(0) ≈ 1 indicates Ericson regime

cross section distribution becomes exponential in Ericson regime



Analytical Results vs Cross Section Data

microwave data (left) Γ/D = 0.7, 1.2
nuclear data (right) Γ/D ≈ 1, 30

p(0) ≈ 1 indicates Ericson regime



What have we learned ?



Conclusions and Outlook

Mexico and Heidelberg approaches to stochastic sacttering

solved longstanding problem within Heidelberg approach

now have supersymmetry for distributions

distributions of scattering matrix elements and cross sections

additional results: characteristic function generates moments,
integral representations for all of them

full analytical understanding of transition to Ericson regime

Brouwer’s equivalence proof Heidelberg–Mexico
implies: now have explicit handle on Mexico approach
for arbitrary channel number

comparison with microwave and nuclear data

also: condensed matter and wireless communication



Thank You for Your Attention !
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