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Random Matrix Theory: from Single– to Many–Body Quantum Chaos

1. Phenomenological Model for the Spacing Distribution

The nearest–neighbor–spacing distribution p(s) is one of the most important spec-
tral observables. It is easily accessible in experiments and numerical simulations,
in contrast to the energy correlation functions Xk(ξ1 . . . , ξk) of higher order k.

(a) Compare p(s) und X2(r), r = ξ1−ξ2, we recall that the unfolded energy cor-
relation functions only depend on the differences ξi−ξj . Which Xk(ξ1 . . . , ξk)
are needed to calculate p(s), i.e. to which order k do they enter p(s) ?

(b) In a phenomenological model, the spacing distribution satisfies the integral
equation

p(s) = µ(s)

∞∫
s

p(s′)ds′ .

Solve this equation for arbitrary µ(s), use p(0) = µ(0). Show that the nor-
malization

∫∞
0 p(s)ds = 1 holds, if

∫∞
0 µ(s)ds→∞.

(c) Which are the nearest–neighbor–spacing distributions that you get for the
choices µ(s) = 1 and µ(s) = πs/2 ? Make qualitative drawings. What is the
phenomenological meaning of the function µ(s) ?

2. Heuristic Derivation of Wigner’s Surmise

Wigner put forward the surmise that the nearest–neighbor–spacing distribution
p(s) for Gaussian random matrices is well approximated by the formula

p(s) = p(W )(s) =
π

2
s exp

(
−π

4
s2
)
.

Show that this is the spacing distribution for real symmetric 2× 2 matrices

H =

[
H11 H12

H12 H22

]
.



The matrix elements are Gaussian distributed,

P (H) =

√
2

√
2πv2

3 exp

(
− 1

2v2
trH2

)
with variance v2. The eigenvalues of H are E1 und E2. The dimensionless distance
to the next neighbor is in this case just s = |E1 − E2|/D, where D formally
represents the mean level spacing. The nearest–neighbor–spacing distribution is
then given as

p(s) =

+∞∫
−∞

dH11

+∞∫
−∞

dH22

+∞∫
−∞

dH12 P (H) δ (s− |E1 − E2|/D) .

Compute p(s) by making the following steps:

(a) The matrix H is diagonalized by an orthogonal 2 × 2 matrix U(ϕ) which
depends on an angle ϕ. We have H = UTEU with E = diag (E1, E2). Carry
out a change of variables ino eigenvalue–angle coordinates. Hint: the volume
element transforms as

dH11dH22dH12 =
1

4
|E1 − E2|dE1dE2dϕ ,

where E1 und E2 take values in R. Do the angular integration.

(b) Calculate the eigenvalue integrals, use Ẽ = (E1 +E2)/2 and ε = E2 −E1 as
new coordinates.

(c) Determine v2 and D from the two normalization conditions

∞∫
0

p(s) ds = 1 and

∞∫
0

s p(s) ds = 1 .

What is the meaning of the second condition?

(d) Why is this derivation heuristic? Why is this not a full derivation of the
spacing distribution in Random Matrix Theory?

3. Level Number Variance for Regular Systems

The level number variance Σ2(L) was introduced in the lecture by dividing the
unfolded spectrum into M windows. The window m = 1, . . . ,M contains νm(L)
levels. The level number variance is then

Σ2(L) = 〈ν2(L)〉 − 〈ν(L)〉2 ,

where 〈. . .〉 is the average over all windows. On the unfolded scale, there are

L ±
√

Σ2(L) levels in an interval of length L. Thus, in contrast to the nearest–
neighbor–spacing distribution, the level number variance gives information on
long–range properties of the level statistics. For chaotic systems, Σ2(L) behaves
logarithmically for larger L. For regular systems, one often finds Σ2(L) ∼ L. The
case of the harmonic oscillator in one dimension is very special.



(a) Calculate Σ2(L) for the unfolded spectrum of the harmonic oscillator in one
dimension. Begin with considering integer L ∈ N. What is then Σ2(L) ?
Show Σ2(L) = Σ2(L+ 1). In the general case, decompose L = [L] + x where
0 ≤ x < 1 with [L] being the largest integer smaller L.

(b) Show Σ2(L) = L for a system with Poissonian spectrum.

4. Spectral Rigidity

The spectral rigidity ∆3(L) is closely related to the level number variance. In the
lecture, it was introduced for window m as the minimum

∆3m(L) =
1

L
minA,B

L∫
0

dξ (νm(ξ)−Aξ −B)2 ,

where νm(ξ) is the number of levels in window m.

(a) Express A und B in terms of νm(ξ) by minimizing the above integral.

(b) Re–insert A and B in the above expression to show that ∆3m(L) can be
written as

∆3m(L) =
1

L

L∫
0

ν2m(ξ)dξ − 1

L
~I TC~I ,

where the vector ~I is defined as

~I =


L∫
0

ξνm(ξ)dξ

L∫
0

νm(ξ)dξ

 .

What is the meaning of these two integrals? Determine the matrix C.

5. Spherical Functions — Itzykson–Zuber Integral

To compute spectral transitions, group integrals are needed. Unfortunately, only
the case of integrals over the unitary group is explicitly doable for arbitary matrix
dimension N . Consider the simplest orthogonal case, the integral over SO(2),

Φ
(1)
2 (x, k) =

∫
SO(2)

exp
(
itrxUTkU

)
dµ(U) ,

here we have x = diag (x1, x2), k = diag (k1, k2). To calculate it, proceed as
follows:



(a) Write U ∈ SO(2) as a rotation matrix with angle ϕ in two real dimensions.
Hint: dµ(U) = dϕ.

(b) Calculate trxUTkU , write it in terms of only cos 2ϕ. Hint: differences and
sums x1 ± x2, k1 ± k2 appear.

(c) Which function results from the remaining integral over ϕ ?

6. Spectrum of Chiral (Random) Matrices

In chiral Random Matrix Theory, one starts from the Dirac operator in the chiral
basis and replaces it by matrices of the form

D =

[
0 M
M † 0

]
,

such that D = D†. Here, D should not be confused with the mean level spacing
introduced previously. We notice that the matrix M has no further symmetries.
In particular, M can be a rectangular matrix of dimension N × L. Without loss
of generality, we may assume that L ≥ N . Moreover, we restrict ourselves to the
case that M and hence D are real. Chiral symmetry reflects itself in a pointwise
symmetry of the spectrum. Show the following:

(a) In the case L > N , there are L − N eigenvalues which are zero. They are
called zero modes.

(b) All non–zero eigenvalues λ of D come in pairs. What does that imply for the
level density?

(c) The spectrum of chiral random matrices is closely related to that of Wishart
correlation matrices.


