

EXPLORING SAXS AND USAXS TO MEASURE SEVERAL PROPERTIES OF SOFT MATTER USING SMALL AMOUNT OF SAMPLE

> By Andre Polloni, Technical Sales Representative, Anton Paar Brazil

D21V014EN-C | 1

WHAT IS SAXS

SMALL ANGLE X-RAY SCATTERING

Measures intensity of scattered (X-ray) light versus and angle

Ensemble average technique (good statistics)

Small angle \rightarrow Large structure (SAXS) Large Angle \rightarrow Small structure (WAXS)

SAXS SETUP

X-RAY - COLLIMATION - SAMPLE - DETECTOR (MOVEABLE)

Scattering vector $q = \frac{4 \pi}{\lambda} sin(\Theta)$ $\lambda_{Cu} = 0.154 \text{ nm}$ Size $= \frac{2 \pi}{q}$

MEASUREMENT

DATA REDUCED TO 1D (FROM 2D SCATTERING)

D21V014EN-C | 4

TYPICAL SAMPLES & RESULTS

Nanoparticle dispersions Proteins in solution Surfactants, emulsions Liquid crystals Catalysts Mesoporous materials Polymers Composite materials Fibers Surfaces, thin films

PRINCIPLE DATA EVALUATION ROUTES

PRINCIPLE DATA EVALUATION ROUTES

D21V014EN-C | 7

SAXS FOR SOFT MATTERS

APPLICATIONS TO FOLLOW:

- > Surfactants
- > Particle size
- > Surface area of porous materials (BET like)
- > Mesoporous materials
- > Phase transitions
- > Micrometric size measurements using USAXS

SURFACTANTS

> Example showing RheoSAXS of surfactants forming lamellar and onion-like mesophase

MOTIVATION

 Determine rheological and structural properties of a material simultaneously

RheoSAXS measuring set-up

- > DSR 502 measuring head with air bearing
- > Temperature control: ambient to 200 °C
- > Min. torque (rotation): 10 nNm

EXPERIMENTAL SET-UP

- > Offering two measurement geometries:
 radial & tangential
- > The radial beam (R) probes perpendicular to the flow direction.
- The tangential beam (T) probes parallel to the flow direction

NON-IONIC SURFACTANTS

- > Used in a wide field of applications:
 - > detergents
 - > wetting agents
 - > emulsifiers and solubilizers in cosmetics
 - > personal and health care
- > Compared to ionic surfactants, some non-ionic surfactants have superior properties like:
 - > superior cleaning performance
 - > enhanced solubility (especially in hard water)
 - > better chemical stability

SAMPLE INFO & EXPERIMENTAL SET-UP

- > polyoxyethylene alkyl ether (C_mE_n)-water twocomponent system (40 % w/w)
- Formation of planar lamellae at no shear or low shear rates
- > Onion-like structures can evolve at higher shear rates and in dependence of the temperature

Measurement set-up

- > Axial mode
- $> 0.05 \text{ nm}^{-1} < q < 2.5 \text{ nm}^{-1}$
- > T = 25, 30, 35 and 40 °C

RESULTS AT 25 °C

- Characteristic scattering pattern of a lamellar structure is seen
- > With increasing shear stress, the initially isotropic structure is oriented and leads to an anisotropic pattern
- Shear stress slightly decreases at the beginning and then settles to a constant value

RESULTS AT 30 °C

- > Initial structure is still lamellar
- Already at a shear rate of 1 s⁻¹ and higher, the shear stress increases significantly
- Lamellar peak in the scattering pattern changes to an (isotropic) ring
 ⇒ change to an onion-like multi-layer vesicle (MLV) structure

LAMELLAR STRUCTURES AT 25 °C

- > The scattering intensity I(q) is proportional to the product of the Form factor P(q) and the Structure factor S(q)
 - > number of bilayers
 - > the lamellar *d*-spacing
 - > Caillé parameter (bilayer flexibility)
- > Upon shear stress, the bilayers strongly arrange and the flexibility or rippling of the structure is suppressed

$I(q) \propto P(q) S(q)$

Shear rate	Caillé	
in s ⁻¹	parameter	
0.1	0.257	
1	0.203	
5	0.198	
10	0.194	

ONION STRUCTURE AT ≥ 30 °C

> Conclusions to be drawn:

- > the number of bilayers decreases with increasing shear rate
- > the d-spacing becomes narrower when changing from lamellar to onion
- > the Caillé parameter becomes smaller with increasing shear rate (rippling fluctuation of the bilayer is suppressed at higher shearing force)

>	Either number of bilayers from the outside of MLVs is decreasing or the
	stacked lamellar structure on the outside of MLVs is disturbed at high shear rates

Shear	No. of	d-spacing	Caillé
rate in s ⁻¹	bilayers	in nm	parameter
0.1	18.6	8.43	0.271
1	19.4	8.34	0.230
5	7.75	8.12	0.231
10	7.76	8.07	0.246

PARTICLE SIZE

> Example showing High-resolution SAXS measurement of SiO₂ nanoparticles

PUSHING SAXS RESOLUTION

MOTIVATION

Resolving very large nanostructures by SAXS (diameter \leq 314 nm, d-spacing \leq 628 nm) requires scattering data at very low angles

CHALLENGE

Measuring high-resolution SAXS data in short time requires high quality and design of the used instrument and its beam-forming components: X-ray source, optics, collimation

2.9

LARGE HOLLOW SiO₂ SPHERES

EXPERIMENTAL & RESULTS

- High-resolution SAXS measurement of SiO₂ nanoparticle solution after background subtraction
 - ⇒ Exposure time: 1 hour
 - ⇒ High performance optic
 - ⇒ Beamstop-less
 - ⇒ 1st useable data point at 0.008 nm⁻¹
- > The pronounced minima in the scattering curve relate to the form factor of the highly monodisperse particles. A second length scale (lower image *) corresponds to the shell thickness of the spheres.
- > $d_{\text{max}} = 211 \text{ nm} (\text{PCG}, \text{ Glatter et al.})$

SURFACE AREA

> Example showing surface area measurement (BET like) of porous materials

MOTIVATION

- > Porous materials can be found in a very wide range of applications.
- > Knowing the **specific surface area** of energy storage materials, construction materials and catalysts is crucial
 - ⇒ Structural characterization of materials
 - ⇒ Development of new materials
 - ⇒ Product quality control

CHALLENGE

 Establishing SAXS as an alternative method to the well established gas adsorption (BET) technique

GAS ADSORPTION vs. SAXS

- > Both methods probe the same length scale
 - ⇒ Structures from approx. 1 to 300 nm

SPECIFIC SURFACE AREA by SAXS

- Information on the specific surface area (SSA) is found at higher scattering angles: Porod region
- > The basis for calculating the SSA is Porod's law

 $\lim_{q\to\infty} I(q) = A + K \cdot q^{-4}$

EXPERIMENTAL

- > SAXS measurements were performed with the SAXSpoint system using the Heated Sampler
- > The goal was to validate the SAXS method for determining the SSA of the non-microrporous reference materials

Silica particles with different diameter

Controlled pore glass (CPG) ERM-FD-121

Schlumberger et al., Microporous and Mesoporous Materials 329 (2022) 111554

Schlumberger et al., Microporous and Mesoporous Materials 329 (2022) 111554

RESULTS

> Specific surface area obtained by SAXS and Ar BET match very well

Schlumberger et al., Microporous and Mesoporous Materials 329 (2022) 111554

PARTICLE SIZE

> Example showing USAXS (Ultra-Small Angle X-ray Scattering)

USAXS – ULTRA SMALL-ANGLE X-RAY SCATTERING

RESULTS

- > SiO₂ particles with a verified diameter of $1.53 \pm 0.02 \ \mu m$
- Continuous flow stirring of the solution
 prevention of sedimentation
- IFT: PDDF with maximum dimension of 1.52 µm

PARTICLE SHAPE

> Example showing shape of rod-like material

SAXS AND DLS

DLS & ELS RESULTS

- > DLS determines the mean hydro-dynamic diameter (only size, no shape):
 - > Ferric carboxymaltose: 24.4 nm
 - > Iron sucrose: 11.9 nm
- Both samples show a narrow size distribution (polydispersity index < 20 %)
- > ELS determines the zeta potential, i.e. the stability of the colloidal dispersion:
 - > Ferric carboxymaltose: 6.8 mV
 - > Iron sucrose: -29.5 mV

Size distribution of ferric carboxymaltose nanoparticles determined by DLS

Size distribution of iron sucrose nanoparticles determined by DLS

SAXS AND DLS

SAXS RESULTS

- > SAXS determines the size and shape
- > Ferric carboxymaltose
 - The calculated pair-distance distribution function (using program GIFT*) indicates a slightly elongated/prolate shape
 - > Max. dimension: 17 nm
 - > Averaged radius: ~ 6 nm
- > A low-resolution 3D shape was calculated using the ATSAS** software

Scattering curves and pair-distance distribution function

Averaged 3D shape (below) of ferric carboxymaltose

SAXS AND DLS

SAXS RESULTS

> Iron sucrose

- The calculated pair-distance distribution function (using program GIFT) indicates a cylindrical shape
 - > Averaged length: 13 nm
 - > Averaged width: ~ 3 nm
- > A low-resolution 3D shape was calculated using the ATSAS software

Scattering curves and pair-distance distribution function

Averaged 3D shape (below) of iron sucrose

SAXSpoint 5.0 APPLICATIONS

Thank you!

Andre Polloni Anton Paar Brasil (11) 9 6627 5025 andre.polloni@anton-paar.com

www.anton-paar.com