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Main Objectives of the Work

• To use impedance spectroscopy to investigate modulated
phases of liquid crystals;

• The focus is the low-frequency limiting behavior, which
relies on ionic motion;

• The technique is useful to characterize the physical parameters
of the material as well as to understand how the natural
modulation present in the media a↵ects ionic di↵usion;

• The conceptual framework to analyze the data is the
Poisson-Nernst-Planck (PNP) model, extended to the field of
fractional calculus in order to account for anomalous
di↵usion.

• This is the PNPA (“A” for anomalous) model.
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Anomalous Di↵usion
Motivation

Such turmoil means that there are secret motions,
out of sight, that lie concealed in matter.

Lucretius, De rerum natura.
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Anomalous Di↵usion
Motivation

• The mean square displacement

h(�z)2i = hz2i � hzi2 (1)

represents the smearing out of a substance by di↵usion.

• The di↵usive processes may be characterized in general as

h(�z)2i / t↵, (2)

with the case ↵ = 1 being the normal one, whereas the cases
↵ < 1 (subdi↵usion) and ↵ > 1 (superdi↵usion) characterize
the anomalous di↵usive behavior.
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Di↵usion as a family business

Uncle Albert (1879-1955), pioneer in the family business. Paper: On the

motion of small particles suspended in a stationary liquid according to

the molecular kinetic theory of heat. A. Einstein, Über die von der

molekularkinetischen Theorie der Wärme geforderte Bewegung von in

ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik 17,
549 (1905).
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Anomalous Di↵usion: Basic Concepts

• The Brownian motion is characterized by a di↵usion packet
that is initially concentrated at a point and takes later the
Gaussian form, whose width grow in time as t1/2,
characterizing what we called normal di↵usion.

• If we look at the di↵usion equation for a constant di↵usion
coe�cient, that is

@⇢(z , t)

@t
= D

@2⇢(z , t)

@z2
,

we may notice that the square of the position scales linearly
with t and we may expect that

hz2i ⇠ t.
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Anomalous Di↵usion and Fractional Calculus

• Similarly, if we look at a space-time fractional equation in
the form

@�⇢(z , t)

@t�
= D

@↵⇢(z , t)

@z↵
,

we may expect that
hz2i ⇠ t2�/↵.

• We may expect that for 2� = ↵ we have to deal with a
normal di↵usion.

• When 2� < ↵ the subdi↵usion processes are relevant;

• For 2� > ↵ the process under investigation is superdi↵usive.

• Fractional Calculus is a powerful tool to handle with
anomalous di↵usion processes!
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Elements of Fractional Calculus
Motivation

• The mathematician cannot create things at will,
any more than the geographer can; he can only discover

what is there and give it a name.
Gottlob Frege

• Clouds are not spheres, mountains are not cones,
coastlines are not circles, and bark is not smooth,

nor does lightning travel in a straight line.
Benôıt Mandelbrot
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Elements of Fractional Calculus
The Leibniz Solution

• The term fractional calculus has been used (as a misnomer)
for the theory of integrations and derivatives of arbitrary
order.

• The question about the possible meaning of a derivative of
arbitrary order was formulated by Guillaume François
Antoine, marquis of L’Hôpital (1661-1704), by means of a
letter addressed to the great mathematician and philosopher
Gottfried Wilhelm Leibniz (1646-1716) — who gave a
positive and correct answer to the instigating question.
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Elements of Fractional Calculus
Pioneers

• Since then fractional calculus was the object of analysis by
great mathematicians, including Leonhard Euler (1707–1783),
Pierre Simon Laplace (1749–1827), Jean-Baptiste Joseph
Fourier(1768–1830), Niels Henrik Abel (1802–1829), Joseph
Liouville (1809–1882), Georg Friedrich Bernhard Riemann
(1826–1866), Nikolay Yakovlevich Sonin (1849–1915),
Aleksey Vasilievich Letnikov (1837–1888), Paul Mathieu
Hermann Laurent (1841–1908), among many others.
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Elements of Fractional Calculus
The Lacroix Derivative

• It was briefly mentioned (perhaps for the first time as such) in
1819, in the book of Sylvestre François Lacroix
(1765–1843);

• Let, for instance, y = xm; when n is an integer, one has for
any arbitrary m 2 N:

dny = dn(xm) = m(m � 1) · · · (m � n + 1)xm�ndxn

=
�(m + 1)

�(m � n + 1)
xm�ndxn, n 2 N. (3)

If we put m = 2 and n = 1, then we obtain d1(x2) = 2x dx ,

as expected. Now, we may consider m = 1 and n = 1/2 and
try to answer to the original question. We obtain:

d1/2x =
�(2)

�(3/2)
x1/2dx1/2 =

2p
⇡

p
x dx . (4)
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Elements of Fractional Calculus
The Lacroix Derivative

• The result obtained by Lacroix may be put in the usual form
as:

d1/2x

dx1/2
=

2
p
xp
⇡

. (5)

Consider, now, n = 1/2 and m = 0, that is, y = x0 = 1. In
this case, Eq. (3) yields a surprising result:

d1/21

dx1/2
=

�(1)

�(1/2)
x�1/2 =

1p
⇡x

6= 0. (6)

The Lacroix derivative of a constant is not zero, as one
expects if one tries to keep the usual meaning of the
derivative.

• This “strange” result shows that fractional derivatives have
many special and ever counter-intuitive properties.
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Elements of Fractional Calculus
The Riemann-Liouville Operator

• Nowadays, a well-established form for the derivative of
arbitrary order is the so-called Riemann-Liouville
operator, although it is the result of several contributions
(mainly by Liouville), which is defined as:

cD
↵
x f (x) =

1

�(k � ↵)

dk

dxk

Z x

c

f (t)

(x � t)↵+1�k
dt

�
, x > c , (7)

with k 2 N = {1, 2, 3, . . .}, for 0 < p = k � ↵ < 1, where
�(k � ↵) is the gamma function.

• We notice that k is the smallest integer greater than ↵, with

cD
k
x f (x) = dk/dxk f (x) being the usual derivative of f (x).
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Elements of Fractional Calculus
The Caputo Operator

• In 1967, Caputo introduced a new definition of a fractional
derivative, which is connected with the fractional
Riemann-Liouville integral and di↵erential operators;

• In terms of this operator, the initial conditions can be
formulated in the usual way, i.e., by stating them in terms of
integer order operators.

• The Caputo operator is defined as

C
c D

↵
x f (x) =

1

�(p)

Z x

c
(x � t)p�1f (n)(t)dt

=
1

�(n � ↵)

Z x

c

f (n)(t)

(x � t)↵+1�n
dt, (8)

for n � 1 < ↵ < n, which permits us to interpret it as being
equal to the Riemann-Liouville integral of the
nth�derivative of the function f (x).
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Elements of Fractional Calculus
The Riemann-Liouville and Caputo Operators

• For physical applications, it is useful to put c = �1 in the
Riemann-Liouville derivative; then, it becomes

�1D↵
x f (x) =

dm

dxm


1

�(m � ↵)

Z x

�1

f (t)

(x � t)↵+1�m
dt

�

=
1

�(m � ↵)

Z x

�1

f (m)(t)

(x � t)↵+1�m
dt

= �1
CD↵

x f (x), m � 1 < ↵ < m. (9)

• In this limit, both definitions become equal provided that f (x)
and its derivatives have a reasonable behavior when x ! 1,
that is, f (k)(�1) ! 0, for k = 0, 1, ..., n � 1, with n = d↵e.

• Useful to consider stationary processes is now permitted as,
for instance, in the response of the fractional order dynamical
systems to a periodic signal, required in the impedance
problems, in the wave propagation in continuous media, etc.
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PNP Model: Insulating medium containing ions
The Poisson-Nernst-Planck usual model

• In the presence of the external electric field E(r, t), the
charges move, giving rise to currents of neutral as well as of
positive and negative charges.

• If we denote the bulk density of these particles, respectively
with nn(r, t) (neutral), np(r, t) (positive), and nm(r, t)
(negative) and, likewise, the current density as jn(r, t),
jp(r, t), and jm(r, t), the continuity equations are

@

@t
np(r, t) = �r · jp(r, t) + S(r, t),

@

@t
nm(r, t) = �r · jm(r, t) + S(r, t),

@

@t
nn(r, t) = �r · jn(r, t)� S(r, t), (10)
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The Poisson’s Equation

• To obtain the set of the fundamental equations of the PNP
model, we have to consider also the Poisson’s equation,
written as

r · E(r, t) = q

"
[np(r, t)� nm(r, t)] . (11)

• This equation connects the bulk density of ions of
positive and negative charges, of absolute value q, to the
actual profile of the electric field across the sample.

• The total electric current is formed by the conduction and
the displacement currents:

j(r, t) = q
⇥
jp(r, t)� jm(r, t)

⇤
+ "

@E(r, t)
@t

. (12)
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The Total Current is Solenoidal

• If we now combine the first two of Eqs. (10) with Eq. (12), we
conclude that

r·j = �q

⇢
@

@t
[np(r, t)� nm(r, t)]

�
+"r·@E(r, t)

@t
= 0, (13)

when the equation of Poisson, Eq. (11), is used.

• Indeed, the total density of current has to be solenoidal,
i.e,

r·j(r, t) = r·
⇢
q
⇥
jp(r, t)� jm(r, t)

⇤
+ "

@E(r, t)
@t

�
= 0. (14)

• Solenoidal? Why is this so important?
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The Electrical Impedance

Figure: Typical 1D sample in the shape of a slab of thickness d . Two
electrodes, of area S , placed a distance d apart. V (t) = V0e i!t .

• The electrical impedance is defined as

Z =
V (d/2, t)� V (�d/2, t)

I (t)
=

�V (t)

I (t)
, I (t) = j(t)⇥S(= area)

• In this case, for a one-dimensional problem, the current
density j has to be position independent.
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Continuity Equation (Fractional)

• We analyze an extension of the PNP model by expressing the
continuity equation in terms of the Caputo fractional time
derivative:

⌧��1
@�np(r, t)

@t�
= �r · jp(r, t) + S(r, t),

⌧��1
@�nm(r, t)

@t�
= �r · jm(r, t) + S(r, t),

⌧��1
@�nn(r, t)

@t�
= �r · jn(r, t)� S(r, t), (15)

• If we now combine the new set of fundamental equations of
the extended model, Eqs. (41) and (11), following the
procedure used before, it is possibile to conclude that
r · j(r, t) = 0, i.e., the total current is solenoidal:

r ·
⇢
q
⇥
jp(r, t)� jm(r, t)

⇤
+ "⌧��1

@�

@t�
E(r, t)

�
= 0. (16)
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Continuity Equation and Distributed Order

• We rewrite the fundamental equations by promoting the
following modifications:

@�

@t�
!

Z
1

0

d�p(�)⌧��1
@�

@t�
(· · · ) ,

Z
1

0

p(�)d� = 1 . (17)

• The new set of fundamental equations of the extended PNP
model will be now represented by the following continuity
equations:
Z

1

0

d�p(�)⌧��1
@�

@t�
np(r, t) = �r · jp(r, t) + S(r, t),

Z
1

0

d�p(�)⌧��1
@�

@t�
nm(r, t) = �r · jm(r, t) + S(r, t),

Z
1

0

d�p(�)⌧��1
@�

@t�
nn(r, t) = �r · jn(r, t)� S(r, t), (18)

and the equation of Poisson, Eq. (11).
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Anomalous PNP model – Slab
Full Dissociation: S(r, t) = 0 and jn(r, t) = 0.

• The equations to be solved are reduced to the two following:

Z
1

0

d�p(�)⌧��1
@�

@t�
np(z , t) +

@

@z
jp(z , t) = 0,

Z
1

0

d�p(�)⌧��1
@�

@t�
nm(z , t) +

@

@z
jm(z , t) = 0. (19)

together with the equation of Poisson:

@2V (z , t)

@z2
= �q

"
[np(z , t)� nm(z , t)] . (20)
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Anomalous PNP model – Impedance

• The current densities for positive (p = +) and negative
(n = �) charges are defined as:

j±(z , t) = �D
@

@z
n±(z , t)⌥ µqn±(z , t)

@

@z
V (z , t)

⇡ �D
@

@z
n±(z , t)⌥ µqN

@

@z
V (z , t) (21)

where D is the di↵usion coe�cient and µ is the mobility.

• The solutions (for the linear regime) are in the form:

np(z , t) = N + ⌘p(z)e
i!t and nm(z , t) = N + ⌘m(z)e

i!t

(22)
with N >> |⌘p(z)| and N >> |⌘m(z)| and

V (z , t) = �(z)e i!t .
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Anomalous PNP model – Impedance
Boundary Conditions

• Typical boundary conditions that can be used are:

j↵

✓
z = ±d

2
, t

◆
= ±

Z t

�1
dt 0K (t � t 0)

d

dt 0
n↵

✓
z = ±d

2
, t 0

◆
,

(23)
with ↵ = + (positive ions) and ↵ = � (negative ions).

• In Eqs. (23), we have introduced a kernel K (t) to formulate
the problem in more general terms.

• Indeed, if K (t) = ke�t/⌧a , where ⌧a is an adsorption time, this
current may be related to the adsorption-desorption process
at the interface, governed by a Langmuir-like balance
equation.
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Anomalous PNP model – Impedance
Boundary Conditions

• Other choices for the functional form of K (t) are
phenomenological ways to introduce additional memory
e↵ects in the problem.

• This may be helpful because the presence of the fractional
derivative in the bulk equation accounts for memory-like
e↵ects in the bulk behavior of the system.

• In contrast, the presence of K (t) in the boundary conditions
may be related to surface e↵ects at the interface.

• This permits us to investigate how the surface governs the
electrical response of the system.
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Anomalous PNP model – Impedance
Boundary Conditions

• To complete the problem formulation, we have to state the
boundary conditions used for the electric potential. They are:

V

✓
z = ±d

2
, t

◆
= ±V0

2
e i!t , (24)

where the amplitude V0 ⌧ kBT/q, i.e., has to be small
enough to represent a small ac signal problem (linear
response);

• The quantity

� =

s
"kBT

2q2N

defines the Debye screening length.
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Anomalous PNP model – Impedance

• Analytical calculations yield for the electrical impedance:

Z (!) =
2

S"�2

[tanh (�d/2)] /
�
�2�

�
+ (d/2D) E(i!)

�(i!) + (i!) (1 + �(i!)�2/D) tanh (�d/2) /(�2�)
(25)

in which

E(i!) = �(i!) + (i!)� tanh

✓
d �

2

◆
, (26)

with

� =

r
1

�2
+

�(i!)

D
. (27)
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Anomalous PNP model – Impedance

• Surface memory kernel:

(i!) = e�i!t
Z t

�1
dt 0K (t � t 0)e i!t

0

= k1(i!)
�1 + k2(i!)

�2
| {z }

This particular case

, (28)

• Distributed regime:

�(i!) =
1

⌧

Z
1

0

d�p(�)(i!⌧)�

= i! +
(i!⌧)�

⌧| {z }
This particular case

. (29)
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Anomalous PNP model – PNPA: Experimental setup

Z

Figure: Schematic illustration of the experimental setup.
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Anomalous PNP model – Conductivity
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Figure: Complex-plane (or Nyquist diagram) for the impedance spectrum
of E7 at 35�C. Components of the impedance are plotted in the bottom
for the range of 0.01Hz to 200kHz. Open red circles represent
experimental data. The solid black line corresponds to the predictions of
the PNPA model with �(i!) = ⌧��1(i!)� and ̄(i!) = ̄(i!)�, in which
D = 2.5⇥ 10�11m2/s, S= 5⇥ 10�6m2, " = 11.5"0, d = 9.99⇥ 10�6m,
̄ = 2⇥ 10�6 m/s1��, � = 0.99, � = 0.65, and � = 5.75⇥ 10�8m.
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Anomalous PNP model – Acetone

102

103

104

105
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Model
Experimental data

Figure: Imaginary part of the impedance versus the frequency of the
acetone.
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Anomalous PNP model – Acetone
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Figure: Real part of the impedance versus the frequency of the acetone.
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Anomalous PNP model – Acetone

10�5

�2 �1 0 1 2 3 4 5

�
(S
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Model
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Figure: Conductivity versus frequency. The solid black line is related to
experimental data and the open red circles correspond to the theoretical
models.
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PNPA Model: Applications to Liquid Crystals

Z
d

Z
d

Z
d

Representation of the studied liquid crystalline phases: (a)
Cholesteric with planar anchoring; Smectic-A with (b) homeotropic
and (c) planar alignment. The green spheres illustrate the ions.
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PNPA Model: Applications to Liquid Crystals
Samples of E7

1 Sample C1: E7 + 5.52% of R811 + 5.46% of S811 ! Total:
10.98% of chiral dopant;

2 Sample C2: E7 + 3.74% of R811 + 8.18% of S811 ! 11.98%
of chiral dopant; Pitch ⇡ 2.25µm (for 4.44% of S811).

3 Sample C3: E7 + 1.48% of R811 + 9.59% of S811 ! 11.07%
of chiral dopant; Pitch ⇡ 1.24µm (for 8.11% of S811).
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PNPA Model: Applications to Liquid Crystals
E7 Samples
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The logarithm of Real and Imaginary parts vs the logarithm of the
frequency for the following samples: pure E7 (solid black line), C1

(black cross), C2 (red squares), and C3 (open red circles).
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PNPA Model: Applications to Liquid Crystals
8CB Samples at di↵erent temperatures
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The logarithm of Real and Imaginary parts vs the logarithm of the
frequency for 8CB samples at 30�C (black circles), 38�C (blue

cross), and 55�C (red squares) temperatures.
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PNPA Model: Applications to Liquid Crystals
E7 Samples

-2 0 2 4

Log[f]

1×10
-10

1×10
-5

L
o
g
[σ

]

Data
Best Fit

-2 0 2 4

1×10
-5

-2 0 2 4
1×10

-10

1×10
-5

-2 0 2 4

1×10
-5

E7 C1

C2 C3

The logarithm of conductivity vs the logarithm of the frequency for
the following samples: pure E7, C1, C2, C3. The open black
circles represent the experimental data, and the solid red line

shows the best fit.
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PNPA Model: Applications to Liquid Crystals
8CB Samples
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The logarithm of conductivity vs the logarithm of the frequency for
the 8CB samples at 30�C, 38�C, and 55�C temperatures. The
open black circles represent the experimental data, and the solid

red line shows the best fit.
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Summary of exponents behavior/meaning

• Surface memory kernel:

(i!) = e�i!t
Z t

�1
dt 0K (t � t 0)e i!t

0

= k1(i!)
�1 + k2(i!)

�2
| {z }
adsorption-desorption

, (30)

• ki (i = 1, 2) are phenomenologically connected with the range
of the forces responsible for the adsorption/desorption
phenomena;

• Conductivity:

� =
d Re(Z)

S |Z |2 ! � ⇠ t1�↵

• The mean square displacement:

h(�z)2i ⇠ t↵
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PNPA Model: Physical Parameters
E7 samples

Samples Pure E7 C1 C2 C3
" 12"0 12.5"0 15"0 16"0

D(m2/s) 1.4⇥ 10�11 1.7⇥ 10�11 6.9⇥ 10�11 1.5⇥ 10�11

�(m) 5.4⇥ 10�8 4.33⇥ 10�8 4.7⇥ 10�8 4.9⇥ 10�8

⌧��1 2.7 2.1 2.1 1.7
� 0.99 0.99 0.97 0.99
�1 0.35 0.40 0.44 0.58

1(m/s) 3.2⇥ 10�8 1.3⇥ 10�8 2.5⇥ 10�8 2.4⇥ 10�8

↵ 0.65 0.60 0.56 0.42
Parameters found by adjusting Eq. (25) to the measured data of
samples C1, C2, C3, and pure E7. Notice that ↵ is the time

exponent of the mean square displacement h(�z)2i while from the
conductivity, we obtain 1� ↵.
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PNPA Model: Physical Parameters
8CB Samples

8CB 25�C 30�C 38�C 55�C
Anchoring Planar Homeotropic Homeotropic Homeotropic

" 9"0 11"0 13"0 10"0
D(m2/s) 4.4⇥ 10�12 1.05⇥ 10�11 2.2⇥ 10�11 6.2⇥ 10�11

�(m) 4.22⇥ 10�8 1.45⇥ 10�7 1.58⇥ 10�7 1.38⇥ 10�7

�1 0.35 0.6 0.5 0.2
1(m/s) 1⇥ 10�8 3.8⇥ 10�7 6.2⇥ 10�7 1.0⇥ 10�6

2(m/s) 0.0 0.0 0.0 4.2⇥ 10�7

� 0.99 0.99 0.99 0.99
⌧��1 2.6 5.3 4.0 3.6
↵ 0.65 0.4 0.5 0.80

Parameters found by adjusting Eq. (25) to the measured data of the
samples with 8CB. Notice that ↵ is the time exponent of the mean square
displacement h(�z)2i while from the conductivity, we obtain 1� ↵.

Brazilian Workshop on Soft Matter – ICTP–SAIFR São Paulo, 04 October 2023 – Annus XVI 46-64



PNPA Model: Conductivity
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Low-frequency behavior of the conductivity for all the chiral
nematic (and pure E7) (left) and 8CB (right) samples. The solid

lines show the fitted line (f 1�↵). Notice that ↵ is the time
exponent of the mean square displacement h(�z)2i while from the
conductivity, we obtain 1� ↵. The samples with higher inclination
(higher 1� ↵) correspond to the ones where ions have to permeate

to di↵use, leading to considerable subdi↵usive behavior.
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Concluding Remarks

• The chiral nematic samples were made by keeping the
amount of chiral dopant fixed, so the significant di↵erence
among samples was the pitch.

• In the case of the Smectic sample, we measured it in two
di↵erent geometries.

• By changing temperature, we used the same sample to
measure the spectrum in the Smectic-A, Nematic, and
Isotropic mesophases.

• All the samples present a subdi↵usive behavior, but the
samples with modulation have a much lower exponent
characterizing the di↵usivity.

Brazilian Workshop on Soft Matter – ICTP–SAIFR São Paulo, 04 October 2023 – Annus XVI 48-64



Concluding Remarks

• Such a phenomenon is directly related to the morphology of
the phase and can be associated with a cage-like di↵usion.

• Impedance spectroscopy, thus, is simple to measure and a
non-destructive technique that can probe the morphology of
the material besides acquiring many electric parameters.

• Fractional Calculus and Anomalous Di↵usion can be
combined to provide a powerful tool to analyze electrical
impedance in complex fluid systems.
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Publicity: Already arrived...

Published in 2018.
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Publicity: Just arrived...

Available from January, 2023.
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Publicity: Coming soon...

Buch ohne Worte. Available from ?
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Thank you!

Grazie!
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Appendix
PNPA: Anomalous PNP model

• Extensions can be obtained by considering the continuous
time random walk (CTRW) approach based on a suitable
choice of the probability density function, P(r, t).

• There are two ways to implement the extension:
1 In the first one, the displacement current remains

unchanged whereas the conduction current is modified by
the presence of the fractional derivative;

2 In the second one, the conduction current remains
unchanged whereas the displacement current is written
in terms of time-fractional derivatives.

• The first way implies modifying phenomenological
equations;

• The second way would imply modifying fundamental
equations ! Maxwell’s equations.
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Anomalous PNP model: Time-Fractional Derivative

• In general, the di↵usion equations are written as follows:

@

@t
P(r, t) = � t0D

1��
t [r · J (r, t )] , (31)

or

C
t0D

�
t P(r, t ) =

@�

@t�
P(r, t ) = �r · J (r, t ), (32)

where

J (r, t ) = �
⇢
DrP(r, t)� D

kBT
[F(r, t )P(r, t)]

�
, (33)

with F(r, t) being an external field acting on the system.
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Anomalous PNP model: Time-Fractional Derivative

• In Eq. (31) t0D
1��
t (· · · ) is the fractional Riemann-Liouville

operator, i.e.,

t0D
�
t g(r, t ) =

1

� (k � �)

dk

dtk

Z t

t0

dt
g(r, t )

(t � t)�+1�k
, (34)

where k � 1 < � < k , with k an integer, and t0 is related to
the conditions initially imposed to the system.

• In Eq. (32), we introduced another fractional operator, i.e.,
the Caputo fractional time operator, defined as follows:

C
t0D

�
t g(r, t ) =

@�

@t�
g(r, t) =

1

� (k � �)

Z t

t0

dt

(t � t)�+1�k

@k

@tk
g(r, t) . (35)

• We underline that Eqs. (31) and (32) are equivalent when
0 < � < 1.
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Anomalous PNP model: Time-Fractional Derivative

• Another interesting feature of Eqs. (31) and (32) concerns the
possibility to rewrite them, respectively, as follows:

@

@t
P(r, t) = � r · j(r, t) with

j(r, t) = t0D
1��
t J (r, t ) (36)

and

@�

@t�
P(r, t) = � r · j(r, t) with

j(r, t) = J (r, t ). (37)

• Equations (36) and (37), related to Eqs. (31) and (32),
suggest two different possibilities of extending the
standard approach of the PNP model in order to incorporate
time-fractional derivatives.

Brazilian Workshop on Soft Matter – ICTP–SAIFR São Paulo, 04 October 2023 – Annus XVI 58-64



Anomalous PNP model: Two Di↵erent Implementations

• In the first case,
@

@t
P(r, t) = � r · j(r, t) with

j(r, t) = t0D
1��
t J (r, t ), (38)

the continuity equation is preserved, with an extension of
the current density in which time-fractional operators are
present only acting on the term representing the conduction
current;

• In the second case,
@�

@t�
P(r, t) = � r · j(r, t) with

j(r, t) = J (r, t ). (39)

the continuity equation is extended and the standard form
of the current density is modified, but the time-fractional
derivative is present only in the term representing the
displacement current.
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First Case: The Riemann-Lioville Time Derivative

• If we now combine the new set of fundamental equations of
the extended model, it is mandatory to conclude that
r · j(r, t) = 0, i.e.,

r ·
⇢
q⌧1��

�1D1��
t

⇥
jp(r, t)� jm(r, t)

⇤
+ "

@

@t
E(r, t)

�
= 0.

(40)

• This means that a physically sound extension of the PNP
model using fractional derivatives requires an extended
expression of the total current in which the conduction
current is defined in terms of a derivative of arbitrary
order whereas the term of the displacement current keeps
its original definition in terms of a first-order partial time
derivative of the electric field.
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Second Case: Continuity Equation and Caputo Operator

• We analyze an extension of the PNP model by expressing the
continuity equation in terms of the Caputo fractional time
derivative:

⌧��1
@�np(r, t)

@t�
= �r · jp(r, t) + S(r, t),

⌧��1
@�nm(r, t)

@t�
= �r · jm(r, t) + S(r, t),

⌧��1
@�nn(r, t)

@t�
= �r · jn(r, t)� S(r, t), (41)

• If we now combine the new set of fundamental equations of
the extended model, following the procedure used before, it is
possible to conclude that r · j(r, t) = 0, i.e.,

r ·
⇢
q
⇥
jp(r, t)� jm(r, t)

⇤
+ "⌧��1

@�

@t�
E(r, t)

�
= 0. (42)
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Highlights

• Analysis of the connection between PNP model and
displacement current.

• Electrical conductivity and evidence of the anomalous
di↵usion.

• Implications of the fractional extension to the total
current density.

• Extensions of the PNP model and connection with CPE
elements.
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