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1 Homogeneous and Isotropic Space Time

The Einstein field equation contains nonlinear partial differential equation. We
will solve the Field equations for the whole Universe which is homogeneous and
isotropic. Homogeneous means that the Universe looks same at every point in
Space. Isotropic means that the Universe looks very much the same whatever
direction we look. The universe is also expanding which means that the distant
galaxies were closer to us than they are today. We introduce a scale factor
to connect the coordinate distance with the physical distance. More generally,
Coordinate distance =metric = physical distance.

The first question one can ask what is the effect of the isotropy and homo-

geneous on the metric
ds® = g (x)dz"dx” (1)

The effect of the symmetry leads to the Robertson-Walker line element. We
can break the above equation:

ds? = goodt® + 2go;dx’dt + gijdzidxj; zt = (z,y2) (2)
Now isotropy implies spherical symmetry, this means

900 = goo(r,t); 7= /a% +y? + 22 (3)

[1542

0, goi can not depend on any preferred vector a’ to carry the “i” index or it
would not be isotropic. Thus it must have the form

gOrwi
;= A
70 r (4)
Since z'dz’ = rdr. We can write
ds? = goodt? + 2gordrdt + gijda’da’ %)

. We can now simplify by making coordinate transformation that eliminates the
cross-term between dr and dt. Let

t:t/+¢(rl7t)7 ’I“:’I“/, QS(Ozt/) =0 (6)



Now in the new frame consider z® = (2%, r) 2 dim subspace.

dx® dzP
9or = 5007 57 9o8s Gas = {900, gor, grr} (7)
;o 0¢ | 09 09
Jor = (1 + w)%goo + (1 + W)QOT (8)
@ _ _Yor _ _ ’ogl ’ogr
o 900 =®(r,t) = (', t' + ¢(r', 1)) 9)

Here we have chosen ¢ to make g, = 0 This is a first order differential equation
to determine ¢, and in general will always have a solution.
The metric now reads

ds® = goo(r, t)dt* — gijdajidxj = goodt® — do> (10)

We now need to impose isotropy the special components do?. To see what
this means, recall the ordinary flat space in sphericalcoordinates z® = rcos6,
2?2 = rsinfsing, x' = rsinficosd. Then for flat space: do? = (dx')? + (dx?)? +
(dx3)? = dr? + r2dQ? where d2? = d0? + sin20d¢?.

Since isotropy implies spherical symmetry, the general form for do? is

do? = F(r,t)dr® + G(r,t)d? (11)

We now need to impose homogeneity, which is more complicated constraint.
Consider a time interval dt at fixed r, 6, ¢. Then

T(?", t) = (ds)d;ﬂ:O =/ go()(’l", t)dt (].2)

where T is what clock is at rest w.r.t. frame will measure. Now homogenieity
means that it should bbe possible to find a frame where clocks tick at the same
rate at all in space. This means T should be at most a function of ¢ independent
of r. Hence gop = ¢(t). Then we can make a coordinate transformation in these
coordinates. Our metric then simply reads

ds® = dt? — do? (13)

Now our universe is expanding and so let us apply homogeneity to the expansion.
Consider two infinitesimal close by points. The invariant distance is

I, = FY%(r,t)dr = invariant distance (14)

and the radial expansion rate is

Iy 1FP(rt)

I, 2F(rt)

(15)

Homogeniety now implies the expansion must look the same at every point so

I, 1E(t) ,
—=——==f f 1 1
LT 2FG) unction of t only (16)



Similarly lg = G(0)'/2d6 and 15 = sinfG/2dp, one has

l'g_lé(t)_l.ig

b 2G0) L, = function of t only (17)
Now by isotropy, the expansion in different directions must be equal. Hence

O _ 90 g (19)

F(t)  G(b)

One can integrate to get
F(r,t) = R3(t)f(r) with f(0) = 1 (19)
Glr ) = R2(t)g(r), 2% — a(1) (20)

and f(r), g(r) are integration constants. The choice f(0) = 1 fixes the scale of
R(t).

Returning now to Eqn.5.11, we see that G plays the role ofr? in flat space
and so it is convenient to make a coordinate transformation

=g(r) (21)
which then reduces the metric to
ds® = (da)? — R%*(t)do?; do? = f(r)dr* + r?dQ? (22)

We have not yet imposed the full content of homogeneity which means that the
universe looks the same from any point. Thus if we make a translation of origin
to a new origin things should look the same and this condition should restrict
the form of f(r). To see this consider a spatial transformation of coordinate

ot =¥ + (2'); & = infinitesimal (23)
Now we know ok 9l
¥ Ox

g;j(l./) = W@le(@ (24)

and expanding out to first order in &£°:
/ A k k
9i;(2") = gij (%) + 9ir&’; + gk (25)
We can also expand on LHS
gi; (@) = gi;(a' — €)= gj;(x) — gj; ()€ () (26)

9i; (@) = gij(x) + g(in &) + gijxE" (27)
where Ay = Aij + Aj; Now the condition of homogeneity that we will take
is following: If we translate to a new frame with new origin, the metric in new



frame at any fixed numerical values of coordinate should look identical to metric
old frame at same numerical values of coordinate, i.e.,

9i;(x) = gij(x) (28)

This equation implies that you cannot tell in which frame you are in, i.e., ev-
erything looks the same. We can write

9k %) + gijr" =0 (29)

This equation is called the Killing equation and &* is the Killing vector.
In flat space one has that the coordinate transformation would be

o' = 2" + ¢ ¢ = infinitesimal constant (30)

However, Eqn.29 things are much more complicated in curved space.Eq.29 is a
very powerful equation in that it not only determines the form of £* but also
restricts the form of the metric so that the there is invariance.

As a simple example of Eqn.29, consider a flat 3-space where

Gij = Mij = —0ij (31)
Then the Eqn.29 reads
ij+&:=0,&=nu" (32)
We can expand &; = €; + €, + %eimnxmx" + ---. Then we get
€; = arbitrary, €;; = —€ji, €imnetc =0 (33)

That is & = €; + eijxj Which just are rigid translations and rotations. These
are, of course, the basic symmetries of a Euclidean flat space.
Returning now to our metric, we have

Grr = f(T)7 geo = TQa Joop = TQSingg (34)

and we can write down what Eq.29 means for different components

i=j=r 2f(r), + [, =0 (35)
i=j=0,r+¢ =0 (36)
i=rj=0, f(r)gy+r°¢ =0 (37)

We can integrate Eq.35 to give

& f2(r)r =0 (38)
or .
er = fl(/2(<f; (39)
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If we take r%(36) - %(37) then we can eliminate &7 to get

réfy + & — (f€4),0 =0 (40)

and using Eqn.36 to eliminate 53 gives

=&+ = (f€) e =0 (41)
Inserting £" from Eq39 gives
1 1r C oo
.= 42
- 3ple = e (12)
1 Clo0

Here -5 = %ﬁfﬂn is a function of r only and =5~ is a function of 6 only and a
is a constant of integration. Which integrates to
Fe b h_ constant of integrati (43)
= g2 & = constantof integration
The condition f(0) = 1 implies @ = 1 and from the right hand side of Eq.42 we
get
C(0) = ecosb, € = infinitesimal amplitude (44)

To summarize then our metric is

ds* = (dz®)? — R*(t)[ + r2dQ?] (45)

1— kr2
This is called Robertson-Walker metric with symmetry under

inf
£ (r,0) = ecosf(1 — kr?)'/? and €% = %(1 — kr?)l/? (46)

to represent homogeneity.
Note that in flat space a translation of the origin reads (for infinitesimal
transformation)
F=7+ & [ =[]+ 7. (47)

. For this case then
£ = f.e = ecosl (48)

Comparing wit Eq.46 we see that for r small the two results agree. They
differ only by O(r?) as expected by SPE. However for large 7, the curvature of
space effects what represents a translation of origin. In fact one can calculate
the curvature scalar for the 3-space. One finds

k
°R= 20 (49)

showing k # 0 implies that curvature is present.



1.1 Properties of Robertson-Walker Metric

The R-W metric depends on the function R(¢) and the parameter k. There are
3 classes of solutions depending on whether £ > 0, ¥ = 0, £ < 0. One can
rescale the radial coordinate

r=\r (50)
So that
K =Xk, R = \2R? (51)
In this way one can reduce k' to
(k' = +1, (i)k =0 (iid)k' = —1 (52)

)

Then R’ carries the dimension of length. We can drop the “prime”.
R(t) = “cosmicscale factor” (53)

For cases k = 0, —1 we see the metric is regular for any r and so we can let
the range of coordinate be

0<r<o0,0<0<m0<ep<2m; k=0, -1 (54)

But for kK = +1, there is a singularity at » = 1, which we need to investigate.
The case k = 0 is a “flat universe” and k = —1 and “open universe”.

To see some of the geometry, we calculate the circumference for a circle of
coordinate radius r at § = w/2:

27
Clr) = / 40l /2. dr—o-a0 = R(t) / (6 + sin20d¢2)2r = Rty | do
0
(55)
or
C(r) = 2mR(t)r (56)

On the other hand the proper radius of the circle from the origin is

R(r) = /d0|d¢:o:de = R(t) /0" \/ldrlw (57)

and integrating

sinTlr; k=1(r<1)
R(r) = R(¢) T k=0 (58)

sinh~lr; k=-1

We see the non-Euclidean nature of the space when k # 0 i.e.,

) _on 1 k=0 (59)
R(t) —r ;,1 ; k=-1



We see that for coordinate r < 1), all 3 cases give the Euclidean result C/R =
27. But large r there are major deviations for k # 0, e.g.,

C 1
C r
=—-1: = ~21—— 1
k I ML asT = 00 (61)

Let us now look at the significance of the singularity at » = 1 for the k£ = 1 case.
C(r) and R(r) are the circumference and radius of a circle of coordinate radius
r. To see the meaning of the result consider a circle drawn on sphere of radius
R(t). Now the circumference in this construction is C(r) = 27 Rr and 1 is the
angle

=r (62)

R
v = s (63)
R(r) = R(t)y = R(t)sin"'r (64)

which is precisely what we got from our metric. Thus the physical space corre-
sponds to the surface of the sphere. The coordinate radius measures the distance
from axis up to sphere and the radius of sphere R(t) is that distance when r is
its maximum, i.e., r = 1 at North Pole.



Now as ¢ increases R(r) increases until ¢ = 7/2 and r = 1; when R = ZR.

As 1) continues to increase r decreases until ¢y = 7 and 7 = 0 with R = R4 =
wR(t). Thus r is a singular coordinate in that it is doubled values as one covers
the full surface of the sphere. We can eliminate this singularity by introducing
1 to replace the r coordinate

Y(r) = sin"r (65)
Then our metric becomes
ds? = (dz")? — R*(t)[dy? + sin®(d6* + sin*0d¢?)] (66)

and now ¢? is precisely the line element for a 3-sphere embedded in a fictitious
Euclidean 4 space i.e., let

z', 2?2, 23, 2t = Buclidean coordinate (67)
Then spherical coordinates are

zt = peosip, x® = psinipcosh, x* = psinpsinfeosp, vt = psinipsindsing (68)

with 0 < 9,0 <71, 0< ¢ <27, 0<p<oo (p? =22+ a3 + a3 +23).
The Euclidean distance in this 4-space is

dO’i — (dx1)2+(dx2)2+(dx3)2+(dx4)2 — dp2+p2[d1/12+sin2w(d92+sm29d¢2)]

The 3-space of radius R is given by fixing p o)
p=R(t), dp=0 (70)

Which reduces down to
do3 = R*[dy? + sin*dQ?] (71)

Which is precisely the do? for R-W with & = +1. Thus the R-W metric is
precisely the metric for a 3-sphere of radius R(t) embedded in a fictitious 4-
dimensional Euclidean space.

Since we now have a non-singular coordinate system, we can use it to calcu-
late the 3-volume of the sphere. Our metric is

—gypp = R%, —gop = R*sin? 1), —gsy = R%sin*sin6 (72)

and the proper (invariant) volume is

Vs = / V—=gdydbdp = R® /O i dipsin®y /O " d6sing /O " do (73)

or
Vi =212 R3 (74)



The volume is finite and scaled by R(t)

One can do a similar analysis for the case k = —1. Here the space is charac-
terized by a hyperboloid embedded in a fictitious 4-dim space with Lorentzian
metric. Thus define

do? = (dz')? + (dz*)? + (dz®)? — (dz*)? (75)
and parametrize the space with

zt = peoshy, x® = psinhycost, x* = psinhysinfcosd, x' = psinhysinfsing

(76)
Then one finds
do? = dp* + p*[(dx)?* + sinh?x(d0? + sin*0d¢?)] (77)
and the R-W metric occurs when we set
p=R(t), dp=0 (78)
reducing to
dot = R%(t)[(dx)? + sinh®x(d6* + sin*0d¢?)] (79)

This is just the R-W metric for the £ = —1 case with a change of variables
¥ = sinh~lr (80)
In general we ave
ds® = (dwg)® — R*(t)[(dep)? + r* (¢)(d6? + sin®0d¢?)] (81)
where

siny; k=1 closed

r(y) = P; k=0 flat (82)
sinhy; k= —1 open

1.2 Motion in a Robertson-Walker Metric

To get some insight as to the meaning of the R-W metric, let us consider the mo-
tion of a test particle (e.g., a galaxy) subject to the gravitational field produced
by the R-W metric. Recall that a particle equation of motion is

d?zH dx®

4 TH u P = 0w = = 83

ds? tlas ds (83)
Suppose we place a particle initially at rest w.r.t to the R-W frame and ask
what is its further motion. We have

u'(0) =0, ¥ = = = =1 (84)




Our equation reduces initially to

d%zt .
dsz) T T =0 (85)
But
g
Tty = T[QQO’O + g0a,0 — 900,a) (86)
and since for R-W
goa = Moa (87)
we have
I =0 (88)
Thus
dut A2z

s =0 = als=0=0 (89)
Hence since u*(s) a first order equation of motion, it implies a particle initially
at rest w.r.t. the (RW) reference frame will stay at rest. One can in fact go
further. If we assume a particle has a small velocity with respect RW frame,
one finds it rapidly approaches rest for an expanding universe.

Experimentally, one finds that galaxies are moving slowly w.r.t. the cosmic
frame. Thus, the motion of solar system relative to CMB is

v__ = (370 £10)km/s 90
o ( )km/ (90)

and other galaxies have smaller velocities, i.e., with v/e¢ < 1. Thus galaxies
do appear to have been made of material originally at rest w.r.t. cosmic frame
and the small velocities seen are due to local gravitational forces. These small
velocities are referred to as “peculiar velocities”.

However the expansion of the universe does indeed mean that galaxies are
moving apart. Thus the proper distance between the galaxies

l:/d0]0,¢:const :/ d"ﬂ\/g7 (91)
0

Thus

sinTlr; k=1(r <1)

I(r,t) = R(t) / A R(t)(r) r k=0 (92)
0 1 — kr? sinh~1r; k=-1

We saw that if initially, Gy and G2 are at rest w.r.t. cosmic frame, they will
not move and will stay at » = const at all time. Thus the t-dependence of the
separation totally from R(t) and galaxies move apart in an expanding universe
or together in a contracting universe. The “fabric of space” appears to expand
pulling galaxies apart. Thus the situation is similar to galaxies on the surface
of a balloon that is blowing up.
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1.3 Cosmological Red shift

The fundamental cosmological law was the discovery by Hubble of the redshift-
distance of Cosmology. We will see that the this a direct consequence of the
R-W metric and does not even use the Einstein’s equation. To consider the
redshift, let us assume we have a galaxy G7 at pt 1 which emits an e.m. wave
at time ¢1, which arrives at our galaxy Gy at a later time ¢ty The e.m. wave
travels with velocity ¢ and hence moves along a null geodesic

R%dr?
2 _ 25,2 _
ds® = c*dt 52 0 (93)
hence 1 R(t)d
r
dt = — = ——2 04
c/1—kr? (94)

(where the minus sign occurs because t is increasing, d¢t > 0, but r is de-
creasing, dr < 0). The front of the wave that arrives at Go at time to where

/to at 1 /0 ' 1 / dr’ (95)
n R() Clrm V1—kr?  ¢Jo /1—Fkr'?

Now let T7= Period of wave emitted by G;. The end of the wave is emitted
by G1 at time t = t; + T1. It will arrive at some later time ¢t = tg + Ty and
since Ty is the time interval that one wavelength is seen one has T, = period of
observed wave at Gp.

Now the end of the wave also travels on a null geodesic and so

/t0+To dt 1 / dr’
nen B cJo 1k
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We will assume here that both Gy and G, are stationary w.r.t the R-W coordi-
nate frame, i.e., we will neglect the peculiar velocities. We find that character-
istically these were of order 100km/s relative to the R-W frame. and since the
Hubble constant is

km 1
H ~100— 97
sec Mpc (97)
objects 100Mpc away will have a Hubble expansion velocity of
k k
100 x 100~ = 104~ (98)
sec S

and hence the peculiar velocities will be negligible correction in comparison
to the expansion velocity. (Galactic clusters are characteristically ~ 10 — 20
Mpc away from each other.

In this approximation, G is at a fixed value of r and r is not a function of
time. Hence subtracting Eq. 95 and Eq.96 gives

to+To to
[ o
t1+T1 R(t) t1 R(t)
or t to+T
! dt /0 o dt
»/tlJrTl R(t) t1 R(t) ( )

Now T is a very smal number, i.e.,
A —14 0
T =2r—~10"""sec, A = 5000A (101)
c

and since R(t) is a slowly varying function, we approximate Eq.100 by

_ =0 102
R(tg) R(t1) (102)
and using v = 27? =frequency we have
140 R(tl)
v1  R(to) (103)

Now vq is emitted frequency at rest w.r.t to G; and since this frame is
instantaneously inertial, it is the same frequency an atom at rest w.r.t. to
inertial frame on Earth would be. Thus v, is the standard spectral frequency
seen in laboratories on Earth and 1y is what we observe this frequency to be
at G, and is the red shifted frequency due to the expansion during the time of
travel, i.e., R(tg) > R(T}), for an expanding universe.

We introduce the parameter z:

PR e TR G (104)
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. Hence from Eq.103

R(to)

z= -1 105

R(t1) (105)
This will be a “red-shift” in wavelength if R(tg) > R(t1) (i.e., Ao > A1) i.e,
if the universe is expanding, or a “blue-shift” if R(tg) < R(t1) if the universe
is contracting. Experimentally, all measurements of galaxies sufficiently distant
that peculiar velocities can be neglected show a red-shift, so that the universe
is expanding.

1.4 Definition of Measures

The phenomenological Hubble law was a relation between z and distance. We
need therefore a definition of distance. In special relativity that is not a problem
since

ds* = (dz®)? — (dr® + r2dQ?) = (dz°)? — (do)? (106)

and so the distance is just the invariant length [ do

d= /0 o] 49—g-4s = 1 (107)

which is just the coordinate distance. In general relativity, things are more
complicated even if space is flat. Here the R-W ds? is

ds? = (dz°)? — R%(t)(dr® + r2dQ?) (108)

Now to get the distance we need to go into a local inertial frame which we can
do at any fixed time. For example at time of emission one can transform to the
inertial frame

' = R(ty)r, ds® = (dz°)% — (dr”* + r'*dQ?) (109)
and so measurement would give for distance
d(t1) = R(t1)r1 (110)
Similarly one might ask for distance at time the light arrives at Gp. Then
d(to) = R(to)r (111)
One could even consider a more complicated distance measure such as

_ R(to)
d = R(tl) 1

(112)

How does one know operationally which distance one is talking about?
As one example, we consider the “luminosity distance” dy,. In non-relativistic
physics one defines the absolute luminosity as L=absolute luminosity of a source=energy
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emitted/sec. This energy spreads out over a sphere of radius d at time ¢ = d/c,
so the flux of energy observed at distance d is

L
l= e energy/time x areaobserved over a distance d (113)
7r

In general relativity, the situation is more complicated as space is expanding.

However, one may still define the luminosity distance by

L

d? = —
L= 4ql

(114)

Both L and [ are physical quantities, and so this is a well defined measure of
distance. Let us calculate what the measure is for the R-W metric.

2

1—kr?

do?® = R*(t)| + 7r2dQ?) (115)

Now suppose our receiver in Gy is a telescope of radius b. At time t( the energy
is received. In inertial coordinates at ¢ty one has

1 = R(to)r (116)

and hence the solid angle subtended by the telescope is

b2 b? A
L S (117)
'] R2(to)ri  R*(to)ry
Now the power received is
p = &9y (118)
time

For every photon emitted with frequency v hvy, is red shifted to energy huyg
where we had

R(t1)
R(to)

Further let 6t the time interval for emission of photon and dty the time
interval during which it arrives. At the beginning of emission ¢;, the wave

hl/o = hl/1 (119)

14



QO{J b
A = Rb

arrives at tp which can be written as Eqn95

t T1 A
/ dt _ 1/ dr (120)
t1 R(t) cJo 1— kr'?

and at the end of interval

to+dto 1 T1 /
/ _at ,/ _a (121)
ntet, B cJo 1=k
and subtracting gives
R(to)
Otg = ot 122
0 =M T (122)
Thus the power of energy received is for N photons is
o NhyoA o Nhl/l R2 (tl) A (123)
o 5t0(R%7’%47’F) o 6t1 Rz(to) 47TR2(t0)7“%
The flux of energy received is
P L 1
l===——- 124
A AmRZr? (1+ 2)? (124)
we have then R2(t0)
to
dr, = (R 1 = 125
L= (Ror1)(1+2) R(t) 1 (125)

Note that this formula holds even for k # 0. There are other measures of
distance one use:
(i) Angular size of source: One defines

D
dA g

(126)



=D

which be the distance non-relativistically one finds for R-W

Ror
da = R(ty)rs = 5 il (127)
d
i = (1+2)? (128)

and if z is large, these two distance measures can differ considerably.
(ii) Proper motion of a source: If a source is moving with transverse velocity
vr to an observer non-rel., the line of sight angle will change by an amount in

time ot
'UT5t

6= 129
: (129)
One defines the proper motion distance to be
ot
dyr = % (130)

where dty is the time interval measured by the observer and § is the angle
measured by the observer. For R-W metric, one finds

dy = R(to)r (131)
and hence d
ZL 14, (132)
dyr

It is conventional to think of the red-shift as Doppler shift due to the receding
motion of the distant galaxy G; and in part this is true. However, the above
shows that general relativity contributes to the effect in a unique way. For
non-relativistic motion the Doppler motion is

v w

—— <1 133
=< (133)

z
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However one can use z > 1 and in fact galaxies with z ~ 10 have been observed.
Thus gravitational effects play am important part in the red-shift.

1.5 Hubble Law

Having now understood how to define distance in R-W metric, we are in a
position to deduce the Hubble law which relates red-shift to distance.

We have R(to)
0
“TRn) ! (154

For not too distant galaxies we can expand the denominator and the present
time tg of our galaxy Gy

) 1.
R(t1) = R(to — At) = R(tg) — R(tg)At + §R(t0)(At)2 + - (135)
where At =ty — t1. We define
R(to)

Hy = Rito) = Hubble constant at time ty = rate of expansion (136)
0
qo = 7RRIO{2 =- RO.]jO = deceleration parameter (137)
0410 0
Then R(ty) )
W;) = 1— HoAt — 5ngO(At)z 4. (138)
and inverting gives
R(t 1
and hence 1
z :Ho(t() —t1)+ (1—|— 5(]0)H§(t0 —t1)2—|—--- (140)

And we can invent this to get the time interval in terms of z:

_ 1
t() —tl :HO 12’— (1+§QO)HQ(t0—LL1)2—|— (141)
and iterating gives
1
u)—tl::}ﬂ;%z-—(1+-§%ﬂz2+~.q (142)

We really want however the distance as a function of z, we can relate time to
distance

m~try; k=1
/mﬁR%):Rmﬂ/ﬁ dr _ _Ro g R ) ULV UT0 )
t1 R(t) C o V 1 — kr? c c sinhglm; k=—1
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For the L.H.S, we insert in the expansion

to 1 1
L.HS = dt[l-f—Ho(to—t)-i-(l-‘raQo)Hg(to—t>2+' . } = (to—t1>+§H3(t0—t1)2+' .-
ty
(144)
And for the R.H.S., we have
N S
R 6 R k
RH.S. = 2 r =0 2P (145)
c -3 c 6
S

We can now solve for r; in terms of tq again by iterating. The 73 terms give
contributions of O(At?) so that we get

c 1
r=—[(to—t1) + =He(to —t1)* + -] (146)
Ry 2
We then get
1
1= —Hy e — =(1+ qo)H222 + -] (147)
Ry 2

Note that the curvature term involving & does not enter until O(z3). We can
write

dr,
R(t = 148
(to)r1 T (148)
which allows us to write
dr, Hy 1 2 92
Ho_ 1 H 14
112 ¢ Z 2( +qo)Hgz" + (149)
or " )
dL7022+§(1—(1(J)H§Z2+"' (150)

For small z, we have precisely Hubble’s law that the redshift is linear in the
distance. For larger z, however we expect deviation from the linear law unless
go = 1. Note however, that it is d; that enters into the previous equation. If
for example, we use d4 as our measure of distance, then we get

Hy 1

dA(1+z)27 =z+§(1—qo)22 (151)
o H, 1
dA70 =z— 53+ )7 (152)

and the quadratic(and higher terms) get modified.
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2 Flat Universe

Yo

g
t
The metric for a flat universe
ds® = dt* — a*(t)[d2® + dy? + d2?] (153)
a(t)is the scale factor whic is defined as a(t) = }f((tto)) with a(to) = 1 and ¢ is the

physical time.
The energy momentum tensor also satisfies homogeneous and isotropic con-
dition
TP = (p + P)U°U” — Pg*? (154)
U® = (1,0,0,0), p (density) and P (pressure) are function of time
goo = 1, gij = —a*(t)8s5, Too = p, Ty = a®(t) Pdy; (155)
Now we solve Einstein equation

G = 8nGTH (156)

Using the metric for the flat Universe and 77 defined above.

Ly = 0, Ty = 0, IY) = aadyy, T = 0, T, = =0, T§; =T =0 (157)
a 1 a Q.o . .9
Rog = —36, Ryi =0; R= Roy — ;R” = —[6; +6(a) ]7 Rij = (aa+ 2a )51']'
(158)
1
Goo = Roo - iRg()o = 87TGT00 (159)
= 3(%)2 = 87Gp (160)
1
Gij = Rij — §Rgij = 87TTij = —2aa — a2 = 87TG(12P (161)
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3% = —47G(p + 3P) (162)

Eqn160 is Friedmann-Robertson-Walker equation. Eqnl62 is Raychaudhuri
equation. We can solve these two equations for the evolution for a(t).
Both of these equations are sourced by p and P. These equations satisfy the
conservation equation.
7% =0 (163)

Using homogeneous and isotropic case

. a

p+3g(p+P) =0 (164)
Now let us use the equation of state P = wp where w is a constant.

2.1 Non relativistic Matter

The energy in a volume V is given by £ = M, p = g where p is the mass
density. In the evolving Universe V o a® and p o a% and

P ~nkpT < nMc* ~ pc? (165)
so P~0 . 1 d

. a _ Lta 3y _

pt3-p=—(pa’)=0 (166)

Solving this equation p o a% We can solve the equation

ao _ 87G po 1/2; 87Gpo 1/3
2 - 2 = 167
(a) 3 a3 ’ a a ( 3 ) ( )
to find a o< t2/3. If a(tg) = 1 where to: today, we have a = (%)2/3. At t =0, we
have a = 0, i.e., there is an initial singularity: Big Bang. Finally we find that
i < 0, i.e., the Universe is decelerating.

2.2 Relativistic Matter

These are massless photons and neutrinos. recall that their energy is given by
E = hv = h2n /X where v is the frequency and X is the wavelength. Since

each length is stretched by the scale factor a the Aa, the energy is shifted by
F x % The mass densityp = g x % x ﬁ = a% The energy of radiation
decreases far more quickly than that of non-relativistic matter. Also we can use

the equation of state for radiation P = £

. a 1d N 1
We get
ao, 81Gpy . 8mGpo 1/2
_ = ——— v = (———— 1
(292 = T2 aa = (U (169)
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which gives us

t
aoct? ora=(—)"? (170)
lo
Once again the universe is decelerating and H = % = 2% For general equation
of state P = wp

1 d

3(14+w .
m%(m ( )) =0 (171)

,b+3(1+w)gp:

As w gets smaller and more negative p decreases more slowly, we can solve the
previous equations

ao 871G po wse . 87Gpo. /o
G =3 ma e T A=) (172)
which gives us
t
a= (7)3@@ (173)
to
which is valid for w > —1. For w < _71, the expansion rate is accelerating. For
the special case w = —%, a  t. For cosmological constant P = —p. In such a

scenario aef’t, p is constant, % is constant.

So far we have considered only one type of matter but in general there is a

mix, e.g.,
(9)2 = %
a 3
In fact the true picture should involve all 3 types, i.e., relativistic, non-relativistic
and cosmological constant or vacuum energy (A era). Before we get into more,
we first consider scenarios which are not flat.

Let us now consider a 3D surface that is positively curved. It is the surface
of a 3D hyper-surface in a fictitious space with 4D. We have already seen tha
the equation for the surface of a sphere in this 4D space with coordinates (z, y,
z, w) is 22 +y? + 22 + w? = R?. We can similarly define a surface with negative
curvature

PM, PR,
( a3° + a—f) (174)

22 +y? + 2% —w? = —R? (175)
We have seen before for such surfaces
2

2 2 2 r
ds*=dt* —a (t)[l—krz

+r2(d6* + sin*0d¢?)] (176)

where k is positive, zero or negative for spherical, flat or hyperbolic geometries
k| = 7=

We can repeat our calculations we did for flat geometry in these new cases.
The metric

_ 2
gaﬁ = dlag(—l—l, —ﬁ, —a27‘2’ —a2r28’in29) (177)
i, J runs over r, theta, ¢
o A -
F?j = —aagij, Féj = 56;, ;’k = Fljk (178)
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Here g;; and f‘ijk are the metric and connection coefficients of the conformal
3-space (that is of the 3 space with the conformal factor a is divided out)

= kr = o\ Fp 2 L9, 0 sin260 =0 1 =6 1
FTT‘: m, 90:_7’(1_167’ ), ¢¢:—(1_k’r )7‘87,71 0, F¢¢:—T,F9r:;7rg¢: tane
(179)
The Ricci tensor and scalar can be combined to form the Einstein tensor
3a% +k . _
Goo = T2 Gij = (2aid + a* + k) Gij (180)
While the energy momentum tensor is
T[)() =P, T‘” = —(],2P§ij (181)
Combining we get
a., 8nGp k a 4AnG
) = — — and 3— = — 3P 182
(Cp =" - 2 and 32 = T2 (p+3P) (182)

Let us explore the components of the overall geometry of the Universe, i.e., the
term proportional to k in the F.R.W equations.

For example consider a non-relativistic matter filled equation We can see
that the term proportional to K will only be important at late times when it
dominates over energy density of non-relativistic matter. In other words, we
can say that curvature dominates over the non-relativistic matter.

This means that the curvature dominates at later times. Let us consider
now two possibilities: £ < 0 and k£ > 0

) 81G, k
a :7rp+u

2
bl 183
=200 (183)
when curvature dominates ) |
a2
2 M 184
Gp=2 (184)
So a o t In this case the scale factor grows at the speed of light.
K > 0: From the F.R.W. equations we see that this is a point when
8nGp k
= 185
3 pe (185)

and therefore @ = 0, when the Universe stops expanding. At this point the
Universe starts contracting and evolves to a Big crunch. If k& = 0, there is a

strict relationship between H = % and p

a 87Gp 3H?
H? = (=)= = p=pe=g o

a 3
pe = 1.9 x 10726h2kgm =3 = critical density Using Hy = 100hkms~'Mpc—! It
is convenient to define a a move compact notation. We define the fractional

(186)
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energy density Q) = pﬂ. Q) is a function of a and we express its value today as
Q. There are various contributions to the energy density

Qp = %R . Radiation [Relativistic] (187)
PM c .
Qn = ; : Matter [Non — Relativistic] (188)
O =~ A [Cosmological Constant] (189)
AT osmological Constan
Q=-r .
Y Eh Curvature (190)
Q:QR+QM+QA:>H2(1—Q):—£2 191
a

Q<1:p<pe k<0 : Universeisopen
Q=1:p=p. k=0 : Universeisflat
Q>1:p>p. k>0: Universeisclosed

We can write

Qs n Qr, n Qo

H2(a) = H3[- 0 + =23+ =%

+ Q] (195)

“0” indicates the quantities evaluated at %g.
How does €2 evolve? If the Universe is dominated by matter then

o kt?/3 (196)

ie., if Q # 1, it is unstable and driven away from 1. The same is true for a
radiation dominated Universe and for any decelerating Universe {2 = 1 as an
unstable fixed point and we saw that curvature dominate at late time.

Let us examine H = % Suppose we place a galaxy ate 71, 01, ¢1. As the
Universe expands, the galaxy stays at the same location, all the cosmological
distances get stretched by an amount a(t). For example, we can use the surface
of a balloon to describe this phenomenon. We see that the two galaxies are
located at the same location of the r, 6, ¢ coordinate system at ¢; and to. How-
ever, the distances between them are stretched by the ratio of the scale factors

a(tz) and a(ty).
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Suppose that the 2 galaxies are separated by a distance d; = a(t1)s where s
is the distance between these galaxies are normalized (co-moving) coordinates.
At the time ¢, the distance is do = a(t2)s. So the necessary velocity

dy —d ta) —alt
v = 2 1 _ a( 2) a( 1)5 (197)
to — 11 to — 11

using At =t9 —t;1 = 0

v="as=Hd (198)
a

Hj is the Hubble’s constant and we can define

1
ty = — = 9.78 x 10°h~ 1yr (199)
Hy

The Hubble distance 1
Dy = — = 300h™ ' Mpc (200)
Hy
Let us choose our local coordinates such that we are at 7' = 0. Consider a light
ray that moves radially towards us, that is 6, ¢=constants. If this light ray was
emitted from r = rg and t = tg it will reach us at a time ¢y given by

to ¢ 2 dr

i - 201
/ a(t) / Vg (201
Qk()

Using —k = D

B sinh = [\/Qi, 5] for Q, >0

/TE dr o for Qu, =0 (202)
—_— = TE JOT Mg, =
N o o

0 1—ber \/%Sm 1[\/|Qko|ﬁ] for Q, <0
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The furthest physical distance dj, we can observe today is given by f(;E

scaled by the physical scale factor a(ty)

o gt

dn(to) = a(to) /OTE \/ﬂw = a(to)/o a(t)

We can calculate f % for different era

d:[m£5f[wd%w>

Using 9 = aH
For matter domination H o a~3/2
2
d(a) = —|1 —
(a) = 711 = Val
2 1
d(z —1
() = 1 7 )

For small z, d — H— and for large z, d — -+

We also can deﬁne lookback time ¢,

“@‘l;“‘l¥@%w>

For flat matter domination

Hop

tr(a) = ﬁ[ —(1+2)7
For very large z — oo 2
tr, ﬁ
Now using .
H? — (%)2 — ?(pm + puac) — CTIZ

H? = H3[Q, (1 + 2)3 + Qo (14 2) + Q4]
[We assume that the radiation is neglected now]

a(t), _ d Lo 1 dz
) dtLog(1+Z)_ 14z dt
dt (1—2)71

dz — Ho[Q, (1+ 2)3 4+ Qi (1+ 2)2 4+ Qu]1/2
The look back time from the present

g=9r
pr og(

to—t —H—l/ dz
O T (U ) [ (1 2)% + Qi (1 + 2)2 + Q)12
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Choose t; = 0 (z = co) we obtain the present age of the Universe If Q5 = 1,
Qk, =0 Qp = 0[Today]

& 1 2 2
Hotg = ————dz === tg = —— 215
oto /0 1+2p2" 7377 31, (215)

Using Hy = T0kms~'Mpc™! to = 9.3 billion years

3 Thermal History of the Universe

How are the contents of the universe affected by the expansion? The universe
expands and its contents cool down. Let us focus on the radiation now. The
energy density of the radiation p a% Radiation is in thermal equilibrium and
acts like a black body. The occupation number/mode

2
Fv) = o —1 (216)
v is the frequency. The corresponding energy density/mode

Stvidy h
e(v)dv = Ry (217)

We use the natural unit, ie., kg =1, c=1,h=1

Integrating over all frequencies
7'('2 k‘BT 1

y = —(kpT)(5—) = p, xT* =T x - 218
pr= 15 keT) (=) = pr o~ (218)

Is T the temperature of the Universe? Everything else has to feel the temper-
ature. This means they have to interact (even if only indirectly) with photons,
e.g., the scattering of photons by electrons and positrons through the emission
and absorption of photons.

We also need the radiation to dominate in the early time. We know ppon —relativistic X
a3 while p, o< a=*. So even if p, dominates in the early universe, it may be
negligible today.

However the number density of photons n., a~3.Experimentally, we found
the number density ng is very small (np is the number density of Baryons).
Compared to the number density of photons

ng = 2B ~ 10710 (219)
Ny
There are more photons than protons, neutrons. Temperature of the photon
sets the temp. of the universe. The temp. decreases as the inverse of the scale
factor.
For ideal gas of Bosons or Fermions the occupation/mode

B g
F(p) = cop(EE) 11 (220)
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1 is the chemical potential which leads to chemical equilibrium in an interaction
for
i+ =k l= ity = gkt (221)

Chemical potentials are described in terms of some conserved quantities, up,
ete. If = 0, then we have equal numbers of particles and anti-particles

Numbers of chemical potentials compared to the numbers of conserved par-
ticle numbers. E = \/p? + m?, g is the degeneracy factor. +1(—1) corresponds
to Fermi-Dirac (Bose-Einstein) distribution. We can use this distribution to
calculate some macroscopic quantities. The number density

_ g d’p
"= (2m)3 / exp(E74) £1 (222)

The energy distribution

= g / E(p)d*p (223)

2m)? eacp(—E;“) +1

The pressure

2 3
g p d’p
pP= /—f (224)
(2m)3 ) 3E exp(Ez) £1
Let us consider two limits 7> M and T' < M with u =10
For T'> M,
n= ii;’)gﬁ, B.E. (225)
m
3¢(3) s
= T°, F.D. 226
K 472 gt (226)
With ¢(3) =1.2
2
9T 4
==Z—_T% B.E. 227
p==5T, (227)
7 w2
= -g-—T* F.D. 22
p=3g955T" (228)
The pressure satisfies P = £.
For T < M y
n=g2n)¥*(MT)*?e~ T, p= Mn (229)
P=nT<nM=P<Kp (230)

The pressure is negligible for nonrelativistic case.
For the average particle energy in the relativistic case

Tt
—o=<T ~ 3.15T F.D.
(B)y =L = 189%06) (231)
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If the chemical potential © = 0 then there are equal numbers of particles and
anti-particles. If u # 0, we find for fermions in the ultrarelativistic limit 7'

g 2 1 1 9T® 5 By K
n—n=-—= [ dpdn — == (5)+ (=%
(277)3/ pErp (e:cp(%):tl exp(f%“)ﬂ) 67z 7 () H(F)Y)
(232)
The total energy density
_ g ° 9 1 1 7T w4 30 o 15 poy
= dpd = LT (B2 2 (B
o (27T)3/0 AT ) 1 eapEy 1)~ 89157 g (p) ()
(233)
For the non-relativistic case
E=m)/T £ 1 ~ o(BE-p)/T (234)
mT _m—p
n= g e (235)
3T 2 3T
p:n(m—i-—),SinceE:m—i—p—,PznT<<p7 (Ey=m+—  (236)
2 2m 2
_ mT 3/2 =2 . 1%
n—n=2g( 5 )/ oe T sth (237)

We now need to understand the problem of calculating the total contribution
to the energy and number density of all kinds of particles in the early universe
Let us now consider entropy:

1 oS 08
as(v,T) = f[d(pV) + P(T)dV] = dS = W(V7 T)dV + %(V, T)dT (238)
0s 1
o2 = Z(o(T) + P(T)) (239)
9S 'V (dp(T)
ar ~ T dT (240)
Equality of the mixed derivation
0928 %8
J 1 0 Vidp
A (p(T) + P(T)) = o (2 5(T) (242)
dP 1
= op =7+ P) (243)
Use this to write TdS = d(pV') + d(PV) — VdP
dS—ld[( —&-P)V}—K( +P)dT:>S—K( + P) (244)
- 2\ -7V
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Use

: 3
w0 g3t —0= Lipaty = —pIL
T 0:p+3a(p+P) O:>dt(pa) Pdt (245)
We can write ag%(tn = 4(a3(p+ P)) Now use 2& = L(p + P) to write
d a®
i Gl P) =0 246
4o+ P)) (216)
One defines s L p
p
=2 -2tk (247)

where V' = a3. In the early universe both the energy density p and pressure P
were dominated by the relativistic particles with equation of state P = p/3 and
5= %gz”T?’ where gesy is the effective number of degrees of freedom.
For the relativistic particles
2 1 w2
= —gerfT?, Pre(T) = = pre(T) = — )Tt 248
PRe 3Ogeff re(T) 3pRe( ) gogeff( ) (248)
ges£(T) is the total numbers of internal degrees of freedom (e.g., spin, color etc)
of the particles that are relativistic and in thermal equilibrium at temp 7. For
example, in the Standard Model of particle physics we have, v, g, W+, Z, H, u, d, ¢, s, t, b, e, ji, T, Ve, Vy, Vr

gesf(TeV) =28 + gQO = 106.75 (249)
Here, «(photon): spin 1, W, Z: massive gauge boson: spin 1, quarks (u, d, c, s, t, b):
colored and spin 1/2, leptons (e, i, T, Ve, vy, v7) colorless and spin 1/2, H (Higgs
boson): spin 0.

If the interaction rate becomes smaller than the expansion rate, then the
particles will have lower temperature than the photons, but still can be rela-
tivistic (e.g., neutrinos) and this temperature will be unaffected by the heating
takes for photons after the particles are decoupled.

This situation is handled by introducing a specific temperature T for each
kind of relativistic particle which can be included in the effective g;

Geff =1= bosonﬂgi(?)4 + gz = fermzonsEgi(?)4 (250)

Inserting this in the FRW equation

G 871G 72 g VYeff
H2 =22 = T = 27620t — 1662 72
3 M= T3 30" Moo Planch
(251)

. You have noticed that we used g’ iy for entropy density expression while gy
for energy density. They are different (we will discuss more later) since

T; 7. ) T;
ngf =4 = bosonZgi(T)?’ + gl = fermzonsEgi(?P (252)
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Let us first realize that the relativistic particles contribute to the entropy
density. We can write the entropy density in terms of energy density.

TdS = dU + PdV, U : internal Energy (253)
H dT
Vdp= —=dT' = (U + PV)— 254
p=Tar =+ p1)2 (254)
H =U + PV: Enthalpy
ds = d@ =85 = % + constant (255)

We can choose the integration constant such that S = 0 for the absolute 0 temp
U, P constants all the particles of the universe

U= Urel + Unon—reb P = Prel + Pnon—rel (256)
For relativistic particle
Ur = prV. P = (257)
4prV
Sp = gf; , using (Er) = Z—Z (258)
ER 7'(2 3

= 14— ~4 —qgT 2

SR nrV 3T nrV = 309 14 ( 59)

The effective number of relativistic degrees of freedom g can change with time.
The entropy conservation Sp=constant V oc a®(t) gives T' o g1/+a(t) where g is
constant.

For non-relativistic

3 )
UM = §nMVT, PM = ’I’L]\/[T7 SM = 5’1’LMV (260)

nys is exponentially suppressed. It does not contribute to the effective g calcu-
lation

3.1 Electron-positron annihilation into photons

A good example of temperature change due to the change in g is the ete™
annihilation
et +e” = vty (261)

When the temp. was greater than the rest mass of an electron
yH+y—=et e (262)

i.e., the pair creation occurs.

30



Also the particle behaves relativistically when the temp. is greater than
~ m/3. The entropy conservation

T, = Tl(gi)l/3 (263)
g2

T1 and Ty are photon temp. before and after annihilation

91:2+Z><4=E,92:2 (264)
8 2
Therefore we conclude that the annihilation increases the photon temp. by
(L1)1/3. After this the photon temp. decreases T o ﬁ
While there are about equal number of electrons, positrons and photons
before the annihilation epoch, the number electrons after the annihilation is
about 2 billion times smaller than photons as most of the electrons annihi-
late with positrons (the tiny excess is a mystery!). However the tiny excess is
enough to keep the universe opaque. In order to make the scattering efficient
the scattering rate needs to be larger than the expansion rate, i.e., orn, > H
where o7 is Thompson scattering cross-section, n.: number density of free elec-
trons, H: Hubble expansion rate, c7=6.65x10"2® cm?.Since the scattering is
efficient and the universe remains opaque in the matter dominated regions with
H= HO QM(I + 2)3

Or1Ne OTNCMB Ne

H _ HO\/QM(l—‘rZ)?’ ncMB (265)

Here noyp = 410(1+z)3cm*3 are the numbers of cosmic microwave background

photons
NCcMB

~2x10° (266)
Ne
Hi = 2.998h " Mpe = 9.25h L x 10 em (267)
0
Hrp 59,1000 55 “GE
~0.9 % 10 . 268
OTNe ” (1—1—2) (2><109) (268)

at z ~ 102, the mean free time of photon was still only 1% of the Hubble time

. . . .. dogn _
and universe was still opaque with H < orn, We can also write ey 102

1
orNne "

with dg ~ % and dypn, ~

3.2 Recombination and Decoupling

At around z ~ 103 or Topp ~ 3000K, the electron number density rapidly
fall relative to ngopp resulting in the decoupling of photons from the electron
scattering. At this temperature, the Universe is cool enough for electrons to be
coupled by protons forming neutral Hydrogen atoms.

pte — H+~ (269)
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Once started, this process removes electrons rapidly, reducing their number
density and thus allowing for photons to propagate freely.

As the ionization energy of the hydrogen atom is 13.6 eV, one might think
that the neutral hydrogen begins to form when the temperature falls below
13.6eV~ 1.6 x 10°K. However in reality, the formation of Hydrogen atoms is
delayed until T' ~ 3700K. When the temperature is 7 = 1.6 x 10°K, only 15%
of photons energies lower than 13.6 eV. When the temperature drops to T =
70000K, about half of photons have energies lower than 13.6eV. Still there are
so many photons per hydrogen atom to begin with and thus roughly speaking,
the ratios of the number pf photons to the number of photons to the number
of electrons give a logarithmic correction to the temperature of the hydrogen
formation epoch as T ~ Zgbol%% ~ 3400.

Finally when a significant amount of hydrogen atoms are formed at the
temperature, photons do not decouple from the plasma until the universe cools
down to T" ~ 3000K

The first approximation will be to assume that protons, electrons, hydrogen
atoms are in thermal equilibrium. At this temperature all these species are
non-relativistic and their equilibrium densities are given as

2
d3p _mp—i_#""/‘ sp=mp MyT 59
w=2 [ e T e (D
—me  MT
e = 2T ()32 271
ne = 2e (5,.) (271)
L —mp T
nyg =2 T (%)3/2 (272)

27
Now we assume that the protons, electrons and hydrogen atoms are in ionization
equilibrium, which means that for

pte = H+7, pp+ e = pir (273)

We write the Saha equation

NpNe —Cmptmemp) My M\ 579
-9 T — P ° 274
i Gy 27 ) (274)
Define binding energy
By = (mp +me —mpy) = 13.6eV (275)
me = M, /2000, m, =1 GeV, m, = mg.
For charge neutrality, n. = n, we get
n? -By  meT
P e (L6 ))3/2 276
() (276)
We define the ionization fraction
y=_ X =1 fullyionized hydrogen (277)

np+ng X =0 fullyneutral hydrogen
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The Saha equation becomes

X2 _ 1 (meT)g/QefBTH (278)
1-X np+ng 27
We need to solve for X as a function of T. For convenience, let us define
np + ng to the baryon mass density of the universe. We use this result from
the Big Bang Nucleosynthesis. 76% of the baryonic mass in the universe after
the BBN is contained in the protons (and the rest in the Helium nuclei), i.e.,
my(ny +ng) = 0.76pp. The time independent baryon to photons ratio

Pb
mpNcmMB

n =273.9(Qh%) x 10719 = 5 = 6.3 x 107°, Q,h? = 0.023 (279)

We get

T
nemB = 410cm*3(?)3 withTy = 2.725K (280)
0

Grouping all these numbers

X2 25x1075 .. T
= = Xn (T)%/%e 7, T = W (281)

We get
2

X(T) =

= = - (282)
1+ \/1 + (1.6 x 10-673/2¢" 7

We can find an approximate temperature at which the universe is half neutral

X = -, thenT%2e" 7T =5 x 105/n = T = 0.0237or T = 3740 (283)

DN | =

For n = 1(i.e., equal numbers of photons and baryons), T can be found T=7900K.
Now we can go back to the ionization history and recalculate H/(orn.)

H Ho/Qp (1 + 2)° 1
_ Ho (1+2) (284)
OTNe OTrNCMB 07677X(Z)
094 x 10—2( 1000 )3/2(6.3 X 10—10) _0.94x1072 (2725K)3/2(6.3 X 10—10)
B X(z) 1+2 n X (2) T 7
H
=1, T = 3000K, z = 1100 (285)
OTMNe

Here we define the decoupling temperature Ty.. = 3000K, i.e., when H = opn,.
For lower temperature H > opn., Expansion rate is larger than the photons
scattering off electron and photons are set free.
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3.3 Freeze-out of recombination

The above calculation shows that all of the electrons will eventually be cap-
tured by protons leaving no free electrons at low temperature. However as the
recombination rate is proportional to n.n,. The rate quickly falls quickly as the
number densities go down within the expansion of the universe. Eventually the
recombination stops. This is the epoch of recombination freeze-out.

The recombination rate is (g,.c.v) is

In(1)T In(1/T
(Orecv) = 2.33 X 10_14%077135_1 = 7.77 x 10_25%01%2 (286)

[In natural unit].
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(0recv) is of the same order as op: Thompson scattering

H _ Ho/Qp(1+2)3 1 (287)
(Orect)ne o (orec)nopmp  0.76nX(z)
1.06 x 103 2725K . 6.3 x 1010

X (T)in(157894/T) (=X " )

The above rate crosses unity as Tfreeze—out = 2700K which is lower than the
decoupling temperature. The residual ionization fraction of the recombination,
i.e., the ionization fraction left after the recombination freeze-out by evaluating
X(T) at T = 2700K. The small amount of X means small amount of residual
electrons which is needed for forming hydrogen molecules via

Hte —H +~ H +H— Hy+e” (288)

4 Dark Matter

We want to calculate the current density of dark matter particles. Suppose X
is a neutral DM particles. In that early universe ¢ was large

X0 X0 frf (289)
Suppose XY is also fermion.
f+fe v+ ete (290)

Similarly, X° cannot decay [it is stable]. However two of them collide with each
other and annihilate. X° is in thermal equilibrium with other matter and hence
with photons. Thermal equilibrium is maintained if the reaction rate is faster
than the Hubble expansion rate
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However the universe catches up
Ixoxopp~H (292)
tp is the temperature. X° decouples from the plasma. For
H>Txoxo_¢f (293)

, the X%’s cease to annihilate. Thus the number of X° at that time remains
unchanged and form “relic density”. This is xoh2. We now need to provide a
quantitative picture.

Boltzman equation describes the time evolution of the distribution function
is phase space. For non-relativistic system this is given by the function f(7, p, t).
The change in the function in course of its time motion is

Df _ 8f
294
oo T V rf + vf (294)
where d—f F we get
Df of - -
—_— == 4 — F. 2
i ot + PV f+FVf (295)
For the relativistic case, we generalize this
f=f%p") (296)

The motion in phase space is defined via proper time 7 with dr = %ds =proper
time.
The change of f is now

Df _ e 0f  d" Of

= 2
ar ~° ox™ dr Op® (297)
Writing p® = mov®, the geodesic equation reads
dv®
— = —T% vf” 2
I PR’ (298)
Df of v Of
x4 Fa ¥ 2
dr 9z vt ap> (299)
Df _dtDf deD7f ODf ODf (300)
dr dr dt  dr dt  dt  m dt
Writing p® = E
Df m af af
-_J — —J Fa KV 1
dt  p° (v* oz op o) (301)

We use Robertson-Walker metric, the space is homogeneous and isotropic. We

use f = (E,t) where |p] = VE? —m?
Df _m0 08 aro

o 2L

G B g0 ™ o) (302)
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0
where v9 = £, For R-W metric

a
F?j = g9 o = 0 ="Tq;, gij = 0y (303)

Df _of appof (304)
dt ot a E OF
What cause the distribution to change in time. If there is no collision, the f is
constant
Scattering of particles from one momentum state to another leads to change

in f:

2 P
Ph i
a1+ ag <> as + ag (305)

Let us look at the distribution function particles

f=rfpt)=f(Et)=h (306)
Similarly we have functions for as, asz, a4
2m)t d3ps d°
dr'(i = f) = %|Mfi|254(p3+p4—p1 —po2) (2533 (25)43 = transition probability /time fori — f

(307)
with as, as with final particles cell d®ps, d3ps at momenta 73, py and spin
s = 8354. V is the box normalization and My; is the matrix element of the
transition from ¢ — f. If the Hamiltonian is

H=Hy+ H; (308)
We can generate
<p37 P4, OUt|H|p1 D2, m > (309)
Let us go to the Lab frame
Ug =0, 01 #0 (310)
Incident flux p; = %vl =Incident flux of a1
~ r(i — f) _ (2n)* 254 dps dPpy
o(i— f) p o |Myi|*6" (p3+pa—p1—p2) )7 (2n)?

(311)
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If we wish to go to any other frame, we do this by requiring do = Lorentz
scalar. If this turns out that this is achieved by

_ V0ipa)® — mims

v= i (312)
and one has
v =w1, ph = (0, ms) : Laboratoryframe (313)
We can write . .
v = %11—%22 = |0} — | (314)

p1 + P2 = 0: Center of mass frame.

However we can go to any other frame. Usually the CM frame is the easiest
one to use.

Now returning to get the number of particles scattered out of initial state,
we multiply the probability dI" by the number in initial state X5 and sum over
initial X5 and sum over final X3, X, and multiply no. of X;

. 1 d3p3d3p4 4 24
N(i— f) =ss, 50,52 ) VP2Z/ W(%) My;|76% (ps+pa—p1—p2) f1f2(1£f3) (1 f1)
(315)
where %pgz =/ (d;;f’)%, with +: Bose-Einstein and —: Fermi-Dirac. (1 £+
f3,4) account for Pauli suppression if a Fermi state is already filled or a BE
enhancement.

Similarly, we have an enhancement of the initial state since thermal equilib-
rium allows the inverse process f — 4

3 3
N i) =150 3 G Y [ SR M5 =) a1 ) (1)

(316)
Our balance is
Df . .
We now make some reasonable assumptions:
e T invariance (or PC invariance) implies
|Mfi|2 = |Misi_>fsf|2 = |M7;S'i<_f5f|2 = |M3i5f|2 (318)

This is true except for certain weak interactions

e We will assume that in the vicinity of freezeut, the particles are non-
relativistic. Then
fime P <« 1, B/T < 1 (319)
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and we can neglect the BE and FD enhancement and suppression, i.e
1+ fi~1 (320)

In general our particles have spin and different spin states. We will assume
the distribution functions don’t depend on the sin quantum number. Then for

3
t) = SZ / (;lﬂ_l))gf(p, t) = numbers/volume (321)

‘We have P
n =g [ Gl 01 (322)

This is true for systems with isotropy. Our basic equation then simplifies

ot a E1 8E1

0 0 d? d3 d?
Oh_api 0h _ 82753,842/ p2 Pe 21343(27T)454(p3+p4—p1—p2)|Ms,ﬁf\2(f1f2—f3f4)

(323)
We can integrate over p; to get an equation for the number density n:

dnl(t) a / d3p1 pl 8f1

d? pz
@ o) GrpEoE 81,52783,542/2* 14H | Mysisis > (f1 f2—f3f4)
(324)
The second term in left hand side reduces to
d*p1 p} Ofs 91 o dpy 0f1
_ 325
9 / (21)® B, 0F, / /L B a5, P oE, (325)
0f1
= dQ) dE
(27r)3 'oF,

39 > dp d*p
= —(2753 /dQ/m dEﬂﬁdiEllfl = _391/(27r)13 fi= —3n1(t)

In general f; are spin independent, the matrix element |M|? will in general
have spin independent. However we can define the spin averaged matrix element
|M|? will in general have spin independent. However we can define the spin
averaged matrix element

2 2
m51352783354|M93549291‘ = |M]| (326)
|M|? is the spin averaged matrix element and depend only on the momenta of
the process

dn
C}() @ ) |M| (2m)*6* (ps+pa—p1—p2)(f1f2— f3fs)
(327)
We can write down similar equations for fo, f3, f4 and we would have a complete
set to try to solve we will make some physically valid approx. to simplify the

analysis.

—&-37 ny = /z = 14ng
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When the X3, X, are created by X7, X5. We can assume that they interact
rapidly with the plasma and quickly thermalize.

Thus f3, f4 can have their equilibrium values, i.e., the Boltzmann distribu-
tion

fo=fi" = e BT = 0 = e P (328)
where E31/p3 + m3. Hence we can write

54f3f4 ~ 5t gq fq — §lo—(Es+EL)/T _ 54,—(E1t+E2)/T _ 54fqu26q (329)

/z— 1, 211g; (d7£’3 [/ =3, 4ng( p)l |M|?(27)*6* (ps + pa — p1 — pz)} (frfo—f37f59)

(330)
[ -] is related to cross-section, i.e.,
d3p; q

1=3 4ng (2 ) O’Z_>f’U(f1f2 f3 4 ) (331)

We can define the thermal average of the ov as

Ji=120%0, 0 f1fo
i = 332
(o1ss1) r (332
For the equilibrium case this means
i=1, 2H Lo, pve (B1+E2)/T

(Gins o)1 = k i (333)

f 9(1262)1;1 —El/Tf g(z;f)z;a —E3/T

We are averaging over the Boltzmann distribution. The particles are close to
equilibrium, but the expansion of the universe changes n; », i.e., allows a chem-
ical potential to grow while the scattering can change the momentum distribu-
tion. We can write the ansatz for fi o as

Ejo pi1,2(t)

fiz=eT TTH (334)

u1;:u2 1 2fH (2 )3 02_>f’06 —(E1+E2)/T

i fU) = 335
<(T —f > eu1+u2 f g1d3p1 )3 e_El/Tf 9(2201:)1;2 o—E2/T ( )
or
<O'7;’U> = <O’i4)fv>eq (336)
Our Boltzmann equation now reads
dnq a q eq. eq
g + 35111 —(0i= pv)*ning — niny?] (337)

This is called Lee-Weinberg equation.
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In our analysis we have considered only a single annihilation process
X1 +X2 —)X3+X4 (338)

There could be many final states each contributing to the annihilation, e.g.,

Xi+Xo —» f+f (339)
- Wr4+w-~
- Z294+ 20

Writing ny(t) = na(t) = nx

d
DX 3 (1) = (o1 — ) (310)

0 4 is the annihilation cross-section

o= ZO—X1+X2~)fi fi = final state (341)
In this approximation, we can write

an 1d
oA HI(t -
+3H (t)nx a3 dt

dt
If there is no scattering, then nx = fl%”j)t and the number/volume decreases as

volume increases. The first term of the R.H.S of the Eqn340 is the depletion of
nx due to

(a®(t)nx) (342)

X1+ X1 = f; (343)

The second term is the increase of nx due to the creation of X by the inverse
reaction f; — X1X,

4.1 relic abundance calculation

The basic equation looks complicated since it is a non-linear equation. If we
know the particle physics interactions giving rise to (o 4v), then we can calculate
(04v)¢? and express it as a function of T'(¢).

We can solve the equation numerically however some simple analytic approx-
imations can be made. In the early universe when one has radiation domination

5 .1 .1
T(t)=(2wgkg*)/m:a/m (344)

g«=multiplicative factor associated with the number of relativistic particles.
The Hubble constant is H = 2%

_ kg, 1/2 2_1 —1/272
H(T)f(2(45)) T 72a T (345)
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kU2 = (ghe )2 = 244 x 108GeV Hence H(T) = 0.339. Lz, Mp =
k=1/2 = 2.44 x 1018Gev Also
45kt 1 151k~ Y2 151 M
= ()2 = i (346)

2 T2 T 12 2 T T1/2 2
on%g,) T 2 T2 T

We can use temperature to represent time. We also have that at early times

when our particles are relativistic T' > mx, nx = Zi(rz’) gT3 ~ T3. The Hubble
term

3Hnyx ~ T° (347)
The collision term nx ~ T6. Thus the collision is dominant in the early universe
d
% = (o0)[n% — nx % (348)
an dT an 312 2
= ~T3T? ~ T 349
dt  dt dT t3//2 (349)
dn
DX (o) — e (30)

Where d;% o T5 while n ~ T6 This means ny must be very close to n$ X to
cancel the extra factor of T

n3% = nx®? + O(T°) (351)

nx = nx®(1+ 0(%)) (352)

Thus the number density is mostly given by the equilibrium distribution. More

clearly: Let us define Y = "X, s = entropy/ volume Y= numbers of particle
2

in V= R3(t). Here s = 2-g,T% = bT3, b = 2T 224 . Change ny — Y(X),

t— X = 7

dnx dX d dX dY  dX ds
= (Ys) = —_— 353
dt dt dX( )= dt Cdx + dt dX (353)
We get
dX  mxdTl = my 1al/4 _omx ., m§(
@ a e T aant T aanx
ds _ dT ds _ 2 _ gmb
X = dxar = = (359
We get
dX ds m3bY
Py — g X 356
dt dX 2a1/2X5 (856)
Also we can write
3 1/2m2y 3 3 a—1/2 mx
3Hnx = Sa 2Ty = 5 /bXSY (357)
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dX ds

So 3Hnx cancels Y We can write

dt dX°

dy (opv)e? 2

— = -2t Xs L[V — Yy (358)
dX mg( X

Define H(mx) = 2a=?m%; H(X) = H(mx)X 2. H(mx) is Hubble constant
at temperature =mx

day (oav)©el

dx ~ " H(my)

V3 — Vx4 (359)

Using y°9 = n®?/s, we can write
b)

X dY eq Y2
df — _pea <UAU> [ X s — 1]
Yeq dx H(X) vy

(360)

We can write I' 4 = n4 (o 4v)*?=numbers of annihilation/time (n=number/volume
and (o 4v)¢? annihilation volume/time)

IfT4/H > 1 then Y (z) — Y®4. IfT'4/H < 1 the R.H.S. becomes negligible
and Y (z) = constant. The number of particles in V = R3(t) becomes constant
and we have “freeze-out”. The particles remained are the relics of Big Bang.

We can solve the Boltzmann equation. Let us examine (o4v) first

ds(p;l;pz Ui_}fvef(ElJrEg)/T
(0imspv) = [ SR B BT (361)
Since we are in the non-relativistic regime
p% 2
Eio=m+ 277’1 ;M = ma (362)
The e~™/T cancels out between numerator and denominator
d®p1d®ps —(p24p2)/(2mT)
| B2 o, pre” PP
(oinspv) = —22) (363)

/ %e—(z’fﬂo%)/(%nﬂ
Going to the center of mass frame

1 . . 1
P = §(P1 +p2), p=p1— D2, &®p1d®py = d*Pd’p, p}+p3 = 2P + 5172 (364)

J %Uiefve_lﬂ/(mne‘p2/<4mT)
(Tispv) = dgjrr;?gp€7P2/(mT)e*P2/(4mT)

(365)

It is convenient to do the cross-section calculations in C.M. frame. Then o4
depends only on p (One can go to P =0), 04 = 04(v); p=mv

7 fooo v2dvai_>fve’m”2/(4T)
<Gi—>fv> - fooo U2d’U€_mvz/(4T) (366)
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where d®p = p?dpdw = m3v2dvdQ
|MPPv_ |MPPv

TAV ~ (367)
imnc PU
In general, o 4v is regular at v =0
L o L 9
oAV =a+ gbv +---,a, b= constant, (cav) =a+ gb(v ) (368)

The thermal average is being taken W.R.T Boltzmann distribution.
From kinetic theory we know that for Boltzmann distribution of mass u

(Gu*) =5Top=5 (369)
3 67

<’U2> = ﬁ ~m (370)

(cav) =a+ % (371)

This simple approximation does not work always.

4.2 Approximate solution for relic X"

We saw that ¥ = =X ~ T’;;‘ - eliminate the Hubble expansion from the Boltz-

mann equation. Define

60 = gy 20 == 2 m=mx (372)
1 45
1/4 _
T(t)=a' 0 O Stk (373)
The entropy S = sR? =constant where s ~ T3g,, with T3g,,R> = ¢
d, . 3cR H
%(Tjgas) = 7@ = 736@ = 73ng*gH (374)
do 1 dn n
— = — — 375
dt  T3ggs dt T3q.s (375)
Using the Boltzmann equation
do 1
at = TTQ*SWW[”Q - nzq] = —T3g*s<av>[¢>2 - (bgq] (376)
where ¢eq = %
g d¢ _ dT do
Ublng gt = dt dr

ar  1a'* 14734 1dg.dlT 1 T° 1T dg.dT
- 2al/2 4g, dt dt

(377)

a = epe taar Y ar @
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dr 1 173

T 1dl_*(**12)
dt 14198 2aY/

(378)

In general g, is constant except when one particle drops out from being rela-

tivistic. We will neglect ‘flg:,f in the denomination

d¢p . 1T% 1dg

dr = e s (379)
d¢
- =2ma' 2. (ov)[0” — 07, (380)
45 1 1

2a1/2 = 9 /2. & _ — M2 1
“ (27r2kg*) "k 887Gy pl (381)

d¢ 45 10 2 2
-5 = *S - 2
=) o) [0 = 2, (352)

For I' y < H, the Boltzmann equation pushes ¢ to equilibrium

¢(2) = ¢°(2), Ta>H (383)

At freeze-out, the species decouples from the plasma so that the back scattering-
gq R.H.S. is no longer important and so in the other region

dg 45

P m(471'2/<;g )1/29*5<Jv>¢2 (384)

for I'y > H with zy = Ty/m. For 'y ~ H, one still has ¢ ~ ¢°? (z = zy)

d¢ 45
(@)zf ~ m(m)lmg*s(av) zq (385)
Use ) T
g m —m
beq = Ti);g*’ ﬁ)sme 7 (386)
Inserting
2 1 —1
beq = —(55)7%e ™ gx =2 (387)
2 ( 1 /2 ;1[1 31] ( 45 /2. (o0) de?/* (388)
— ez = —=-]=m(—— ws{OV) ———
Gus 2T2 22 2z 4m2kg, 9 92, (2mz)3
Solving the above equation at z = zf
a3 4.3
e*f = (2m) (45GN9*) m(av}z}/z (1 2Zf) (389)
1 1/2 1 45 1 1
=1IL — 390
2 nlzy *m(ov) 27r3(4772kg* - %Zf] (390)
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we will see now that z; = %(i.e.7 our particles are freezing out nonrelativisti-
cally) and so we can approximate

1
~1 (391)
1-— %Zf
1
271 = Lafef*m{ov) (—)"/20.0765] (392)
NGx

A more rigorous numerical solution in the vicinity of freeze-out gives

27! = Ln[zy/* - 0.0765] + Lnlc(c + 2)] (393)

where ¢ ~ 0.5. This produces a negligible correction to 2;1/ % Thus

_ 1/2
27t = Lnfz)/? - 0.0765] + c(c + 2) (394)
and the correction of size L"Cffjm = Ln%32 = 0.011 ~ 1% correction
?r

271 = Lafm{ov)(=—)"/20.0765] + Lnz}/? (395)

N G«

To the zeroth approximation we can neglect an}/ 2]

We need an annihilation cross-section. We use an example without getting
into any detailed calculation. Assume Dark matter couples to the SM particles
with weak coupling:

: (396)

Here my is a new particle which shows up in the dark matter annihilation
diagram and as ~ 0.03. We can write

1 2m3, M

Ln[=}*m{ov)( )1/20.0765] ~ Ln[“2X=210.0765] (397)
NG« 4
gx My

Assume my = my = 100 GeV, M, = 2.44 x 10'® GeV, g, = 100, 2; /% = 23,
n21/2
InZ}y? = Lny/23 = 1.56. We get " ~ 0.068 = 7%.
s
To do the calculation correctly one needs to accurately calculate ov and take
the thermal average (ov) and put the correct g.. The above estimate shows that

Ty 1
= — ~ — 398
= mx 20 ( )
Freeze-out occurs nonrelativistically, for z < zf
d 1 45
(=) =m( )2 g.s(ov) (399)

dz ¢(z) An2kyg,
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! v _ ©A
_QS(ZO)—i_(,Zs(Zf)_m/Zf (47T2kg*) g*s<0"l)>dz (400)

with zo = 22, Ty = 2.739°8K. Let us set zo = 0, we can write

) = ¢ (1)
$(20) 1 —&-m(é(zf)fzz;(hélig*)l/zg*s(av)dz (401)

In order to estimate the size of the denominator ¢(zy) = ¢°(zy)

45 2 1 1 45
/2 dz = T N3/2, 75, F2 \1)/2
01 [ ) sl = g e mp ) P lov)
(402)
B 1 wM 2 2
= 27267 (0.0765) TR 2T 60 5 (403)
VGx AT miy
So we neglect “1” in the denominator and we write
¢(zr)
$(20) = ) (404)
me(zf) fz; (4ﬂ§29* )12g.s(ov)dz
The number density of X° today
472k gy 1 /5 t394s(0 1
nxz(ﬂ- 9172 Lod (0) - (405)
45 mgss(zf) [/ (ov)dz
The relic density is now
4 2G *S 0 *S
pxo = mxnx = ( u N)1/2 (9+5(0)/g (Zf))To?’gi/Z (406)

45 J(z)

2
Where J(z5) = [/ (ov)dz, Qxo = P8 pe = 8‘:’fé°N = 1.878 x 1072 gm cm~3h?.
We therefore can write

AT 1 )0 9:s(0)  TF 1

Qyoh? = L(zp)t? 407
xoh” = (= 0o T e < 10 Bgmems 400
Ny = g«(zy) = number of degrees of freedom at freeze-out.
T'xo .3 g*S(O) .
= = “reheating factor” (408)
( To ) Gus(zf)

Since when particle becomes non-relativistic and drops out of g, and its
entropy is not lost and it reheats the photon temperature (associated with ~.
g, € Wy, Ty Ve, Vua Vr, U, d7 ¢ S, ta b

7 303
Nf:g*(zf):2—i—8><2—i—§><[3><4—i—3><2—i—4><4><4><3}:T (409)
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Figure 1: Numerical solution of Boltzmann equation (Y = ¢ vs m/T) assuming
3 different cross-section values, 3 10~ (23+n) cm? /sec for n=1, 2 and 3

We use (0) T
Gxs _ -1 X0 1/2
=(194) -, N7 =0.449 410
2 2
Use ov = %7:;%0 v, % = Jz5, J(zf) = [, (ov)dz = (ov)zy = %%(zf)g/z.

Use my = 100 GeV, mxo = 60GeV, zy = 55, ap = 0.03, J(z5) = 3.49 x 10~
GeV~2 to calculate Qxoh?.

4.3 Relativistic dark matter

45¢(3) gpm
Yi(oo) =Y (X,) = =2 411
X( ) X( f) 27‘(4 g*s(zf) ( )
We get
nxo = soYoo = 6.3 x 10739 IBM o3 (412)

g*S(Zf)

2
Use 5o = &= iy 15, Guso = 3.91
Precise value of X is unimportant since Y ¢ is constant. The species which
are relativistic at freeze-out are called hot relics.

Q= pXO, Px0 = M xoN xo (413)

C

If we use neutrinos as hot relics then gpys = 2 X % = 1.5 for one neutrino type
and we can find Q,Ah? in terms of m,
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Figure 2: gy, gus vs T

4.4 calculation of relativistic degrees of freedom for g, and

g*S

T, 7. , T;
Ge =1 = bosonzkgi(?)4 + g’t = fermwnZgi(?)‘l

T; 7. : T;
Gus =1 = bosonZgi(?f’ + §Z = fermwnZgi(?)g

Using T, = (4/11)Y/3T,, we determine for T < MeV

7 4
*_2 _ 74/3_ .
s = +8><6><(11) =3.36

Similarly,

7 4
ve =24 — —)3/3 =391
g —|—8><6><(11) 3.9

Since t, # Ty G« 7 Gus-
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Figure 3: T vs t(in Hy ' unit) for Majorana, active(Dirac) and sterile(Dirac)
neutrinos
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