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1 Homogeneous and Isotropic Space Time

The Einstein field equation contains nonlinear partial differential equation. We
will solve the Field equations for the whole Universe which is homogeneous and
isotropic. Homogeneous means that the Universe looks same at every point in
Space. Isotropic means that the Universe looks very much the same whatever
direction we look. The universe is also expanding which means that the distant
galaxies were closer to us than they are today. We introduce a scale factor
to connect the coordinate distance with the physical distance. More generally,
Coordinate distance ⇒metric ⇒ physical distance.

The first question one can ask what is the effect of the isotropy and homo-
geneous on the metric

ds2 = gµν(x)dx
µdxν (1)

The effect of the symmetry leads to the Robertson-Walker line element. We
can break the above equation:

ds2 = g00dt
2 + 2g0idx

idt+ gijdx
idxj ; xi = (x, y z) (2)

Now isotropy implies spherical symmetry, this means

g00 = g00(r, t); r =
√
x2 + y2 + z2 (3)

o, g0i can not depend on any preferred vector ai to carry the “i” index or it
would not be isotropic. Thus it must have the form

g0i =
g0rx

i

r
(4)

Since xidxi = rdr. We can write

ds2 = g00dt
2 + 2g0rdrdt+ gijdx

idxj (5)

. We can now simplify by making coordinate transformation that eliminates the
cross-term between dr and dt. Let

t = t′ + ϕ(r′, t), r = r′, ϕ(0, t′) = 0 (6)
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Now in the new frame consider xα ≡ (x0, r) 2 dim subspace.

g′0r =
∂xα

∂x0′
∂xβ

∂r′
gαβ , gαβ = {g00, g0r, grr} (7)

g′0r = (1 +
∂ϕ

∂x0′
)
∂ϕ

∂r′
g00 + (1 +

∂ϕ

∂x0′
)g0r (8)

∂ϕ

∂r′
= −g0r

g00
= Φ(r, t) = Φ(r′, t′ + ϕ(r′, t′)) (9)

Here we have chosen ϕ to make g′0r = 0 This is a first order differential equation
to determine ϕ, and in general will always have a solution.

The metric now reads

ds2 = g00(r, t)dt
2 − gijdx

idxj = g00dt
2 − dσ2 (10)

We now need to impose isotropy the special components dσ2. To see what
this means, recall the ordinary flat space in sphericalcoordinates x3 = rcosθ,
x2 = rsinθsinϕ, x1 = rsinθcosϕ. Then for flat space: dσ2 = (dx1)2 + (dx2)2 +
(dx3)2 = dr2 + r2dΩ2 where dΩ2 = dθ2 + sin2θdϕ2.

Since isotropy implies spherical symmetry, the general form for dσ2 is

dσ2 = F (r, t)dr2 +G(r, t)dΩ2 (11)

We now need to impose homogeneity, which is more complicated constraint.
Consider a time interval dt at fixed r, θ, ϕ. Then

T (r, t) = (ds)dxi=0 =
√
g00(r, t)dt (12)

where T is what clock is at rest w.r.t. frame will measure. Now homogenieity
means that it should bbe possible to find a frame where clocks tick at the same
rate at all in space. This means T should be at most a function of t independent
of r. Hence g00 = ϕ(t). Then we can make a coordinate transformation in these
coordinates. Our metric then simply reads

ds2 = dt2 − dσ2 (13)

Now our universe is expanding and so let us apply homogeneity to the expansion.
Consider two infinitesimal close by points. The invariant distance is

lr = F 1/2(r, t)dr = invariant distance (14)

and the radial expansion rate is

l̇r
lr

=
1

2

Ḟ (r, t)

F (r, t)
(15)

Homogeniety now implies the expansion must look the same at every point so

l̇r
lr

=
1

2

Ḟ (t)

F (t)
= function of t only (16)
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Similarly lθ = G(θ)1/2dθ and lϕ = sinθG1/2dϕ, one has

l̇θ
lθ

=
1

2

Ġ(t)

G(t)
=
l̇ϕ
lϕ

= function of t only (17)

Now by isotropy, the expansion in different directions must be equal. Hence

Ḟ (t)

F (t)
=
Ġ(t)

G(t)
= Φ(t) (18)

One can integrate to get

F (r, t) = R2(t)f(r) with f(0) = 1 (19)

G(r, t) = R2(t)g(r), 2
Ṙ

R
= Φ(t) (20)

and f(r), g(r) are integration constants. The choice f(0) = 1 fixes the scale of
R(t).

Returning now to Eqn.5.11, we see that G plays the role ofr2 in flat space
and so it is convenient to make a coordinate transformation

r′
2
= g(r) (21)

which then reduces the metric to

ds2 = (dx0)2 −R2(t)dσ2; dσ2 = f(r)dr2 + r2dΩ2 (22)

We have not yet imposed the full content of homogeneity which means that the
universe looks the same from any point. Thus if we make a translation of origin
to a new origin things should look the same and this condition should restrict
the form of f(r). To see this consider a spatial transformation of coordinate

xi = xi
′
+ ξi(x′); ξi = infinitesimal (23)

Now we know

g′ij(x
′) =

∂xk

∂x′i
∂xl

∂x′j
gkl(x) (24)

and expanding out to first order in ξi:

g′ij(x
′) = gij(x) + gikξ

k
,j + gjkξ

k
,i (25)

We can also expand on LHS

g′ij(x
′) = g′ij(x

i − ξi(x′)) ≃ g′ij(x)− g′ij,k(x)ξ
k(x) (26)

g′ij(x) = gij(x) + g(ik ξ
k
,j) + gij,kξ

k (27)

where A(ij) = Aij + Aji Now the condition of homogeneity that we will take
is following: If we translate to a new frame with new origin, the metric in new
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frame at any fixed numerical values of coordinate should look identical to metric
old frame at same numerical values of coordinate, i.e.,

g′ij(x) = gij(x) (28)

This equation implies that you cannot tell in which frame you are in, i.e., ev-
erything looks the same. We can write

g(ik ξ
k
,j) + gij,kξ

k = 0 (29)

This equation is called the Killing equation and ξk is the Killing vector.
In flat space one has that the coordinate transformation would be

xi = xi
′
+ ϵi; ϵi = infinitesimal constant (30)

However, Eqn.29 things are much more complicated in curved space.Eq.29 is a
very powerful equation in that it not only determines the form of ξk but also
restricts the form of the metric so that the there is invariance.

As a simple example of Eqn.29, consider a flat 3-space where

gij = ηij = −δij (31)

Then the Eqn.29 reads
ξi,j + ξj,i = 0, ξ = ηikξ

k (32)

We can expand ξi = ϵi + ϵimx
m + 1

2ϵimnx
mxn + · · ·. Then we get

ϵi = arbitrary, ϵij = −ϵji, ϵimn etc = 0 (33)

That is ξi = ϵi + ϵijx
j Which just are rigid translations and rotations. These

are, of course, the basic symmetries of a Euclidean flat space.
Returning now to our metric, we have

grr = f(r), gθθ = r2, gϕϕ = r2sin2θ (34)

and we can write down what Eq.29 means for different components

i = j = r, 2f(r)ξr,r + f,rξ
r = 0 (35)

i = j = θ, rξθ,θ + ξr = 0 (36)

i = r, j = θ, f(r)ξr,θ + r2ξθ,r = 0 (37)

We can integrate Eq.35 to give

(ξrf1/2(r)),r = 0 (38)

or

ξr =
C(θ, ϕ)

f1/2(r)
(39)
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If we take r ∂∂r (36)−
∂
∂θ (37) then we can eliminate ξθ to get

rξθ,θ + rξr,r − (fξr,θ),θ = 0 (40)

and using Eqn.36 to eliminate ξθθ gives

−ξr + rξr,r − (fξr,θ),θ = 0 (41)

Inserting ξr from Eq39 gives

− 1

f
− 1

2

r

f2
f,r =

C,θθ
C

⇒ a (42)

Here − 1
f − 1

2
r
f2 f,r is a function of r only and

C,θθ

C is a function of θ only and a
is a constant of integration. Which integrates to

f =
1

a

1

1− kr2
, k = constant of integration (43)

The condition f(0) = 1 implies a = 1 and from the right hand side of Eq.42 we
get

C(θ) = ϵcosθ, ϵ = infinitesimal amplitude (44)

To summarize then our metric is

ds2 = (dx0)2 −R2(t)[
dr2

1− kr2
+ r2dΩ2] (45)

This is called Robertson-Walker metric with symmetry under

ξr(r, θ) = ϵcosθ(1− kr2)1/2 and ξθ =
ϵsinθ

r
(1− kr2)1/2 (46)

to represent homogeneity.
Note that in flat space a translation of the origin reads (for infinitesimal

transformation)
r⃗ = r⃗′ + ϵ⃗, |r⃗| = |r⃗′|+ r̂.⃗ϵ, (47)

. For this case then
ξr = r̂.ϵ = ϵcosθ (48)

Comparing wit Eq.46 we see that for r small the two results agree. They
differ only by O(r2) as expected by SPE. However for large r, the curvature of
space effects what represents a translation of origin. In fact one can calculate
the curvature scalar for the 3-space. One finds

3R =
k

R2(t)
(49)

showing k ̸= 0 implies that curvature is present.
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1.1 Properties of Robertson-Walker Metric

The R-W metric depends on the function R(t) and the parameter k. There are
3 classes of solutions depending on whether k > 0, k = 0, k < 0. One can
rescale the radial coordinate

r = λr′ (50)

So that
k′ = λ2k, R′

2
= λ2R2 (51)

In this way one can reduce k′ to

(i)k′ = +1, (ii)k′ = 0 (iii)k′ = −1 (52)

Then R′ carries the dimension of length. We can drop the “prime”.

R(t) = “cosmic scale factor” (53)

For cases k = 0, −1 we see the metric is regular for any r and so we can let
the range of coordinate be

0 ≤ r <∞, 0 ≤ θ < π; 0 ≤ ϕ < 2π; k = 0, −1 (54)

But for k = +1, there is a singularity at r = 1, which we need to investigate.
The case k = 0 is a “flat universe” and k = −1 and “open universe”.

To see some of the geometry, we calculate the circumference for a circle of
coordinate radius r at θ = π/2:

C̄(r) =

∫
dσ|θ=π/2, dr=0=dθ = R(t)

∫
[dθ2 + sin2θdϕ2]1/2r = R(t)r

∫ 2π

0

dϕ

(55)
or

C̄(r) = 2πR(t)r (56)

On the other hand the proper radius of the circle from the origin is

R̄(r) =

∫
dσ|dϕ=0=dθ = R(t)

∫ r

0

dr′√
1− kr′2

(57)

and integrating

R̄(r) = R(t)

 sin−1r; k = 1(r ≤ 1)
r k = 0

sinh−1r; k = −1
(58)

We see the non-Euclidean nature of the space when k ̸= 0 i.e.,

C̄(r)

R̄(t)
= 2π


r

sin−1r ; k = 1(r ≤ 1)
1 k = 0
r

sinh−1r ; k = −1
(59)
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We see that for coordinate r ≪ 1), all 3 cases give the Euclidean result C̄/R =
2π. But large r there are major deviations for k ̸= 0, e.g.,

k = 1 :
C̄

R̄
= 2π

1

π/2
= 4 at r = 1 (60)

k = −1 :
C

R̄
≃ 2π

r

Lnr
as r → ∞ (61)

Let us now look at the significance of the singularity at r = 1 for the k = 1 case.
C̄(r) and R̄(r) are the circumference and radius of a circle of coordinate radius
r. To see the meaning of the result consider a circle drawn on sphere of radius
R(t). Now the circumference in this construction is C̄(r) = 2πRr and ψ is the
angle

sinψ =
R(t)r

R(t)
= r (62)

On the other hand, the radius measured on the sphere is R̄(r) given by

ψ =
R̄

R(t)
(63)

R̄(r) = R(t)ψ = R(t)sin−1r (64)

which is precisely what we got from our metric. Thus the physical space corre-
sponds to the surface of the sphere. The coordinate radius measures the distance
from axis up to sphere and the radius of sphere R(t) is that distance when r is
its maximum, i.e., r = 1 at North Pole.
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Now as ψ increases R̄(r) increases until ψ = π/2 and r = 1; when R̄ = π
2R.

As ψ continues to increase r decreases until ψ = π and r = 0 with R̄ = R̄max =
πR(t). Thus r is a singular coordinate in that it is doubled values as one covers
the full surface of the sphere. We can eliminate this singularity by introducing
ψ to replace the r coordinate

ψ(r) = sin−1r (65)

Then our metric becomes

ds2 = (dx0)2 −R2(t)[dψ2 + sin2ψ(dθ2 + sin2θdϕ2)] (66)

and now σ.
2 is precisely the line element for a 3-sphere embedded in a fictitious

Euclidean 4 space i.e., let

x1, x2, x3, x4 = Euclidean coordinate (67)

Then spherical coordinates are

x4 = ρcosψ, x3 = ρsinψcosθ, x2 = ρsinψsinθcosϕ, x1 = ρsinψsinθsinϕ (68)

with 0 ≤ ψ, θ ≤ π, 0 ≤ ϕ ≤ 2π, 0 ≤ ρ <∞ (ρ2 = x21 + x22 + x23 + x24).
The Euclidean distance in this 4-space is

dσ2
4 = (dx1)2+(dx2)2+(dx3)2+(dx4)2 = dρ2+ρ2[dψ2+sin2ψ(dθ2+sin2θdϕ2)]

(69)
The 3-space of radius R is given by fixing ρ

ρ = R(t), dρ = 0 (70)

Which reduces down to

dσ2
3 = R2[dψ2 + sin2ψdΩ2] (71)

Which is precisely the dσ2 for R-W with k = +1. Thus the R-W metric is
precisely the metric for a 3-sphere of radius R(t) embedded in a fictitious 4-
dimensional Euclidean space.

Since we now have a non-singular coordinate system, we can use it to calcu-
late the 3-volume of the sphere. Our metric is

−gψψ = R2, −gθθ = R2 sin2 ψ, −gϕϕ = R2sin2ψsin2θ (72)

and the proper (invariant) volume is

V3 =

∫ √
−gdψdθdϕ = R3

∫ π

0

dψsin2ψ

∫ π

0

dθsinθ

∫ 2π

0

dϕ (73)

or
V3 = 2π2R3 (74)
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The volume is finite and scaled by R(t)
One can do a similar analysis for the case k = −1. Here the space is charac-

terized by a hyperboloid embedded in a fictitious 4-dim space with Lorentzian
metric. Thus define

dσ2
4 = (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2 (75)

and parametrize the space with

x4 = ρcoshχ, x3 = ρsinhχcosθ, x2 = ρsinhχsinθcosϕ, x1 = ρsinhχsinθsinϕ
(76)

Then one finds

dσ2
4 = dρ2 + ρ2[(dχ)2 + sinh2χ(dθ2 + sin2θdϕ2)] (77)

and the R-W metric occurs when we set

ρ = R(t), dρ = 0 (78)

reducing to
dσ2

4 = R2(t)[(dχ)2 + sinh2χ(dθ2 + sin2θdϕ2)] (79)

This is just the R-W metric for the k = −1 case with a change of variables

ψ = sinh−1r (80)

In general we ave

ds2 = (dx0)
2 −R2(t)[(dψ)2 + r2(ψ)(dθ2 + sin2θdϕ2)] (81)

where

r(ψ) =

 sinψ; k = 1 closed
ψ; k = 0 flat

sinhψ; k = −1 open
(82)

1.2 Motion in a Robertson-Walker Metric

To get some insight as to the meaning of the R-W metric, let us consider the mo-
tion of a test particle (e.g., a galaxy) subject to the gravitational field produced
by the R-W metric. Recall that a particle equation of motion is

d2xµ

ds2
+ Γµαβu

αuβ = 0; uα =
dxα

ds
(83)

Suppose we place a particle initially at rest w.r.t to the R-W frame and ask
what is its further motion. We have

ui(0) = 0, u0 =
dx0

ds
=

1
√
g00

= 1 (84)
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Our equation reduces initially to

d2xµ

ds2

)
s=0

+ Γµ00 = 0 (85)

But

Γµ00 =
gµα

2
[gα0,0 + g0α,0 − g00,α] (86)

and since for R-W
g0α = η0α (87)

we have
Γµ00 = 0 (88)

Thus
duµ

ds
|s=0 =

d2xµ

ds2
|s=0 = 0 (89)

Hence since uµ(s) a first order equation of motion, it implies a particle initially
at rest w.r.t. the (RW) reference frame will stay at rest. One can in fact go
further. If we assume a particle has a small velocity with respect RW frame,
one finds it rapidly approaches rest for an expanding universe.

Experimentally, one finds that galaxies are moving slowly w.r.t. the cosmic
frame. Thus, the motion of solar system relative to CMB is

v⊙ = (370± 10)km/s (90)

and other galaxies have smaller velocities, i.e., with v/c ≪ 1. Thus galaxies
do appear to have been made of material originally at rest w.r.t. cosmic frame
and the small velocities seen are due to local gravitational forces. These small
velocities are referred to as “peculiar velocities”.

However the expansion of the universe does indeed mean that galaxies are
moving apart. Thus the proper distance between the galaxies

l =

∫
dσ]θ, ϕ=const =

∫ r

0

dr
√
grr (91)

Thus

l(r, t) = R(t)

∫ r

0

dr′√
1− kr′2

= R(t)ψ(r)

 sin−1r; k = 1(r ≤ 1)
r k = 0

sinh−1r; k = −1
(92)

We saw that if initially, G1 and G2 are at rest w.r.t. cosmic frame, they will
not move and will stay at r = const at all time. Thus the t-dependence of the
separation totally from R(t) and galaxies move apart in an expanding universe
or together in a contracting universe. The “fabric of space” appears to expand
pulling galaxies apart. Thus the situation is similar to galaxies on the surface
of a balloon that is blowing up.
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1.3 Cosmological Red shift

The fundamental cosmological law was the discovery by Hubble of the redshift-
distance of Cosmology. We will see that the this a direct consequence of the
R-W metric and does not even use the Einstein’s equation. To consider the
redshift, let us assume we have a galaxy G1 at pt r⃗1 which emits an e.m. wave
at time t1, which arrives at our galaxy G0 at a later time t0 The e.m. wave
travels with velocity c and hence moves along a null geodesic

ds2 = c2dt2 − R2dr2

1− kr2
= 0 (93)

hence

dt = −1

c

R(t)dr√
1− kr2

(94)

(where the minus sign occurs because t is increasing, dt > 0, but r is de-
creasing, dr < 0). The front of the wave that arrives at G0 at time t0 where∫ t0

t1

dt

R(t)
= −1

c

∫ 0

r1

dr′√
1− kr′2

=
1

c

∫ r1

0

dr′√
1− kr′2

(95)

Now let T1= Period of wave emitted by G1. The end of the wave is emitted
by G1 at time t = t1 + T1. It will arrive at some later time t = t0 + T0 and
since T0 is the time interval that one wavelength is seen one has T0 = period of
observed wave at G0.

Now the end of the wave also travels on a null geodesic and so∫ t0+T0

t1+T1

dt

R(t)
=

1

c

∫ r1

0

dr′√
1− kr′2

(96)
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We will assume here that both G0 and G1 are stationary w.r.t the R-W coordi-
nate frame, i.e., we will neglect the peculiar velocities. We find that character-
istically these were of order 100km/s relative to the R-W frame. and since the
Hubble constant is

H ≃ 100
km

sec

1

Mpc
(97)

objects 100Mpc away will have a Hubble expansion velocity of

100× 100
km

sec
= 104

km

s
(98)

and hence the peculiar velocities will be negligible correction in comparison
to the expansion velocity. (Galactic clusters are characteristically ≃ 10 − 20
Mpc away from each other.

In this approximation, G1 is at a fixed value of r and r is not a function of
time. Hence subtracting Eq. 95 and Eq.96 gives∫ t0+T0

t1+T1

dt

R(t)
−

∫ t0

t1

dt

R(t)
= 0 (99)

or ∫ t1

t1+T1

dt

R(t)
+

∫ t0+T0

t1

dt

R(t)
= 0 (100)

Now T is a very smal number, i.e.,

T = 2π
λ

c
≃ 10−14 sec, λ = 5000A0 (101)

and since R(t) is a slowly varying function, we approximate Eq.100 by

T0
R(t0)

− T1
R(t1)

= 0 (102)

and using ν = 2π
T =frequency we have

ν0
ν1

− R(t1)

R(t0)
(103)

Now ν1 is emitted frequency at rest w.r.t to G1 and since this frame is
instantaneously inertial, it is the same frequency an atom at rest w.r.t. to
inertial frame on Earth would be. Thus ν1 is the standard spectral frequency
seen in laboratories on Earth and ν0 is what we observe this frequency to be
at G0, and is the red shifted frequency due to the expansion during the time of
travel, i.e., R(t0) > R(T1), for an expanding universe.

We introduce the parameter z:

z ≡ λ0 − λ1
λ1

=
c
ν0

− c
ν1

c
ν1

=
ν1
ν0

− 1 (104)
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. Hence from Eq.103

z =
R(t0)

R(t1)
− 1 (105)

This will be a “red-shift” in wavelength if R(t0) > R(t1) (i.e., λ0 > λ1) i.e.,
if the universe is expanding, or a “blue-shift” if R(t0) < R(t1) if the universe
is contracting. Experimentally, all measurements of galaxies sufficiently distant
that peculiar velocities can be neglected show a red-shift, so that the universe
is expanding.

1.4 Definition of Measures

The phenomenological Hubble law was a relation between z and distance. We
need therefore a definition of distance. In special relativity that is not a problem
since

ds2 = (dx0)2 − (dr2 + r2dΩ2) = (dx0)2 − (dσ)2 (106)

and so the distance is just the invariant length
∫
dσ

d =

∫ r1

0

dσ]dθ=0=dϕ = r1 (107)

which is just the coordinate distance. In general relativity, things are more
complicated even if space is flat. Here the R-W ds2 is

ds2 = (dx0)2 −R2(t)(dr2 + r2dΩ2) (108)

Now to get the distance we need to go into a local inertial frame which we can
do at any fixed time. For example at time of emission one can transform to the
inertial frame

r′ = R(t1)r, ds
2 = (dx0)2 − (dr′

2
+ r′

2
dΩ2) (109)

and so measurement would give for distance

d(t1) = R(t1)r1 (110)

Similarly one might ask for distance at time the light arrives at G0. Then

d(t0) = R(t0)r1 (111)

One could even consider a more complicated distance measure such as

d =
R2(t0)

R(t1)
r1 (112)

How does one know operationally which distance one is talking about?
As one example, we consider the “luminosity distance” dL. In non-relativistic

physics one defines the absolute luminosity as L=absolute luminosity of a source=energy
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emitted/sec. This energy spreads out over a sphere of radius d at time t = d/c,
so the flux of energy observed at distance d is

l =
L

4πd2
= energy/time× area observed over a distance d (113)

In general relativity, the situation is more complicated as space is expanding.
However, one may still define the luminosity distance by

d2L ≡ L

4πl
(114)

Both L and l are physical quantities, and so this is a well defined measure of
distance. Let us calculate what the measure is for the R-W metric.

dσ2 = R2(t)[
dr2

1− kr2
+ r2dΩ2] (115)

Now suppose our receiver in G0 is a telescope of radius b. At time t0 the energy
is received. In inertial coordinates at t0 one has

r′1 = R(t0)r1 (116)

and hence the solid angle subtended by the telescope is

Ω =
πb2

r′21
=

πb2

R2(t0)r21
=

A

R2(t0)r21
(117)

Now the power received is

P =
energy

time
(118)

For every photon emitted with frequency ν1 hν1, is red shifted to energy hν0
where we had

hν0 = hν1
R(t1)

R(t0)
(119)

Further let δt the time interval for emission of photon and δt0 the time
interval during which it arrives. At the beginning of emission t1, the wave
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arrives at t0 which can be written as Eqn95∫ t0

t1

dt

R(t)
=

1

c

∫ r1

0

dr′√
1− kr′2

(120)

and at the end of interval∫ t0+δt0

t1+δt1

dt

R(t)
=

1

c

∫ r1

0

dr′√
1− kr′2

(121)

and subtracting gives

δt0 = δt1
R(t0)

R(t1)
(122)

Thus the power of energy received is for N photons is

P =
Nhν0A

δt0(R2
0r

2
14π)

=
Nhν1
δt1

R2(t1)

R2(t0)

A

4πR2(t0)r21
(123)

The flux of energy received is

l =
P

A
=

L

4πR2
0r

2
1

1

(1 + z)2
(124)

we have then

dL = (R0r1)(1 + z) =
R2(t0)

R(t1)
r1 (125)

Note that this formula holds even for k ̸= 0. There are other measures of
distance one use:
(i) Angular size of source: One defines

dA ≡ D

δ
(126)
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which be the distance non-relativistically one finds for R-W

dA = R(t1)r1 =
R0r1
1 + z

(127)

dL
dA

= (1 + z)2 (128)

and if z is large, these two distance measures can differ considerably.
(ii) Proper motion of a source: If a source is moving with transverse velocity

vT to an observer non-rel., the line of sight angle will change by an amount in
time δt

δ =
vT δt

d
(129)

One defines the proper motion distance to be

dM =
vT δt0
δ

(130)

where δt0 is the time interval measured by the observer and δ is the angle
measured by the observer. For R-W metric, one finds

dM = R(t0)r1 (131)

and hence
dL
dM

= 1 + z (132)

It is conventional to think of the red-shift as Doppler shift due to the receding
motion of the distant galaxy G1 and in part this is true. However, the above
shows that general relativity contributes to the effect in a unique way. For
non-relativistic motion the Doppler motion is

z =
δν

ν
=
v

c
< 1 (133)
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However one can use z > 1 and in fact galaxies with z ∼ 10 have been observed.
Thus gravitational effects play am important part in the red-shift.

1.5 Hubble Law

Having now understood how to define distance in R-W metric, we are in a
position to deduce the Hubble law which relates red-shift to distance.

We have

z =
R(t0)

R(t1)
− 1 (134)

For not too distant galaxies we can expand the denominator and the present
time t0 of our galaxy G0

R(t1) = R(t0 −∆t) = R(t0)− Ṙ(t0)∆t+
1

2
R̈(t0)(∆t)

2 + · · · (135)

where ∆t = t0 − t1. We define

H0 =
Ṙ(t0)

R(t0)
= Hubble constant at time t0 = rate of expansion (136)

q0 = − R̈0

R0H2
0

= − R̈0R0

Ṙ2
0

= deceleration parameter (137)

Then
R(t1)

R(t0)
= 1−H0∆t−

1

2
H2

0q0(∆t)
2 + · · · (138)

and inverting gives

R(t0)

R(t1)
= 1 +H0∆t+ (1 +

1

2
q0)H

2
0 (∆t)

2 + · · · (139)

and hence

z = H0(t0 − t1) + (1 +
1

2
q0)H

2
0 (t0 − t1)

2 + · · · (140)

And we can invent this to get the time interval in terms of z:

t0 − t1 = H−10 z − (1 +
1

2
q0)H0(t0 − t1)

2 + · · · (141)

and iterating gives

t0 − t1 = H−10 [z − (1 +
1

2
q0)z

2 + · · ·] (142)

We really want however the distance as a function of z, we can relate time to
distance∫ t0

t1

dt
R(t0)

R(t)
=
R(t0)

c

∫ r1

0

dr√
1− kr2

=
R0

c
χ(r1) =

R0

c

 sin−1r1; k = 1
r1; k = 0

sinh−1r1; k = −1
(143)
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For the L.H.S, we insert in the expansion

L.H.S =

∫ t0

t1

dt[1+H0(t0−t)+(1+
1

2
q0)H

2
0 (t0−t)2+· · ·] = (t0−t1)+

1

2
H2

0 (t0−t1)2+· · ·

(144)
And for the R.H.S., we have

R.H.S. =
R0

c


r1 +

r31
6 + · · ·
r1

r1 − r31
6 + · · ·

=
R0

c
(r1 +

k

6
r31 + · · · (145)

We can now solve for r1 in terms of t0 again by iterating. The r31 terms give
contributions of O(∆t3) so that we get

r1 =
c

R0
[(t0 − t1) +

1

2
H2

0 (t0 − t1)
2 + · · ·] (146)

We then get

r1 =
c

R0
H−10 [z − 1

2
(1 + q0)H

2
0z

2 + · · ·] (147)

Note that the curvature term involving k does not enter until O(z3). We can
write

R(t0)r1 =
dL

1 + z
(148)

which allows us to write

dL
1 + z

H0

c
= z − 1

2
(1 + q0)H

2
0z

2 + · · · (149)

or

dL
H0

c
= z +

1

2
(1− q0)H

2
0z

2 + · · · (150)

For small z, we have precisely Hubble’s law that the redshift is linear in the
distance. For larger z, however we expect deviation from the linear law unless
q0 = 1. Note however, that it is dL that enters into the previous equation. If
for example, we use dA as our measure of distance, then we get

dA(1 + z)2
H0

c
= z +

1

2
(1− q0)z

2 (151)

or

dA
H0

c
= z − 1

2
(3 + q0)z

2 (152)

and the quadratic(and higher terms) get modified.
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2 Flat Universe

t t0

t

a(t)y0

a(t)x0

y0

x0

The metric for a flat universe

ds2 = dt2 − a2(t)[dx2 + dy2 + dz2] (153)

a(t)is the scale factor whic is defined as a(t) ≡ R(t)
R(t0)

with a(t0) = 1 and t is the

physical time.
The energy momentum tensor also satisfies homogeneous and isotropic con-

dition
Tαβ = (ρ+ P )UαUβ − Pgαβ (154)

Uα = (1, 0, 0, 0), ρ (density) and P (pressure) are function of time

g00 = 1, gij = −a2(t)δij , T00 = ρ, Tij = a2(t)Pδij (155)

Now we solve Einstein equation

Gµν = 8πGTµν (156)

Using the metric for the flat Universe and Tαβ defined above.

Γijk = 0, Γi00 = 0, Γ0
ij = aȧδij , Γ

0
00 = 0, Γi0j =

ȧ

a
δij , Γ

0
0i = Γ0

i0 = 0 (157)

R00 = −3
ä

a
, R0i = 0; R = R00 −

1

a2
Rii = −[6

ä

a
+ 6(

ȧ

a
)2], Rij = (aä+ 2ȧ2)δij

(158)

G00 = R00 −
1

2
Rg00 = 8πGT00 (159)

⇒ 3(
ȧ

a
)2 = 8πGρ (160)

Gij = Rij −
1

2
Rgij = 8πTij ⇒ −2äa− a2 = 8πGa2P (161)
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3
ä

a
= −4πG(ρ+ 3P ) (162)

Eqn160 is Friedmann-Robertson-Walker equation. Eqn162 is Raychaudhuri
equation. We can solve these two equations for the evolution for a(t).

Both of these equations are sourced by ρ and P . These equations satisfy the
conservation equation.

Tαβ;β = 0 (163)

Using homogeneous and isotropic case

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 (164)

Now let us use the equation of state P = ωρ where ω is a constant.

2.1 Non relativistic Matter

The energy in a volume V is given by E = M , ρ = E
V where ρ is the mass

density. In the evolving Universe V ∝ a3 and ρ ∝ 1
a3 and

P ≃ nkBT ≪ nMc2 ≃ ρc2 (165)

so P ≃ 0

ρ̇+ 3
ȧ

a
ρ =

1

a3
d

dt
(ρa3) = 0 (166)

Solving this equation ρ ∝ 1
a3 . We can solve the equation

(
ȧ

a
)2 =

8πG

3

ρ0
a3
, a1/2ȧ = (

8πGρ0
3

)1/3 (167)

to find a ∝ t2/3. If a(t0) = 1 where t0: today, we have a = ( tt0 )
2/3. At t = 0, we

have a = 0, i.e., there is an initial singularity: Big Bang. Finally we find that
ä < 0, i.e., the Universe is decelerating.

2.2 Relativistic Matter

These are massless photons and neutrinos. recall that their energy is given by
E = hν = h2π/λ where ν is the frequency and λ is the wavelength. Since
each length is stretched by the scale factor a the λa, the energy is shifted by
E ∝ 1

a . The mass densityρ = E
V ∝ 1

V λ ∝ 1
a3a = 1

a4 . The energy of radiation
decreases far more quickly than that of non-relativistic matter. Also we can use
the equation of state for radiation P = ρ

3

ρ̇+ 4
ȧ

a
ρ =

1

a4
d

dt
(ρa4) = 0 ⇒ ρ ∝ 1

a4
(168)

We get

(
ȧ

a
)2 =

8πG

3

ρ0
a4
, aȧ = (

8πGρ0
3

)1/2 (169)
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which gives us

a ∝ t1/2, or a = (
t

t0
)1/2 (170)

Once again the universe is decelerating and H = ȧ
a = 1

2t . For general equation
of state P = ωρ

ρ̇+ 3(1 + ω)
ȧ

a
ρ =

1

a3(1+ω)
d

dt
(ρa3(1+ω)) = 0 (171)

As ω gets smaller and more negative ρ decreases more slowly, we can solve the
previous equations

(
ȧ

a
)2 =

8πG

3

ρ0
a3(1+ω)

, a
1+3ω

2 ȧ = (
8πGρ0

3
)1/2 (172)

which gives us

a = (
t

t0
)

2
3(1+ω) (173)

which is valid for ω > −1. For ω < −1
3 , the expansion rate is accelerating. For

the special case ω = − 1
3 , a ∝ t. For cosmological constant P = −ρ. In such a

scenario aeHt, ρ is constant, ȧa is constant.
So far we have considered only one type of matter but in general there is a

mix, e.g.,

(
ȧ

a
)2 =

8πG

3
(
ρM0

a3
+
ρR0

a4
) (174)

In fact the true picture should involve all 3 types, i.e., relativistic, non-relativistic
and cosmological constant or vacuum energy (Λ era). Before we get into more,
we first consider scenarios which are not flat.

Let us now consider a 3D surface that is positively curved. It is the surface
of a 3D hyper-surface in a fictitious space with 4D. We have already seen tha
the equation for the surface of a sphere in this 4D space with coordinates (x, y,
z, w) is x2+ y2+ z2+w2 = R2. We can similarly define a surface with negative
curvature

x2 + y2 + z2 − w2 = −R2 (175)

We have seen before for such surfaces

ds2 = dt2 − a2(t)[
dr2

1− kr2
+ r2(dθ2 + sin2θdϕ2)] (176)

where k is positive, zero or negative for spherical, flat or hyperbolic geometries
|k| = 1

R2

We can repeat our calculations we did for flat geometry in these new cases.
The metric

gαβ = diag(+1,− −a2

1− kr2
,−a2r2,−a2r2sin2θ) (177)

i, j runs over r, theta, ϕ

Γ0
ij = −aȧg̃ij , Γi0j =

ȧ

a
δij , Γ

i
jk = Γ̃ijk (178)
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Here g̃ij and Γ̃ijk are the metric and connection coefficients of the conformal
3-space (that is of the 3 space with the conformal factor a is divided out)

Γ̃rrr =
kr

1− kr2
, Γ̃rθθ = −r(1−kr2), Γ̃rϕϕ = −(1− kr2)rsin2θ, Γ̃θϕϕ = −sin2θ

2
, Γ̃θθr =

1

r
, Γ̃ϕθϕ =

1

tanθ
(179)

The Ricci tensor and scalar can be combined to form the Einstein tensor

G00 =
3ȧ2 + k

a2
, Gij = (2aä+ ȧ2 + k)g̃ij (180)

While the energy momentum tensor is

T00 = ρ, Tij = −a2P g̃ij (181)

Combining we get

(
ȧ

a
)2 =

8πGρ

3
− k

a2
and 3

ä

a
=

4πG

3
(ρ+ 3P ) (182)

Let us explore the components of the overall geometry of the Universe, i.e., the
term proportional to k in the F.R.W equations.

For example consider a non-relativistic matter filled equation We can see
that the term proportional to K will only be important at late times when it
dominates over energy density of non-relativistic matter. In other words, we
can say that curvature dominates over the non-relativistic matter.

This means that the curvature dominates at later times. Let us consider
now two possibilities: k < 0 and k > 0

(
ȧ

a
)2 =

8πGρ

3
+

|k|
a2

(183)

when curvature dominates

(
ȧ

a
)2 =

|k|
a2

(184)

So a ∝ t In this case the scale factor grows at the speed of light.
K > 0 : From the F.R.W. equations we see that this is a point when

8πGρ

3
=

k

a2
(185)

and therefore ȧ = 0, when the Universe stops expanding. At this point the
Universe starts contracting and evolves to a Big crunch. If k = 0, there is a
strict relationship between H = ȧ

a and ρ

H2 = (
ȧ

a
)2 =

8πGρ

3
⇒ ρ = ρc =

3H2

8πG
(186)

ρc = 1.9 × 10−26h2kgm−3 = critical density Using H0 = 100hkms−1Mpc−1 It
is convenient to define a a move compact notation. We define the fractional
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energy density Ω = ρ
ρc
. Ω is a function of a and we express its value today as

Ω0. There are various contributions to the energy density

ΩR =
ρR
ρc

: Radiation [Relativistic] (187)

ΩM =
ρM
ρc

: Matter [Non− Relativistic] (188)

ΩΛ =
Λ

3H2
: Λ [Cosmological Constant] (189)

Ωk = − k

a2H2
: Curvature (190)

Ω = ΩR + ΩM + ΩΛ ⇒ H2(1− Ω) = − k

a2
(191)

Ω < 1 : ρ < ρc, k < 0 : Universe is open (192)

Ω = 1 : ρ = ρc, k = 0 : Universe is flat (193)

Ω > 1 : ρ > ρc, k > 0 : Universe is closed (194)

We can write

H2(a) = H2
0 [
ΩM0

a3
+

ΩR0

a4
+

Ωk0
a2

+ΩΛ] (195)

“0” indicates the quantities evaluated at t0.
How does Ω evolve? If the Universe is dominated by matter then

Ω− 1 =
k

a2H2
∝ kt2/3 (196)

i.e., if Ω ̸= 1, it is unstable and driven away from 1. The same is true for a
radiation dominated Universe and for any decelerating Universe Ω = 1 as an
unstable fixed point and we saw that curvature dominate at late time.

Let us examine H ≡
˙a(t)

a(t) . Suppose we place a galaxy ate r1, θ1, ϕ1. As the

Universe expands, the galaxy stays at the same location, all the cosmological
distances get stretched by an amount a(t). For example, we can use the surface
of a balloon to describe this phenomenon. We see that the two galaxies are
located at the same location of the r, θ, ϕ coordinate system at t1 and t2. How-
ever, the distances between them are stretched by the ratio of the scale factors
a(t2) and a(t1).
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a(t2)a(t1)

Suppose that the 2 galaxies are separated by a distance d1 = a(t1)s where s
is the distance between these galaxies are normalized (co-moving) coordinates.
At the time t2, the distance is d2 = a(t2)s. So the necessary velocity

v =
d2 − d1
t2 − t1

=
a(t2)− a(t1)

t2 − t1
s (197)

using ∆t = t2 − t1 → 0

v =
ȧ

a
as = Hd (198)

H0 is the Hubble’s constant and we can define

tH =
1

H0
= 9.78× 109h−1yr (199)

The Hubble distance

DH =
1

H0
= 300h−1Mpc (200)

Let us choose our local coordinates such that we are at T = 0. Consider a light
ray that moves radially towards us, that is θ, ϕ=constants. If this light ray was
emitted from r = rE and t = tE it will reach us at a time t0 given by

c

∫ t0

tE

dt

a(t)
= c

∫ rE

0

dr√
1− kr2

(201)

Using −k =
Ωk0

D2
H

∫ rE

0

dr√
1− kr2

=


DH√
Ωk0

sinh−1[
√
Ωk0

rE
DH

] for Ωk0 > 0

rE for Ωk0 = 0
DH√
|Ωk0

|
Sin−1[

√
|Ωk0 | rEDH

] for Ωk0 < 0

(202)
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The furthest physical distance dh, we can observe today is given by
∫ rE
0

dr√
1−kr2

scaled by the physical scale factor a(t0)

dh(t0) = a(t0)

∫ rE

0

dr√
1− kr2

= a(t0)

∫ t0

0

dt

a(t)
(203)

We can calculate
∫

dt
a(t) for different era

d =

∫ t0

t

dt′

a(t′)
=

∫ 1

a

da′

a2(t′)H(a′)
(204)

Using da
dt = aH

For matter domination H ∝ a−3/2

d(a) =
2

H0
[1−

√
a] (205)

d(z) =
2

H0
[1− 1√

1 + z
] (206)

For small z, d→ z
H0

and for large z, d→ 2
H0

We also can define lookback time tL

tL(a) =

∫ t

t(a)

dt′ =

∫ 1

a

da′

a(t′)H(a′)
(207)

For flat matter domination

tL(a) =
2

3H0
[1− (1 + z)−3/2] (208)

For very large z → ∞
tL =

2

3H0
(209)

Now using

H2 = (
ȧ

a
)2 =

8πG

3
(ρm + ρvac)−

k

a2
(210)

H2 = H2
0 [ΩM0

(1 + z)3 +Ωk0(1 + z)2 +ΩΛ] (211)

[We assume that the radiation is neglected now]

H =
d

dt
Log(

a(t)

a0
) =

d

dt
Log(

1

1 + z
) = − 1

1 + z

dz

dt
(212)

dt

dz
= − (1− z)−1

H0[ΩM0
(1 + z)3 +Ωk0(1 + z)2 +ΩΛ]1/2

(213)

The look back time from the present

t0 − t1 = H−10

∫ z

0

dz

(1 + z)[ΩM0(1 + z)3 +Ωk0(1 + z)2 +ΩΛ]1/2
(214)
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Choose t1 = 0 (z = ∞) we obtain the present age of the Universe If ΩM0 = 1,
Ωk0 = 0 ΩΛ = 0[Today]

H0t0 =

∫ ∞
0

1

(1 + z)5/2
dz =

2

3
⇒ t0 =

2

3H0
(215)

Using H0 = 70kms−1Mpc−1 t0 = 9.3 billion years

3 Thermal History of the Universe

How are the contents of the universe affected by the expansion? The universe
expands and its contents cool down. Let us focus on the radiation now. The
energy density of the radiation ρ ∝ 1

a4 . Radiation is in thermal equilibrium and
acts like a black body. The occupation number/mode

F (ν) =
2

ehν/kBT − 1
(216)

ν is the frequency. The corresponding energy density/mode

ϵ(ν)dν =
8πν3dν

c3
h

ehν/kBT − 1
(217)

We use the natural unit, i.e., kB = 1, c = 1,h = 1
Integrating over all frequencies

ρr =
π2

15
(kBT )(

kBT

hc
)3 ⇒ ρr ∝ T 4 ⇒ T ∝ 1

a
(218)

Is T the temperature of the Universe? Everything else has to feel the temper-
ature. This means they have to interact (even if only indirectly) with photons,
e.g., the scattering of photons by electrons and positrons through the emission
and absorption of photons.

We also need the radiation to dominate in the early time. We know ρnon−relativistic ∝
a−3 while ρr ∝ a−4. So even if ρr dominates in the early universe, it may be
negligible today.

However the number density of photons nγ ∝ a−3.Experimentally, we found
the number density nB is very small (nB is the number density of Baryons).
Compared to the number density of photons

ηB =
nB
nγ

≃ 10−10 (219)

There are more photons than protons, neutrons. Temperature of the photon
sets the temp. of the universe. The temp. decreases as the inverse of the scale
factor.

For ideal gas of Bosons or Fermions the occupation/mode

F (p⃗) =
g

exp(E−µT )± 1
(220)

26



µ is the chemical potential which leads to chemical equilibrium in an interaction
for

i+ j = k + l ⇒ µi + µj = µk + µl (221)

Chemical potentials are described in terms of some conserved quantities, µB ,
etc. If µ = 0, then we have equal numbers of particles and anti-particles

Numbers of chemical potentials compared to the numbers of conserved par-
ticle numbers. E =

√
p2 +m2, g is the degeneracy factor. +1(−1) corresponds

to Fermi-Dirac (Bose-Einstein) distribution. We can use this distribution to
calculate some macroscopic quantities. The number density

n =
g

(2π)3

∫
d3p

exp(E−µT )± 1
(222)

The energy distribution

ρ =
g

(2π)3

∫
E(p⃗)d3p

exp(E−µT )± 1
(223)

The pressure

P =
g

(2π)3

∫
p2

3E

d3p

exp(E−µT )± 1
(224)

Let us consider two limits T ≫M and T ≪M with µ = 0
For T ≫M ,

n =
ζ(3)

π2
gT 3, B.E. (225)

n =
3ζ(3)

4π2
gT 3, F.D. (226)

With ζ(3) = 1.2

ρ =
gπ2

30
T 4, B.E. (227)

ρ =
7

8
g
π2

30
T 4, F.D. (228)

The pressure satisfies P = ρ
3 .

For T ≪M
n = g(2π)3/2(MT )3/2e−

M
T , ρ =Mn (229)

P = nT ≪ nM ⇒ P ≪ ρ (230)

The pressure is negligible for nonrelativistic case.
For the average particle energy in the relativistic case

⟨E⟩ = ρ

n
=

7π4

180ξ(3)T ≃ 3.15T F.D.
π4

30ξ(3)T ≃ 2.701T B.E.
(231)
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If the chemical potential µ = 0 then there are equal numbers of particles and
anti-particles. If µ ̸= 0, we find for fermions in the ultrarelativistic limit T

n− n̄ =
g

(2π)3

∫
dp4πp2(

1

exp(p−µT )± 1
− 1

exp(p+µT )± 1
) =

gT 3

6π2
(π2(

µ

T
)+(

µ

T
)3)

(232)
The total energy density

ρ+ρ̄ =
g

(2π)3

∫ ∞
0

dp4πp2(
1

exp(p−µT )± 1
+

1

exp(p+µT )± 1
) =

7

8
g
π2

15
T 4(1+

30

7π2
(
µ

T
)2+

15

7π4
(
µ

T
)4)

(233)
For the non-relativistic case

e(E−µ)/T ± 1 ≃ e(E−µ)/T (234)

n = g(
mT

2π
)3/2e−

m−µ
T (235)

ρ = n(m+
3T

2
), SinceE = m+

p2

2m
, P = nT ≪ ρ, ⟨E⟩ = m+

3T

2
(236)

n− n̄ = 2g(
mT

2π
)3/2e

−m
T sinh

µ

T
(237)

We now need to understand the problem of calculating the total contribution
to the energy and number density of all kinds of particles in the early universe

Let us now consider entropy:

dS(V, T ) =
1

T
[d(ρV ) + P (T )dV ] ⇒ dS =

∂S

∂V
(V, T )dV +

∂S

∂T
(V, T )dT (238)

∂S

∂V
=

1

T
(ρ(T ) + P (T )) (239)

∂S

∂T
=
V

T

(dρ(T )

dT
(240)

Equality of the mixed derivation

∂2S

∂V ∂T
(V, T ) =

∂2S

∂T∂V
(V, T ) (241)

∂

∂T
(
1

T
(ρ(T ) + P (T )) =

∂

∂V
(
V

T

dρ

dT
(T )) (242)

⇒ dP

dT
=

1

T
(ρ+ P ) (243)

Use this to write TdS = d(ρV ) + d(PV )− V dP

dS =
1

T
d[(ρ+ P )V ]− V

T 2
(ρ+ P )dT ⇒ S =

V

T
(ρ+ P ) (244)
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Use

Tµν;ν = 0 ⇒ ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 ⇒ d

dt
(ρa3) = −P da

3

dt
(245)

We can write a3 dP (T )
dt = d

dt (a
3(ρ+ P )) Now use dP

dT = 1
T (ρ+ P ) to write

d

dt
(
a3

T
(ρ+ P )) = 0 (246)

One defines

s =
S

V
= (

ρ+ P

T
) (247)

where V = a3. In the early universe both the energy density ρ and pressure P
were dominated by the relativistic particles with equation of state P = ρ/3 and

s = 2π2

45 g
s
effT

3 where geff is the effective number of degrees of freedom.
For the relativistic particles

ρRe =
π2

30
geffT

4, PRe(T ) =
1

3
ρRe(T ) =

π2

90
geff (T )T

4 (248)

geff (T ) is the total numbers of internal degrees of freedom (e.g., spin, color etc)
of the particles that are relativistic and in thermal equilibrium at temp T . For
example, in the Standard Model of particle physics we have, γ, g, W±, Z, H, u, d, c, s, t, b, e, µ, τ, νe, νµ, ντ

geff (TeV ) = 28 +
7

8
90 = 106.75 (249)

Here, γ(photon): spin 1,W±, Z: massive gauge boson: spin 1, quarks (u, d, c, s, t, b):
colored and spin 1/2, leptons (e, µ, τ, νe, νµ, ντ ) colorless and spin 1/2, H (Higgs
boson): spin 0.

If the interaction rate becomes smaller than the expansion rate, then the
particles will have lower temperature than the photons, but still can be rela-
tivistic (e.g., neutrinos) and this temperature will be unaffected by the heating
takes for photons after the particles are decoupled.

This situation is handled by introducing a specific temperature T for each
kind of relativistic particle which can be included in the effective gi

geff = i = bosonΣgi(
Ti
T
)4 +

7

8
i = fermionsΣgi(

Ti
T
)4 (250)

Inserting this in the FRW equation

H2 =
8πG

3
ρRe =

8πG

3

π2

30
geffT

4 = 2.76
geff

M2
Planck

T 4 ⇒ H = 1.66

√
geff

MPlanck
T 2

(251)
. You have noticed that we used gseff for entropy density expression while geff
for energy density. They are different (we will discuss more later) since

gseff = i = bosonΣgi(
Ti
T
)3 +

7

8
i = fermionsΣgi(

Ti
T
)3 (252)
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.
Let us first realize that the relativistic particles contribute to the entropy

density. We can write the entropy density in terms of energy density.

TdS = dU + PdV, U : internal Energy (253)

V dρ =
H

T
dT = (U + PV )

dT

T
(254)

H = U + PV : Enthalpy

dS = d
(U + PV )

T
⇒ S =

U + PV

T
+ constant (255)

We can choose the integration constant such that S = 0 for the absolute 0 temp
U, P constants all the particles of the universe

U = Urel + Unon−rel, ρ = ρrel + ρnon−rel (256)

For relativistic particle

UR = ρRV, PR =
ρR
3

(257)

SR =
4ρRV

3T
, using ⟨ER⟩ =

ρR
nR

(258)

SR = nRV 4
ER
3T

≃ 4nRV ⇒ π2

30
gT 3V (259)

The effective number of relativistic degrees of freedom g can change with time.
The entropy conservation SR=constant V ∝ a3(t) gives T ∝ 1

g1/3a(t)
where g is

constant.
For non-relativistic

UM =
3

2
nMV T, PM = nMT, SM =

5

2
nMV (260)

nM is exponentially suppressed. It does not contribute to the effective g calcu-
lation

3.1 Electron-positron annihilation into photons

A good example of temperature change due to the change in g is the e+e−

annihilation
e+ + e− → γ + γ (261)

When the temp. was greater than the rest mass of an electron

γ + γ → e+ + e− (262)

i.e., the pair creation occurs.
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Also the particle behaves relativistically when the temp. is greater than
≃ m/3. The entropy conservation

T2 = T1(
g1
g2

)1/3 (263)

T1 and T2 are photon temp. before and after annihilation

g1 = 2 +
7

8
× 4 =

11

2
, g2 = 2 (264)

Therefore we conclude that the annihilation increases the photon temp. by
( 114 )1/3. After this the photon temp. decreases T ∝ 1

a(t) .

While there are about equal number of electrons, positrons and photons
before the annihilation epoch, the number electrons after the annihilation is
about 2 billion times smaller than photons as most of the electrons annihi-
late with positrons (the tiny excess is a mystery!). However the tiny excess is
enough to keep the universe opaque. In order to make the scattering efficient
the scattering rate needs to be larger than the expansion rate, i.e., σTne > H
where σT is Thompson scattering cross-section, ne: number density of free elec-
trons, H: Hubble expansion rate, σT=6.65×10−25 cm2.Since the scattering is
efficient and the universe remains opaque in the matter dominated regions with
H = H0

√
ΩM (1 + z)3

H

σTne
=
H0

√
ΩM (1 + z)3

σTnCMB

nCMB

ne
(265)

Here nCMB = 410(1+z)3cm−3 are the numbers of cosmic microwave background
photons

nCMB

ne
≃ 2× 109 (266)

c

H0
= 2.998h−1Mpc = 9.25h−1 × 1027cm (267)

HT

σTne
≃ 0.9× 10−2(

1000

1 + z
)3/2(

nCMB

ne

2× 109
) (268)

at z ≃ 103, the mean free time of photon was still only 1% of the Hubble time

and universe was still opaque with H < σTne We can also write
dσT ne

dH
∼ 10−2

with dH ∼ 1
H and dσTne

∼ 1
σTne

.

3.2 Recombination and Decoupling

At around z ≃ 103 or TCMB ≃ 3000K, the electron number density rapidly
fall relative to nCMB resulting in the decoupling of photons from the electron
scattering. At this temperature, the Universe is cool enough for electrons to be
coupled by protons forming neutral Hydrogen atoms.

p+ e− → H + γ (269)
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Once started, this process removes electrons rapidly, reducing their number
density and thus allowing for photons to propagate freely.

As the ionization energy of the hydrogen atom is 13.6 eV, one might think
that the neutral hydrogen begins to form when the temperature falls below
13.6eV≃ 1.6 × 105K. However in reality, the formation of Hydrogen atoms is
delayed until T ∼ 3700K. When the temperature is T = 1.6 × 105K, only 15%
of photons energies lower than 13.6 eV. When the temperature drops to T =
70000K, about half of photons have energies lower than 13.6eV. Still there are
so many photons per hydrogen atom to begin with and thus roughly speaking,
the ratios of the number pf photons to the number of photons to the number
of electrons give a logarithmic correction to the temperature of the hydrogen
formation epoch as T ≃ 70,000

Log109 ≃ 3400.
Finally when a significant amount of hydrogen atoms are formed at the

temperature, photons do not decouple from the plasma until the universe cools
down to T ≃ 3000K

The first approximation will be to assume that protons, electrons, hydrogen
atoms are in thermal equilibrium. At this temperature all these species are
non-relativistic and their equilibrium densities are given as

np = 2

∫
d3p

(2π)3
exp[

−mp +
p2

2mp
+ µ

T
] = 2e

µp−mp
T (

mpT

2π
))3/2 (270)

ne = 2e
µe−me

T (
meT

2π
)3/2 (271)

nH = 2e
µH−mp

T (
mHT

2π
)3/2 (272)

Now we assume that the protons, electrons and hydrogen atoms are in ionization
equilibrium, which means that for

p+ e− → H + γ, µp + µe = µH (273)

We write the Saha equation

npne
nH

= 2e
−(mp+me−mH )

T (
mp

mH

meT

2π
))3/2 (274)

Define binding energy

BH ≡ (mp +me −mH) = 13.6eV (275)

me =Mp/2000, mp = 1 GeV, mp = mH .
For charge neutrality, ne = np we get

n2p
nH

= e
−BH

T (
meT

2π
))3/2 (276)

We define the ionization fraction

X ≡ np
np + nH

,
X = 1 fully ionized hydrogen
X = 0 fully neutral hydrogen

(277)
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The Saha equation becomes

X2

1−X
=

1

np + nH
(
meT

2π
)3/2e−

BH
T (278)

We need to solve for X as a function of T . For convenience, let us define
np + nH to the baryon mass density of the universe. We use this result from
the Big Bang Nucleosynthesis. 76% of the baryonic mass in the universe after
the BBN is contained in the protons (and the rest in the Helium nuclei), i.e.,
mp(np + nH) = 0.76ρb. The time independent baryon to photons ratio

η ≡ ρb
mpnCMB

= 273.9(Ωbh
2)× 10−10 ⇒ η = 6.3× 10−10, Ωbh

2 = 0.023 (279)

We get

nCMB = 410cm−3(
T

T0
)3 withT0 = 2.725K (280)

Grouping all these numbers

X2

1−X
=

2.5× 10−6

η
(T̃ )3/2e−

1
T̃ , T̃ =

T

βH
(281)

We get

X(T ) =
2

1 +

√
1 + (1.6× 10−6T̃ 3/2e−

1
T̃

(282)

We can find an approximate temperature at which the universe is half neutral

X ≡ 1

2
, then T̃ 3/2e−

1
T̃ = 5× 106/η ⇒ T̃ = 0.0237 orT = 3740 (283)

For η = 1(i.e., equal numbers of photons and baryons), T can be found T=7900K.
Now we can go back to the ionization history and recalculate H/(σTne)

H

σTne
=

H0

√
Ωm(1 + z)3

σTnCMB

1

0.76ηX(Z)
(284)

=
0.94× 10−2

X(z)
(
1000

1 + z
)3/2(

6.3× 10−10

η
) =

0.94× 10−2

X(z)
(
2725K

T
)3/2(

6.3× 10−10

η
)

H

σTne
= 1, T = 3000K, z = 1100 (285)

Here we define the decoupling temperature Tdec = 3000K, i.e., when H = σTne.
For lower temperature H > σTne, Expansion rate is larger than the photons

scattering off electron and photons are set free.
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3.3 Freeze-out of recombination

The above calculation shows that all of the electrons will eventually be cap-
tured by protons leaving no free electrons at low temperature. However as the
recombination rate is proportional to nenp. The rate quickly falls quickly as the
number densities go down within the expansion of the universe. Eventually the
recombination stops. This is the epoch of recombination freeze-out.

The recombination rate is ⟨σrecv⟩ is

⟨σrecv⟩ = 2.33× 10−14
ln(1/T̃ )

T̃ 1/2
cm3s−1 = 7.77× 10−25

ln(1/T̃ )

T̃ 1/2
cm2 (286)

[In natural unit].
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⟨σrecv⟩ is of the same order as σT : Thompson scattering

H

⟨σrecv⟩ne
=

H0

√
Ωm(1 + z)3

⟨σrecv⟩nCMB

1

0.76ηX(z)
(287)

=
1.06× 10−3

X(T )ln(157894/T )
(
2725K

T
)(
6.3× 10−10

η
)

The above rate crosses unity as Tfreeze−out = 2700K which is lower than the
decoupling temperature. The residual ionization fraction of the recombination,
i.e., the ionization fraction left after the recombination freeze-out by evaluating
X(T ) at T = 2700K. The small amount of X means small amount of residual
electrons which is needed for forming hydrogen molecules via

H + e− → H− + γ, H− +H → H2 + e− (288)

4 Dark Matter

We want to calculate the current density of dark matter particles. Suppose X
is a neutral DM particles. In that early universe t was large

X0 +X0 ↔ f + f̄ (289)

Suppose X0 is also fermion.

f + f̄ ↔ γ + γ etc. (290)

Similarly, X0 cannot decay [it is stable]. However two of them collide with each
other and annihilate. X0 is in thermal equilibrium with other matter and hence
with photons. Thermal equilibrium is maintained if the reaction rate is faster
than the Hubble expansion rate

ΓX0X0→ff̄ > H (291)
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However the universe catches up

ΓX0X0→ff̄ ≃ H (292)

tD is the temperature. X0 decouples from the plasma. For

H > ΓX0X0→ff̄ (293)

, the X0’s cease to annihilate. Thus the number of X0 at that time remains
unchanged and form “relic density”. This is ΩX0h2. We now need to provide a
quantitative picture.

Boltzman equation describes the time evolution of the distribution function
is phase space. For non-relativistic system this is given by the function f(r⃗, p⃗, t).
The change in the function in course of its time motion is

Df

dt
=
∂f

∂t
+
dr⃗

dt
.∇⃗rf +

dp⃗

dt
.∇⃗f (294)

where dp⃗
dt = F⃗ we get

Df

dt
=
∂f

∂t
+

1

m
p⃗.∇⃗rf + F⃗ .∇⃗f (295)

For the relativistic case, we generalize this

f = f(xα, pα) (296)

The motion in phase space is defined via proper time τ with dτ = 1
cds =proper

time.
The change of f is now

Df

dτ
= vα

∂f

∂xα
+
dpα

dτ

∂f

∂pα
(297)

Writing pα = mvα, the geodesic equation reads

dvα

dτ
= −Γαµνv

µvν (298)

Df

dτ
= vα

∂f

∂xα
−mΓαµνv

µvν
∂f

∂pα
(299)

Df

dτ
=
dt

dτ

Df

dt
=
dx0

dτ

Df

dt
= v0

Df

dt
=
p0

m

Df

dt
(300)

Writing p0 = E
Df

dt
=
m

p0
(vα

∂f

∂xα
−mΓαµνv

µvν
∂f

∂pα
) (301)

We use Robertson-Walker metric, the space is homogeneous and isotropic. We
use f = (E, t) where |p⃗| =

√
E2 −m2

Df

dt
=
m

E
(v0

∂f

∂x0
−mΓ0

µνv
µvν

∂f

∂E
) (302)
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where v0 = p0

m . For R-W metric

Γ0
ij = − ȧ

a
gij , Γ

0
00 = 0 = Γ0

0i, gij = −δij (303)

Df

dt
=
∂f

∂t
− ȧ

a

p⃗.p⃗

E

∂f

∂E
(304)

What cause the distribution to change in time. If there is no collision, the f is
constant

Scattering of particles from one momentum state to another leads to change
in f:

pµ1

pµ2

pµ3

pµ4

a1 + a2 ↔ a3 + a4 (305)

Let us look at the distribution function particles

f = f(p⃗, t) = f(E, t) = f1 (306)

Similarly we have functions for a2, a3, a4

dΓ(i→ f) =
(2π)4

V
|Mfi|2δ4(p3+p4−p1−p2)

d3p3
(2π)3

d3p4
(2π)3

= transition probability/time for i → f

(307)
with a3, a4 with final particles cell d3p3, d

3p4 at momenta p⃗3, p⃗4 and spin
sf = s3s4. V is the box normalization and Mfi is the matrix element of the
transition from i→ f . If the Hamiltonian is

H = H0 +H1 (308)

We can generate
⟨p3, p4, out|H|p1 p2, in > (309)

Let us go to the Lab frame
v⃗2 = 0, v⃗1 ̸= 0 (310)

Incident flux ρ1 = 1
V v1 =Incident flux of a1

dσ(i→ f) =
dΓ(i→ f)

ρ1
=

(2π)4

v1
|Mfi|2δ4(p3+p4−p1−p2)

d3p3
(2π)3

d3p4
(2π)3

= transition probability/time for i → f

(311)
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If we wish to go to any other frame, we do this by requiring dσ = Lorentz
scalar. If this turns out that this is achieved by

v =

√
(pµ1p2µ)

2 −m2
1m

2
2

E1E2
(312)

and one has
v = v1, p

µ
2 = (0, m2) : Laboratoryframe (313)

We can write

v = | p⃗1
E1

− p⃗2
E2

| = |v⃗1 − v⃗2| (314)

p⃗1 + p⃗2 = 0: Center of mass frame.
However we can go to any other frame. Usually the CM frame is the easiest

one to use.
Now returning to get the number of particles scattered out of initial state,

we multiply the probability dΓ by the number in initial state X2 and sum over
initial X2 and sum over final X3, X4 and multiply no. of X1

N(i→ f) = s3, s4, s2
∑ 1

V
p2

∑∫
d3p3d

3p4
(2π)6

(2π)4Mfi|2δ4(p3+p4−p1−p2)f1f2(1±f3)(1±f4)

(315)

where 1
V p2

∑
=

∫
d3p2
(2π)3 with +: Bose-Einstein and −: Fermi-Dirac. (1 ±

f3,4) account for Pauli suppression if a Fermi state is already filled or a BE
enhancement.

Similarly, we have an enhancement of the initial state since thermal equilib-
rium allows the inverse process f → i

N(f → i) = s1, s2
∑ 1

V
p2

∑∫
d3p3d

3p4
(2π)6

(2π)4|Mfi|2δ4(p3+p4−p1−p2)f3f4(1±f1)(1±f2)

(316)
Our balance is

Df

dt
= N(i→ f)−N(f → i) (317)

We now make some reasonable assumptions:

• T invariance (or PC invariance) implies

|Mfi|2 = |Misi→fsf |2 = |Misi←fsf |2 = |Msisf |2 (318)

This is true except for certain weak interactions

• We will assume that in the vicinity of freezeut, the particles are non-
relativistic. Then

fi ≃ e−E/T ≪ 1; E/T ≪ 1 (319)

38



and we can neglect the BE and FD enhancement and suppression, i.e

1± fi ∼ 1 (320)

In general our particles have spin and different spin states. We will assume
the distribution functions don’t depend on the sin quantum number. Then for

n(t) = s
∑∫

d3p

(2π)3
f(p, t) = numbers/volume (321)

We have

n(t) = g

∫
d3p

(2π)3
f(p, t) (322)

This is true for systems with isotropy. Our basic equation then simplifies

∂f1
∂t

− ȧ
a

p⃗21
E1

∂f1
∂E1

= −s2, s3, s4
∑∫

d3p2
(2π)3

d3p3
(2π)3

d3p4
(2π)3

(2π)4δ4(p3+p4−p1−p2)|Msisf |2(f1f2−f3f4)

(323)
We can integrate over p1 to get an equation for the number density n1:

dn1(t)

dt
− ȧ
a
g1

∫
d3p1
(2π)3

p⃗21
E1

∂f1
∂E1

= −s1, s2, s3, s4
∑∫

i = 14Π
d3pi
(2π)3

|Ms3s4s1s2 |2(f1f2−f3f4)

(324)
The second term in left hand side reduces to

g1

∫
d3p1
(2π)3

p⃗21
E1

∂f1
∂E1

=
g1

(2π)3

∫
dΩ

∫ ∞
m1

p⃗41
E1

dp1
dE1

dE1
∂f1
∂E1

(325)

=
g1

(2π)3

∫
dΩ

∫ ∞
m1

p⃗31dE1
∂f1
∂E1

= − 3g1
(2π)3

∫
dΩ

∫ ∞
m1

dE1p⃗
2
1

dp1
dE1

f1 = −3g1

∫
d3p1
(2π)3

f1 = −3n1(t)

In general fi are spin independent, the matrix element |M |2 will in general
have spin independent. However we can define the spin averaged matrix element
|M |2 will in general have spin independent. However we can define the spin
averaged matrix element

1

g1g2g3g4
s1, s2, s3, s4|Ms3s4s2s1 |2 = |M |2 (326)

|M |2 is the spin averaged matrix element and depend only on the momenta of
the process

dn1(t)

dt
+3

ȧ

a
n1 = −

∫
i = 14Πgi

d3pi
(2π)3

|M |2(2π)4δ4(p3+p4−p1−p2)(f1f2−f3f4)

(327)
We can write down similar equations for f2, f3, f4 and we would have a complete
set to try to solve we will make some physically valid approx. to simplify the
analysis.
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When the X3, X4 are created by X1, X2. We can assume that they interact
rapidly with the plasma and quickly thermalize.

Thus f3, f4 can have their equilibrium values, i.e., the Boltzmann distribu-
tion

f3 = feq3 = e−E3/T , f4 = feq4 = e−E4/t (328)

where E3

√
p23 +m2

3. Hence we can write

δ4f3f4 ≃ δ4feq3 feq4 = δ4e−(E3+E4)/T = δ4e−(E1+E2)/T = δ4feq1 feq2 (329)∫
i = 1, 2Πgi

d3pi
(2π)3

[∫
i = 3, 4Πgi

d3pi
(2π)4

|M |2(2π)4δ4(p3 + p4 − p1 − p2)

]
(f1f2−feq3 feq4 )

(330)
[· · ·] is related to cross-section, i.e.,∫

i = 3, 4Πgi
d3pi
(2π)3

σi→fv(f1f2 − feq3 feq4 ) (331)

We can define the thermal average of the σv as

⟨σi→fv⟩ =

∫
i = 1, 2Π gidpi

(2π)3σi→fvf1f2

n1n2
(332)

For the equilibrium case this means

⟨σi→fv⟩eq =

∫
i = 1, 2Π gid

3pi
(2π)3 σi→fve

−(E1+E2)/T∫
g1d3p1
(2π)3 e

−E1/T
∫
g2d3p2
(2π)3 e

−E2/T
(333)

We are averaging over the Boltzmann distribution. The particles are close to
equilibrium, but the expansion of the universe changes n1,2, i.e., allows a chem-
ical potential to grow while the scattering can change the momentum distribu-
tion. We can write the ansatz for f1,2 as

f1,2 = e
E1,2
T −

µ1,2(t)

T (t) (334)

⟨σi→fv⟩ =
e

µ1+µ2
T i = 1, 2

∫
Π gid

3pi
(2π)3 σi→fve

−(E1+E2)/T

e
µ1+µ2

T

∫
g1d3p1
(2π)3 e

−E1/T
∫
g2d3p2
(2π)3 e

−E2/T
(335)

or
⟨σiv⟩ = ⟨σi→fv⟩eq (336)

Our Boltzmann equation now reads

dn1
dt

+ 3
ȧ

a
n1 = −⟨σi→fv⟩eq[n1n2 − neq1 n

eq
2 ] (337)

This is called Lee-Weinberg equation.
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In our analysis we have considered only a single annihilation process

X1 +X2 → X3 +X4 (338)

There could be many final states each contributing to the annihilation, e.g.,

X1 +X2 → f + f̄ (339)

→ W+ +W−

→ Z0 + Z0

Writing n1(t) = n2(t) = nX

dnX
dt

+ 3H(t)nX = −⟨σi→fv⟩eq[n2X − neqX
2
] (340)

σA is the annihilation cross-section

σA =
∑

σX1+X2→fi fi = final state (341)

In this approximation, we can write

dnX
dt

+ 3H(t)nX =
1

a3
d

dt
(a3(t)nX) (342)

If there is no scattering, then nX = const
a3(t) and the number/volume decreases as

volume increases. The first term of the R.H.S of the Eqn340 is the depletion of
nX due to

X1 +X1 → fi (343)

The second term is the increase of nX due to the creation of X by the inverse
reaction fi → X1X1

4.1 relic abundance calculation

The basic equation looks complicated since it is a non-linear equation. If we
know the particle physics interactions giving rise to ⟨σAv⟩, then we can calculate
⟨σAv⟩eq and express it as a function of T (t).

We can solve the equation numerically however some simple analytic approx-
imations can be made. In the early universe when one has radiation domination

T (t) = (
45

2π2kg∗
)1/4

1

t1/2
= a1/4

1

t1/2
(344)

g∗=multiplicative factor associated with the number of relativistic particles.
The Hubble constant is H = 1

2t

H(T ) = (
πkg∗
2(45)

)1/2T 2 =
1

2
a−1/2T 2 (345)
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k−1/2 = ( hc
8πGN

)1/2 = 2.44 × 108GeV Hence H(T ) = 0.33g
1/2
∗

T 2

k−1/2 , MPl =

k−1/2 = 2.44× 1018GeV . Also

t = (
45k−1

2π2g∗
)1/2

1

T 2
=

1.51

g
1/2
∗

k−1/2

T 2
=

1.51

g
1/2
∗

MPl

T 2
(346)

We can use temperature to represent time. We also have that at early times

when our particles are relativistic T > mX , nX = 3
4
ζ(3)
π2 gT

3 ∼ T 3. The Hubble
term

3HnX ∼ T 5 (347)

The collision term nX ∼ T 6. Thus the collision is dominant in the early universe

dnX
dt

= ⟨σv⟩eq[n2X − nX
eq2] (348)

dnX
dt

=
dT

dt

dnX
dT

∼ T 3T 2 ∼ 1

t3//2
T 2 (349)

dnX
dt

= ⟨σv⟩[n2X − nX
eq2] (350)

Where dnX

dt ∝ T 5 while n2X ∼ T 6 This means nX must be very close to neqX to
cancel the extra factor of T .

n2X = nX
eq2 +O(T 5) (351)

nX = nX
eq(1 +O(

1

T
)) (352)

Thus the number density is mostly given by the equilibrium distribution. More
clearly: Let us define Y = nX

s , s = entropy/volume. Y= numbers of particle

in V = R3(t). Here s = 2π2

45 g∗T
3 = bT 3, b = 2π2

45 g∗. Change nX → Y (X),
t→ X = mX

T

dnX
dt

=
dX

dt

d

dX
(Y s) =

dX

dt
s
dY

dX
+
dX

dt

ds

dX
Y (353)

We get

dX

dt
= −mX

T 2

dT

dt
= −mX

T 2
(−1

2

a1/4

t1/2
) =

mX

2a1/2
T =

m2
X

2a1/2X
(354)

ds

dX
=
dT

dX

ds

dT
= −3

mX

X2
bT 2 = −3

m3
Xb

X4
(355)

We get
dX

dt

ds

dX
Y = −3

m5
XbY

2a1/2X5
(356)

Also we can write

3HnX =
3

2
a−1/2T 2bT 3Y =

3

2
a−1/2b

m5
X

X5
Y (357)
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So 3HnX cancels Y dX
dt

ds
dX . We can write

dY

dX
= −2a1/Xs

⟨σAv⟩eq

m2
X

[Y 2
X − YX

eq2] (358)

Define H(mX) = 1
2a
−1/2m2

X ; H(X) = H(mX)X−2. H(mX) is Hubble constant
at temperature =mX

dY

dX
= −Xs ⟨σAv⟩

eq

H(mX)
[Y 2
X − YX

eq2] (359)

Using yeq = neq/s, we can write

X

Y eq
dY

dX
= −neq ⟨σAv⟩

eq

H(X)
[
Y 2
X

YX
eq2

− 1] (360)

We can write ΓA = neq⟨σAv⟩eq=numbers of annihilation/time (n=number/volume
and ⟨σAv⟩eq annihilation volume/time)

If ΓA/H ≫ 1 then Y (x) → Y Eq. If ΓA/H ≪ 1 the R.H.S. becomes negligible
and Y (x) = constant. The number of particles in V = R3(t) becomes constant
and we have “freeze-out”. The particles remained are the relics of Big Bang.

We can solve the Boltzmann equation. Let us examine ⟨σAv⟩ first

⟨σi→fv⟩ =

∫
d3p1d

3p2
(2π)6 σi→fve

−(E1+E2)/T∫
d3p1d3p2
(2π)6 e−(E1+E2)/T

(361)

Since we are in the non-relativistic regime

E1,2 = m+
p21,2
2m

; m1 = m2 (362)

The e−m/T cancels out between numerator and denominator

⟨σi→fv⟩ =

∫
d3p1d

3p2
(2π)6 σi→fve

−(p21+p
2
2)/(2mT )∫

d3p1d3p2
(2π)6 e−(p

2
1+p

2
2)/(2mT )

(363)

Going to the center of mass frame

P =
1

2
(p1 + p2), p = p1 − p2, d

3p1d
3p2 = d3Pd3p, p21 + p22 = 2P 2 +

1

2
p2 (364)

⟨σi→fv⟩ =

∫
d3Pd3p
(2π)6 σi→fve

−P 2/(mT )e−p
2/(4mT )∫

d3Pd3p
(2π)6 e−P 2/(mT )e−p2/(4mT )

(365)

It is convenient to do the cross-section calculations in C.M. frame. Then σA
depends only on p (One can go to P⃗ = 0), σA = σA(v); p = mv

⟨σi→fv⟩ =
∫∞
0
v2dvσi→fve

−mv2/(4T )∫∞
0
v2dve−mv2/(4T )

(366)
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where d3p = p2dpdω = m3v2dvdΩ

σAv ∼ |M |2v
Jinc

=
|M |2v
ρv

(367)

In general, σAv is regular at v = 0

σAv = a+
1

6
bv2 + · · · , a, b = constant, ⟨σAv⟩ = a+

1

6
b⟨v2⟩ (368)

The thermal average is being taken W.R.T Boltzmann distribution.
From kinetic theory we know that for Boltzmann distribution of mass µ

⟨1
2
µv2⟩ = 3

2
T, µ =

m

2
(369)

⟨v2⟩ = 3

µT
=

6T

m
(370)

⟨σAv⟩ = a+
bT

m
(371)

This simple approximation does not work always.

4.2 Approximate solution for relic X0

We saw that Y = nX

s ∼ nX

T 3g∗s
eliminate the Hubble expansion from the Boltz-

mann equation. Define

ϕ(t) =
nX(t)

T 3(t)g∗s
, Z(t) =

T (t)

m
, m = mX (372)

T (t) = a1/4
1

t1/2
, a =

45

2π2kg∗s
(373)

The entropy S = sR3 =constant where s ∼ T 3g∗s with T 3gasR
3 = c

d

dt
(T 3gas) = −3cR

R4
= −3c

H

R3
= −3T 3g∗sH (374)

dϕ

dt
=

1

T 3gas

dn

dt
+ 3H

n

T 3g∗s
(375)

Using the Boltzmann equation

dϕ

dt
=

1

T 3g∗s
⟨σv⟩[n2 − n2eq] = −T 3g∗s⟨σv⟩[ϕ2 − ϕ2eq] (376)

where ϕeq =
neq

T 3g∗s

Using dϕ
dt = dT

dt
dϕ
dT

dT

dt
= −1

2

a1/4

t3/2
+

1

4

a−3/4

t1/2
(−a) 1

g∗

dg∗
dT

dT

dt
= −1

2

T 3

a1/2
− 1

4

T

g∗

dg∗
dt

dT

dt
(377)
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dT

dt
=

1

1 + 1
4
dlng∗
dlnT

(−1

2

T 3

a1/2
) (378)

In general g∗ is constant except when one particle drops out from being rela-
tivistic. We will neglect dg∗

dT in the denomination

dϕ

dt
≃ (−1

2

T 3

a1/2
)
1

m

dϕ

dz
(379)

dϕ

dz
= 2ma1/2g∗s⟨σv⟩[ϕ2 − ϕ2eq] (380)

2a1/2 = 2(
45

2π2kg∗
)1/2;

1

k
=

1

8πGN
=M2

pl (381)

dϕ

dz
= m(

45

4π2kg∗
)1/2g∗s⟨σv⟩[ϕ2 − ϕ2eq] (382)

For ΓA ≪ H, the Boltzmann equation pushes ϕ to equilibrium

ϕ(z) ≃ ϕeq(z), ΓA ≫ H (383)

At freeze-out, the species decouples from the plasma so that the back scattering-
ϕ2eq R.H.S. is no longer important and so in the other region

dϕ

dz
= m(

45

4π2kg∗
)1/2g∗s⟨σv⟩ϕ2 (384)

for ΓA ≫ H with zf = Tf/m. For ΓA ≃ H, one still has ϕ ≃ ϕeq (z = zf )

(
dϕ

dz
)zf ≃ m(

45

4π2kg∗
)1/2g∗s⟨σv⟩ϕ2eq (385)

Use

ϕeq =
gX
T 3

1

g∗s
(
mT

2π
)3/2e

−m
T (386)

Inserting

ϕeq =
2

g∗s
(

1

2πz
)3/2e

−1
z , gX = 2 (387)

2

g∗s
(

1

2πz
)3/2e

−1
z [

1

z2
− 3

2

1

z
] = m(

45

4π2kg∗
)1/2g∗s⟨σv⟩

4e2/z

g2∗s(2πz)
3

(388)

Solving the above equation at z = zf

e
1
zf = (2π)3(

2

45
GNg∗)

1/2 1

m⟨σv⟩z1/2f

(1− 3

2
zf ) (389)

z−1f = Ln[z
1/2
f m⟨σv⟩ 1

2π3
(

45

4π2kg∗
)1/2

1

1− 3
2zf

] (390)
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we will see now that zf = 1
20 (i.e., our particles are freezing out nonrelativisti-

cally) and so we can approximate

1

1− 3
2zf

≃ 1 (391)

z−1f = Ln[z
1/2
f m⟨σv⟩( 1

GNg∗
)1/20.0765] (392)

A more rigorous numerical solution in the vicinity of freeze-out gives

z−1f = Ln[z
1/2
f · · · 0.0765] + Ln[c(c+ 2)] (393)

where c ≃ 0.5. This produces a negligible correction to z
−1/2
f . Thus

z−1f = Ln[z
1/2
f · · · 0.0765] + c(c+ 2) (394)

and the correction of size Lnc(c+2)

z
1/2

f

= Ln 0.525
20 = 0.011 ∼ 1% correction

z−1f = Ln[m⟨σv⟩( 1

GNg∗
)1/20.0765] + Lnz

1/2
f (395)

To the zeroth approximation we can neglect Lnz
1/2
f ]

We need an annihilation cross-section. We use an example without getting
into any detailed calculation. Assume Dark matter couples to the SM particles
with weak coupling:

σv ∼ α2
2m

2
X

4πm4
N

(396)

Here mN is a new particle which shows up in the dark matter annihilation
diagram and α2 ∼ 0.03. We can write

Ln[z
1/2
f m⟨σv⟩( 1

GNg∗
)1/20.0765] ≃ Ln[

α2
2m

3
XMpl

g
1/2
∗ m4

N

0.0765] (397)

Assume mX = mN = 100 GeV, Mpl = 2.44× 1018 GeV, g∗ = 100, z
−1/2
f = 23,

LnZ
1/2
f = Ln

√
23 = 1.56. We get

Lnz
1/2

f

z−1
f

≃ 0.068 = 7%.

To do the calculation correctly one needs to accurately calculate σv and take
the thermal average ⟨σv⟩ and put the correct g∗. The above estimate shows that

zf =
Tf
mX

≃ 1

20
(398)

Freeze-out occurs nonrelativistically, for z < zf

d

dz
(− 1

ϕ(z)
) = m(

45

4π2kg∗
)1/2g∗s⟨σv⟩ (399)
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− 1

ϕ(z0)
+

1

ϕ(zf )
= m

∫ z0

zf

(
45

4π2kg∗
)1/2g∗s⟨σv⟩dz (400)

with z0 = T0

m , T0 = 2.73degK. Let us set z0 = 0, we can write

ϕ(z0) =
ϕ(zf )

1 +mϕ(zf )
∫ z0
zf

( 45
4π2kg∗

)1/2g∗s⟨σv⟩dz
(401)

In order to estimate the size of the denominator ϕ(zf ) = ϕeq(zf )

ϕ(zf )

∫ z0

zf

(
45

4π2kg∗
)1/2g∗s⟨σv⟩dz =

2

g∗s
(

1

2πzf
)3/2e

1
zf m

45

4π2kg∗
)1/2g∗szf ⟨σv⟩

(402)

= z
−1/2
f e

1
zf (0.0765)

mxMpl√
g∗

α2
2

4π

m2
X

m4
N

= 60 ≫ 1 (403)

So we neglect “1” in the denominator and we write

ϕ(z0) =
ϕ(zf )

mϕ(zf )
∫ z0
zf

( 45
4π2kg∗

)1/2g∗s⟨σv⟩dz
(404)

The number density of X0 today

nX ≃ (
4π2kg∗

45
)1/2

t30g∗s(0)

mg∗s(zf )

1∫ zf
0

⟨σv⟩dz
(405)

The relic density is now

ρX0 = mXnX ≃ (
4π2GN

45
)1/2

(g∗s(0)/g∗s(zf ))

J(zf )
T 3
0 g

1/2
∗ (406)

Where J(zf ) =
∫ zf
0

⟨σv⟩dz, ΩX0 =
ρX0

ρc
, ρc =

3H2
0

8πGN
= 1.878×10−29 gm cm−3h2.

We therefore can write

ΩX0h2 = (
4π2GN

45
)1/2

g∗s(0)

g∗s(zf )

T 3
0

J(zf )
g∗(zf )

1/2 1

1.878× 10−29gmcm−3
(407)

Nf = g∗(zf ) = number of degrees of freedom at freeze-out.

(
TX0

T0
)3 =

g∗s(0)

g∗s(zf )
= “reheating factor” (408)

Since when particle becomes non-relativistic and drops out of g∗ and its
entropy is not lost and it reheats the photon temperature (associated with γ.
g, e, µ, τ , νe, νµ, ντ , u, d, c, s, t, b

Nf = g∗(zf ) = 2 + 8× 2 +
7

8
× [3× 4 + 3× 2 + 4× 4× 4× 3] =

303

4
(409)
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Figure 1: Numerical solution of Boltzmann equation (Y ≡ ϕ vs m/T ) assuming
3 different cross-section values, 3 ∗ 10−(23+n) cm3/sec for n=1, 2 and 3

We use
g∗s(0)

g∗s(zf )
= (19.4)−1, (

TX0

T 0
)N

1/2
f = 0.449 (410)

Use σv =
α2

2

4π

m2

X0

m4
N

v, vc =
√
zf , J(zf ) =

∫ zf
0

⟨σv⟩dz = ⟨σv⟩zf =
α2

2

4π

m2

X0

m4
N

(zf )
3/2.

Use mN = 100 GeV, mX0 = 60GeV, zf = 1
20 , α2 = 0.03, J(zf ) = 3.49× 10−11

GeV−2 to calculate ΩX0h2.

4.3 Relativistic dark matter

YX(∞) = Y eqX (Xf ) =
45ζ(3)

2π4

gDM
g∗s(zf )

(411)

We get

nX0 = s0Y∞ = 6.3× 10−39
gDM
g∗s(zf )

GeV 3 (412)

Use s0 = 2π2

45 g∗s0T
3
0 , g∗s0 = 3.91

Precise value of Xf is unimportant since Y eq is constant. The species which
are relativistic at freeze-out are called hot relics.

Ω =
ρX0

ρc
, ρX0 = mX0nX0 (413)

If we use neutrinos as hot relics then gDM = 2× 3
4 = 1.5 for one neutrino type

and we can find Ωνh
2 in terms of mν
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Figure 2: g∗, g∗s vs T

4.4 calculation of relativistic degrees of freedom for g∗ and
g∗s

g∗ = i = boson
∑

gi(
Ti
T
)4 +

7

8
i = fermion

∑
gi(

Ti
T
)4 (414)

g∗s = i = boson
∑

gi(
Ti
T
)3 +

7

8
i = fermion

∑
gi(

Ti
T
)3 (415)

Using Tν = (4/11)1/3Tγ we determine for T ≪MeV

g∗ = 2 +
7

8
× 6× (

4

11
)4/3 = 3.36 (416)

Similarly,

g∗s = 2 +
7

8
× 6× (

4

11
)3/3 = 3.91 (417)

Since tν ̸= Tγ g∗ ̸= g∗s.
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Figure 3: T vs t(in H−10 unit) for Majorana, active(Dirac) and sterile(Dirac)
neutrinos
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