
2. The Electroweak Standard Model

On the other hand, the last Feynman rule is a contribution to the amplitude in and on itself. So all the
leading order contributions to this process are of the same order, g2.

2 The Electroweak Standard Model

The standard model (SM) of particle physics is first and foremost a gauge theory. It is described by the
product of three groups, SU(2) ⇥ SU(2) ⇥ U(1). Two of them non-abelian and one abelian. Most
commonly this is written as

SU(3)c ⇥ SU(2)L ⇥ U(1)Y , (2.374)

where the subscript c in the first factor stands for “color”, the L in the second stands for “left” and the Y
in the third factor refers to hypercharge. The group SU(3)c describes the interactions of quarks with the
gauge fields called gluons. These are the degrees of freedom and interactions relevant at energies above
the O(1) GeV scale, where the theory of the strong interactions is quantum chromodynamics (QCD).
This theory and its applications in various topics in particle physics are the subject of the lectures of
Giulia Zanderighi [2]. Here, we concentrate on the other two factors in (2.374),

SU(2)L ⇥ U(1)Y , (2.375)

which we dubb the electroweak standard model (EWSM). This will be the subject of the rest of these
lectures.

The EWSM is built from experimental observations, coupled to our understanding of gauge theo-
ries. All SM fermions transform under the gauge theory in (2.375). In the next section we briefly review
how is it that we know this.

2.1 Building the Electroweak Standard Model

Let us review the main evidences leading to the gauge structure of the electroweak theory.

– Weak Interactions (Charged): Weak decays, such as � decays n ! p e�⌫̄e or µ� ! ⌫µ ⌫̄e e�

among many others, are mediated by charged currents. Let us look at the case of muon decay. It
is very well described by a four fermion interaction, i.e. with a non renormalizable coupling GF ,
the Fermi constant. In fact, all other weak interactions can be described in this way with the same
Fermi constant ( to a very good approximation, more later). The relevant Fermi lagrangian is

LFermi = �4
GFp
2

�
µ̄L�µ⌫L

� �
ēL�

µ⌫e
�
, (2.376)

where we already included the fact that the charged weak interactions only involve left handed

fermions. That is, the phenomenolgically built Fermi lagrangian above tells us that the weak decay
of a muon is described by the product of two charged vector currents coupling only left handed
fermions. The fact that only left handed fermions participate in the charged weak interactions is
an experimentally established fact, observed in all charged weak interactions. This is done by a
variety of experimental techniques. For instance, in the case of muon decay, the angular distribu-
tion of the outgoing electron is very different if this is left or right handed. Precise measurements
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Fig. 15: Diagram (a) is the Feyman diagrams associated with the four fermion Fermi lagrangian (2.376).
Diagram (b) shows the corresponding exchange of a massive charged gauge boson, W±

µ .

(performed over decades of increasingly accurate experiments) have concluded that the outgoing
electron is left handed only. The different couplings involving left and right handed fermions re-
quire parity violation. Moreover, the charged weak interactions require maximal parity violation:
only one handedness participate. Now, if we assume that the non renormalizable four fermion in-
teraction is the result of integrating out a gauge boson with a renormalizable interaction, this would
point to the need of 2 charged gauge bosons.This is schematically shown in Figure 15. Assuming
that mµ ⌧ MW , we integrate out the massive vector gauge boson to obtain

GFp
2
=

g2

8M2
W

, (2.377)

where g is the renormalizable coupling of the gauge bosons to fermions in diagram (b). The
charged vector gauge bosons, W± were discovered in the 1980s and studied with gerat detail ever
since.

– Weak Neutral Currents: In addition to the charged currents described by (2.376), we have known
since experimental evidence first appeared in the 1970s, that there are also weak neutral currents.
These were first observed by neutrino scattering off nucleons. Normally, the charged currents
would result in ⌫eN ! e�N 0, with N and N 0 protons and neutrons. This is just a crossed
diagram of � decay. But the reaction ⌫N ! ⌫N was also observed. Many other reactions
involving neutral currents have been observed since then. They also violate parity. However, they
do not do so maximally. This means that the neutral currents, or the vector gauge boson that we
need to integrate out to obtain them at low energies, couple differently to left and right handed
fermions but, unlike the charged currents, the do couple to right handed fermions. The neutral
vector gauge boson, Z0, was also discovered in the 1980s and its properties studied with great
precision.

– Electromagnetism: Of course, we know that the electromagnetic interactions are described by a
quantum field theory, QED, mediated by a neutral massless vector gauge boson, the photon. One
important feature to remember is that the photon coupling in QED is parity invariant. No parity
violation is present in QED.
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2. The Electroweak Standard Model

The elements described above suggest that we need: 4 gauge bosons for a unified description of
the weak and electromagnetic interactions. Three of them appear to be massive: the W± and the Z0.
One, the photon, must remain massless. The SM gauge group is then G = SU(2)⇥U(1) which matches
the number of gauge bosons. However, we know that two of these only couple to left handed fermions.
whereas the massive neutral one couples differently to left and right handed fermions. Finally, the photon
must remain massless and its couplings parity invariant. The choice of gauge group is then

G = SU(2)L ⇥ U(1)Y , (2.378)

where the three gauge bosons couple to left handed fermions only, and the U(1)Y is not identified with
the U(1)EM, the abelian gauge symmetry responsible for electromagnetism. As we will see below, two
of the SU(2)L gauge bosons will result in the W±

µ . On the other hand to obtain the Z0.

2.2 The Electroweak Gauge Theory

The EWSM is a chiral guage theory. As we discussed in the previous section, this means that in general
the gauge fields do not couple equally to left and righ handed fermion chiralities. The fact that the gauge
group is SU(2)L ⇥ U(1)Y tells us the transformation properties of left and right handed fermions under
a given gauge transformation. For instance, the left handed fermion fields transform as

 L(x) ! ei↵
a(x)�

a

2 ei�(x)Y L  L(x) , (2.379)

where �a (a = 1, 2, 3) are the Pauli matrices, which are twice the generators of SU(2), and Y L is
the hypercharge of the fermion  L. Here, ↵a

(x) is the arbitrary gauge paramenter corresponding to
an SU(2)L transformation (one per generator �a/2), whereas �(x) is the arbitrary gauge paramenter
corresponding to the U(1)Y gauge transformation, both acting on the left handed fermion. On the other
hand, a right handed fermion would transform as

 R(x) !, ei�(x)Y R  R(x) , (2.380)

where Y R is the right handed fermion hypercharge. As we discussed in the previous lecture, for each
generator in a gauge group there is a gauge paramenter function. The EWSM gauge group has four
generators so the gauge transformations introduce the four functions of spacetime ↵1

(x), ↵2
(x), ↵3

(x)

and �(x). This means that we need to introduce four gauge bosons for the theory to be invariant under
local SU(2)L ⇥ U(1)Y transformations. Then, the covariant derivative acting on left handed fermion
fields is given by

Dµ L(x) =
�
@µ � igAa

µt
a � ig0Y LBµ

�
 L(x) , (2.381)

where Aa
µ(x) are the three SU(2)L gauge bosons, B(x) is the U(1)Y hypercharge gauge boson, and g

and g0 are the corresponding (dimensionless) gauge couplings. On the other hand, since right handed
fermions do not feel the SU(2)L interaction, their covariant derivative is given by
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Dµ R(x) =
�
@µ � ig0Y RBµ

�
 R(x) , (2.382)

with Y R its hypercharge.

Next, we have to see how to accommodate all the SM fermions in representations of SU(2)L ⇥
U(1)Y . Starting with left handed fermions, since they transform under SU(2)L they must carry a non-
abelian gauge group index. We can see this from the expression for the covariant derivative in (??): the
covariant derivative here must be a 2⇥ 2 matrix since one of the terms is an SU(2) generator. The other
two terms must be thought of as implicitly multiplied by the identity matrix. I.e. writing explicitly the
SU(2)L indices, we have

(Dµ)ij j(x) , (2.383)

where j = 1, 2. Thus, left handed fermions are doublets of SU(2)L. In the SM there are two types of
left handed doublets: lepton and quark doublets. For instance, for the first generation these are

L =

 
⌫eL

e�
L

!
, Q =

 
uL

dL

!
, (2.384)

and similarly for the second and third generations. Notice that the SU(2)L covariant derivative in (refl-
hcd1) is applied to the doublets L(x) and Q(x) as a whole. This means that the hypercharges quantum
numbers YL and YQ apply to the doublets, not just the individual components. For instance, in DµL(x),
the hypercharge matrix acting on L(x) is

 
YL 0

0 YL

!
. (2.385)

Moving on to the right handed fermions, since they are singlets under SU(2)L (they only transform
under U(1)Y ), they just have their own hypercharge assignment. For instance, e�

R
has hypercharge Y

e
�
R

,
uR has YuR , etc.

Now that we know how to accommodate fermions in representations of the EW gauge group
SU(2)L ⇥ U(1)Y we can address a problem of the electroweak gauge theory: masses. We know that
fermions have masses. If we write the mass term of a generic fermion of mass m this is

m ̄ = m ̄L R + h.c. , (2.386)

where h.c. stands for “hermitian conjugate. But if we subject the mass term to an SU(2)L ⇥ U(1)Y

gauge transformations in (2.379) and (2.380)

 ̄L R !  ̄L e�i↵
a(x)ta e�i�(x)Y L ei�(x)Y R R 6=  ̄L R , (2.387)

we see that it is not invariant. The  ̄L transformation is not balanced since  R does not transforms
under SU(2)L, and also Y L 6= Y R . So we conclude that fermion masses are forbidden by EW gauge
invariance!
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2. The Electroweak Standard Model

Nest, we can consider the electroweak gauge boson sector. The kinetic terms for the SU(2)L and
U(1)Y gauge boson fields are

LGB = �1

4
F a

µ⌫F
aµ⌫ � 1

4
Bµ⌫B

µ⌫ , (2.388)

where F a
µ⌫ and Bµ⌫ are the SU(2)L and U(1)Y field strengths respectively. Absent in this gauge boson

lagrangian are gauge boson mass term just as

M2
BBµB

µ
or M2

AaAa

µA
aµ , (2.389)

are not invariant under the gauge transformations

Bµ(x) ! Bµ(x) +
1

g0
@µ�(x) , (2.390)

and
Aa

µ(x) t
a ! g(x)

�
Aa

µ(x) t
a
�
g†(x)� i

g
(@µg(x)) g

†
(x) , (2.391)

where in the last expression
g(x) = ei↵

a(x)ta . (2.392)

Thus, we arrive at the conclusion that neither fermions nor gauge bosons can have masses in the EWSM
due to gauge invariance. But we know that all fermions and some of the EW gauge bosons are massive!
The solution of this problem requires that we introduce a new concept: the spontaneous breaking of a
gauge symmetry.

2.3 The Origin of Mass in the Electroweak Standard Model

To solve the problem of mass in the EWSM we need to implement the Anderson-Brout-Englert-Higgs
(ABEH) mechanism. This is what is at play when a gauge theory like the EWSM is spontaneously

broken. Then masses are generated out of gauge invariant operators, unlike the mass terms for fermion
and gauge bosons in the previos section, which constitute an explicit breaking of the gauge symmetry.
In order to apply the ABEH mechanism to the case of the EWSM we need to consider in turn: 1) The
Spontaneous Breaking of a global symmetry and Goldstone’s theorem and 2) The Spontaneous Breaking
of a gauge or local symmetry, the case of the SM. We will go through these two in turn.

2.3.1 Spontaneous Breaking of a Global Symmetry

Noether’s theorem tells us that for each continuous symmetry in the Lagrangian L(�, @µ�) there is a
conserved current Jµ, i.e.5

@µJ
µ
= 0 . (2.393)

We can restate this by saying that the charge associated with this symmetry

5Here we go back to relativistic notation and Minkowski space.
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Q =

Z
d3xJ0 , (2.394)

is conserved. This is easily checked by computing

dQ

dt
=

Z
d3x @0J

0
=

Z
d3x ~5 · J =

Z

S1

ds · J = 0 , (2.395)

where in the last step we assume there are no sources at infinity.

Now, in the presence of a continuous symmetry, quantum states transform under the symmetry as

| i ! ei↵Q | i , (2.396)

where ↵ is a real constant, i.e. a continuous parameter. In particular, if the ground state is invariant under
the symmetry this means that

|0i ! ei↵Q|0i = |0i , (2.397)

with the last equality implying

Q|0i = 0 . (2.398)

In other words, if the ground state is invariant under a continuous symmetry the associated charge Q

annihilates it. This is the normal realization of a symmetry.

But if

Q|0i 6= 0 , (2.399)

then this means that

|0i ! ei↵Q|0i ⌘ |↵i 6= |0i , (2.400)

where we defined the states |↵i by the continuous parameter of the transformation connecting it to the
ground state. In general, this is the situation when a symmetry is broken. But it is possible to have
(2.399) and still have a conserved charge. In other words to have

dQ

dt
= 0 . (2.401)
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2. The Electroweak Standard Model

Having both (2.399) and (2.401) satisfied at the same time corresponds to what we call spontaneous
symmetry breaking (SSB): the charge is still conserved, but the ground state is not invariant under a
symmetry transformation.

✓
Q|0i 6= 0,

dQ

dt
= 0

◆
) SSB . (2.402)

For instance, this is what happens in a ferromagnet below a critical temperature. The free energy

F = E � TS , (2.403)

can be minimized, at high temperature, by increasing the entropy S. So at high T disorder rules. How-
ever, below a critical temperature, the free energy would be minimized by minimizing E, which is
achieved by aligning the interacting spins, resulting in a macroscopic magnetization. This is an ordered
phase. But since the magnetization picks a direction in space it corresponds to the spontaneous breaking
the symmetry of the system, i.e. O(3).

Since the charge is conserved we have that [H,Q] = 0. Then, given a Hamiltonian H acting on a state
|↵i connected to the ground state, we can write

H|↵i = Hei↵Q|0i = ei↵QH|0i = E0e
i↵Q|0i

= E0|↵i . (2.404)

So we conclude that (2.402) results in a continuous family of degenerate states |↵i with the same energy
of the ground state, E0. Going from the ground state |0i to the |↵i states costs no energy. These are
the gapless states characteristic of SSB. They are the Nambu-Goldstone modes. In a relativistic quantum
field theory they correspond to massless particles, as we will see in the following example.

Spontaneous Breaking of a Global U(1) Symmetry

We will consider a complex scalar field, the simplest systems to illustrate the spontaneous breaking
of a global symmetry and the appearance of massless particles. This is the relativistic version of the
superfluid. The Lagrangian is

L =
1

2
@µ�

⇤@µ�� 1

2
µ2�⇤�� �

4
(�⇤�)2 . (2.405)

As we well know, L is invariant under the U(1) symmetry transformations

�(x) ! ei↵�(x) , �⇤(x) ! e�i↵�⇤(x) , (2.406)
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where ↵ is a real constant. Here the U(1) symmetry is equivalent (isomorphic) to a rotation in the
complex plane defined by

�(x) = �1(x) + i�2(x) , �⇤(x) = �1(x)� i�2(x) , (2.407)

where �1,2(x) are real scalar fields. Then we see that U(1) ' O(2). For instance, had we started with a
purely real field �(x) = �1(x), i.e. �2(x) = 0, the U(1) transformations (2.406) would result in

�(x) = �1(x) ! cos↵�1(x) + i sin↵�1(x) , (2.408)

as illustrated in Figure 16 below.

1

Fig. 16: The U(1) rotation �! ei↵� for an initially real field.

We now consider the (classical) potential

V =
1

2
µ2�⇤�+

�

4
(�⇤�)2 . (2.409)

For µ2 > 0 V has a minimum at (�⇤�)0 = 0. On the other hand, if µ2 < 0 there is a non trivial minimum
for � > 0 resulting from the competition of the first and second terms in (2.409). Redefining

µ2 ⌘ �m2 , (2.410)

with m2 > 0, the minimum of the potential now is

(�⇤�)0 =
m2

�
⌘ v2 . (2.411)

Here v2 is the expectation value of the �⇤� operator in the ground state, i.e.
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2. The Electroweak Standard Model

h0|�⇤�|0i = v2 . (2.412)

The potential looks just as the one for the superfluid case in the previous lecture, shown in Figure 8.1.
The projection onto the (�1,�2) plane is shown in Figure 17 below.

2

1

v

Fig. 17: The red circle represents the locus points of the minimum of the potential (2.409) for µ2 < 0.
The radius is v, a real number. The phase is not determined by the minimization.

The radius is fixed through

(�⇤�)0 = v2 = �21 + �22 , (2.413)

but the phase is undetermined. We need to fix it in order to choose a ground state to expand around. Any
choice should be equivalent

h�1i = v h�2i = 0

h�1i =
vp
2

h�2i =
vp
2

...
...

h�1i = 0 h�2i = v .

This particular choice is what constitutes spontaneous symmetry breaking. We need to fix the phase
✓ = ✓0 arbitrarily in order to expand around this ground state. For instance, let us choose the first line
above, i.e. h�1i = v, and h�2i = 0. This allows us to expand the field �(x) around this ground state as

�(x) = v + ⌘(x) + i⇠(x) , (2.414)
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where ⌘(x) and ⇠(x) are real scalar fields statisfying

h0|⌘(x)|0i = 0, h0|⇠(x)|0i = 0 . (2.415)

This obviously corresponds to �1(x) = v+i⌘(x) and �2(x) = ⇠(x). We can now rewrite the Lagrangian
(2.405) in terms of ⌘(x) and ⇠(x). This is

L =
1

2
@µ⌘@

µ⌘ +
1

2
@µ⇠@

µ⇠ +
1

2
m2

(v + ⌘ � i⇠) (v + ⌘ + i⇠)

��
4
[(v + ⌘ � i⇠) (v + ⌘ + i⇠)]2 , (2.416)

where we used (2.410). Using (2.411) and focusing on the terms quadratic in the fields, we obtain

L =
1

2
@µ⌘@

µ⌘ +
1

2
@µ⇠@

µ⇠ �m2⌘2 + interactions . (2.417)

So we see that when we expand around the ground state defined by (2.414) we end up with a theory of a
real scalar field with mass (⌘) and a massless state ⇠. That is

m⌘ =

p
2m, m⇠ = 0 . (2.418)

This result is a reflection of Goldstone’s theorem: a spontaneously broken continuous symmetry, here a
U(1), results in massless states. Notice that the result would be exactly the same had we chosen any other
angle in Figure 17 instead of ✓ = 0. One simple way to check this is to use a different parametrization
of �(x). We write

�(x) ⌘ [v + h(x)] ei⇡(x) , (2.419)

where h(x) and ⇡(x) are real scalar fields, also satisfying

h0|h(x)|0i = 0, h0|⇡(x)|0i = 0 . (2.420)

Then from (2.419) it is pretty obvious that ⇡(x) does not enter in the potential, and therefore will not
have a mass term. It is very simple to obtain the Lagrangian (2.405) in terms of h(x) and ⇡(x) using
(2.419). This is

L =
1

2
@µh@

µh+
1

2
@µ⇡@

µ⇡ �m2h2 + interactions , (2.421)
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2. The Electroweak Standard Model

which is exactly the same theory as the one in (2.417), i.e. a massive state with mh =
p
2m and a

massless particle, here the ⇡(x).

To understand more intuitively the appearance of the massless state it is helpful to look at the
possible excitations of the potential, as illustrated in Figure 18.

Fig. 18: The scalar potential. There are two types of independent excitations about the minimum: the
radial excitation implies a cost of energy since results in a larger value of V (�) than the minimum. The
excitation along the circle cost no energy and so it corresponds to a massless state.

We can see that in order to obtain the particle states we must expand about the minimum of the potential.
But there are two independent (orthogonal) directions we can choose. If the expand in the radial direction,
no matter how small the fluctuation it will cost energy. This fluctuation corresponds to the massive field
h(x). On the other hand, if we expand about the minimum along the circle, this has no energy cost
since all the points in the circle have the same energy as the minimum we picked arbitrarily. This is the
massless fluctuation ⇡(x), the Nambu-Godstone bosons.

We will later see a derivation of Goldsone’s theorem that is more geared towards quantum field
theory. We will see that there will be a NGB for each broken symmetry generator, i.e. for each sponta-
neously broken symmetry.

2.3.2 Spontaneous Breaking of a Gauge Symmetry

We have seen that the spontaneous breaking of a continuous symmetry results in the presence of massless
states in the spectrum, the Nambu–Goldstone Bosons (NGB). We have seen this in particular for a U(1)

global symmetry where the potential was such that the ground state was not U(1) invariant. In that case,
the NGB corresponded to the degeneracy of the ground state, i.e. it was the fluctuation going around the
degenerate minimum and as such it corresponded to a massless state. We will see later that this picuture
generalizes for non-abelian global continuous symmetries so that the number of NGBs corresponds to
the number of degenerate directions in group space, i.e. the number of broken generators.

Before we go into non-abelian symmetries, we will consider the situation when the U(1) symmetry
studied earlier is gauged. That is, is a local U(1) symmetry such as for example in QED. As we will soon
see, the consequences for the spectrum when the spontaneously broken symmetry is gauged are drastic.
We start with the lagrangian of a scalar field charged under a gauged U(1) symmetry just as QED. This
is given by
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L =
1

2
(Dµ�)

⇤Dµ�� V (�⇤�)� 1

4
Fµ⌫F

µ⌫ , (2.422)

where the covariant derivative is defined by

Dµ� = (@µ + ieAµ)� , (2.423)

and the scalar and gauge field transformations under the U(1) gauge symmetry are

�(x) ! ei↵(x)�(x)

(2.424)

Aµ(x) ! Aµ(x)�
1

e
@µ↵(x) .

Finally, the gauge field Aµ(x) has a kinetic term given by the square of the gauge invariant field strength
as usual

Fµ⌫ = @µA⌫ � @⌫Aµ . (2.425)

With (2.423), (2.424) and (2.425) the lagrangian in (2.422) is clearly gauge invariant.

In order to implement spontaneous breaking we choose the potential as

V (�⇤�) =
1

2
µ2�⇤�+

�

4
(�⇤�)2 , (2.426)

which is the same form we used for the breaking fo the global U(1) and corresponds to the only renor-
malizable terms allowed by the symmetry in four spacetime dimensions. What follows next pertaining
the minimum of the potential is identical to what we saw for the global symmetry case. If µ2 > 0 the
minimum of V in (2.426) is � = 0. However if µ2 < 0 then we rewrite the potential as

V (�⇤�) = �1

2
m2�⇤�+

�

4
(�⇤�)2 , (2.427)

where we have defined the positive constant m2
= �µ2. As before, in this case the minimum is now

given by the solution of

� 1

2
m2

+
�

2
(�⇤�)0 = 0 , (2.428)

which results in
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2. The Electroweak Standard Model

(�⇤�)0 = h0|�⇤�|0i = m2

�
⌘ v2 . (2.429)

Choosing the value of the field to be real at the minimum, we use the expansion

�(x) = v + ⌘(x) + i⇠(x) , (2.430)

such that the physical real fields satisfy

h0|⌘(x)|0i = h0|⇠(x)|0i = 0 . (2.431)

Just as we expect, writing the potential in terms of ⌘(x) and ⇠(x)

V (�⇤�) = V ((v2 + ⌘(x)2) + ⇠(x)2) , (2.432)

allows us to identify the spectrum which is given by

m⌘ =

p
2m =

p
2�v

(2.433)

m⇠ = 0 .

Thus, we identify ⇠(x) with the massless NGB. The difference with respect to the SSB of a global U(1)

comes in when we look at what happens in the scalar kinetic term. This is

1

2
(Dµ�)

⇤Dµ� =
1

2
@µ⌘@

µ⌘ +
1

2
@µ⇠@

µ⇠ +
1

2
e2 v2AµA

µ

(2.434)

+ e v Aµ @
µ⇠ + · · · ,

where we have explicitly written the terms quadratic in the fields, and the dots denote interactions terms
that are cubic or quadratic in them. Besides the kinetic terms for ⌘(x) and ⇠(x) we notice two terms.
The first one is an apparent gauge boson mass term. It implies that the gauge boson has acquired a mass
given by

mA = e v . (2.435)

84



CERN Yellow Reports: Monographs, CERN-2023-XXX

=  i e v (−i q  ) = m   q    
A

Fig. 19: Feynman rule for the non-diagonal contribution to the two-point function in (2.434).

However, this does not mean that the gauge symmetry is not been respected. In fact, all we have done
with respect to the (2.422 ) is to expand the theory around the ground state in terms of fields that have
zero expectation values there. In other words, we just performed a change of variables. However, the
fact the we are expanding the theory around a minimum that does not respect the symmetry is resulting
in a mass for the gauge boson. This means that the gauge symmetry has been spontaneously broken. But
since we have not added any terms that violated explicitly the U(1) gauge symmetry, the symmetry has

not been explicitly broken and therefore currents and charges must still be conserved. We will go into
this poin in more detail later.

The second notable aspect in (2.434) is the term mixing the gauge boson with the ⇠(x) field, the would-
be NGB. Having a term like this, i.e. non-diagonal two-point function, implies that we have to include
a Feynman diagram as the one in Figure 19. Although in principle there is no problem with having a
non-diagonal Feynman rule such as this as long as we always remember to include it, it is interesting to
see how to diagonalize it and what are the consequences of doing that. The idea is to choose a gauge for
Aµ(x) such that we can cancel this term once we go to the new gauge. The theory has to be physically
equivalent to the one with (2.434). Choosing a specific gauge corresponds to choosing a scalar function
↵(x) in the gauge tranformations (2.424). In particular, if we choose

↵(x) = �1

v
⇠(x) , (2.436)

we then have the gauge transformation

Aµ(x) ! A0
µ(x) = Aµ(x) +

1

ev
⇠(x) . (2.437)

Replacing Aµ(x) in terms of A0
µ(x) and ⇠(x) in (2.434) we have

1

2
(Dµ�)

⇤Dµ� =
1

2
@µ⌘@

µ⌘ +
1

2
@µ⇠@

µ⇠ +
1

2
e2 v2

✓
A0

µ � 1

ev
@µ⇠

◆✓
A0µ � 1

ev
@µ⇠

◆

(2.438)

+ e v

✓
A0

µ � 1

ev
@µ⇠

◆
@µ⇠ + · · · , ,

Carefully collecting all the terms in (2.438) we arrive at the surprisingly simple expression for the scalar
kinetic term:
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1

2
(Dµ�)

⇤Dµ� =
1

2
@µ⌘@

µ⌘ +
1

2
e2 v2A0

µA
0µ
+ · · · . (2.439)

We see that the gauge boson mass term is still the same as before. However, the ⇠(x) field, the massless
field that we thought would be the NGB is now gone. Its kinetic term is gone and, as we will see later, no
term with ⇠(x) remains in the lagrangian after this gauge transformation. So the would-be NGB is not!
When a degree of freedom disappears from the theory just by performing a gauge transformation, we say
that this is not a physical degree of freedom. This particular gauge without the NGB ⇠(x) is called the
unitary gauge, since it exposes the actual degrees of freedom of the theory: a real scalar field ⌘(x) with
mass m⌘ =

p
2m and a gauge boson with mass mA = ev. In fact if we count degrees of freedom before

and after we expanded around the non-trivial ground state, we see that before we had two real scalar

fields, and two degrees of freedom corresponding to the two helicities of a massless gauge boson, for a
total of four degrees of freedom. But after we expanded around the ground state, we have one real scalar

field, plus three polarizations for the now massive gauge boson, again a total of four degrees of freedom.
It is in this sense that sometimes we say that when a gauge symmetry is spontaneously broken, the NGB
is “eaten” by the gauge boson to become its longitudinal polarization. This statement can be made more
precise through the equivalence theorem, which says that in processes at energies much larger than v (so
that it does not matter that the expectation value of the field is not zero in the ground state) computing
any observable by using the theory with a massive gauge boson should yield the same result as using the
theory with a massless gauge boson and a massless NGB, up to corrections that go like v2/E2, where
E is the characteristic energy scale of the process in question. We will come back to the equivalence
theorem later on when we consider the spontaneous breaking of non-abelian gauge symmetries.

There is another, perhaps more direct, way to see that the NGB can be gauged away, i.e. it disappears
from the theory by performing a gauge transformation. For this purpose, it is advantageous to parametrize
the scalar field not in terms of real and imaginary parts, but of modulus and phase. We write

�(x) = ei⇡(x)/f (v + �(x)) , (2.440)

where we see that this automatically satisfies (2.429). We have two real scalar fields, just as before. One
is the modulus field �(x) and the other one is the phase field ⇡(x). The scale f is defined so that the
argument of the exponent is dimensionless. To fix f we demand that the ⇡(x) field has a canonically
normalized kinetic term, i.e. we impose it be

1

2
@µ⇡@

µ⇡ . (2.441)

This fixes

f = v , (2.442)
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so that we have

�(x) = ei⇡(x)/v (v + �(x)) , (2.443)

instead of (2.430). From the form above, it is immediately clear that ⇡(x) will not appear in the potential.
In fact, this is given by

V (�⇤�) = �m2

2
[v + �(x)]2 +

�

4
[v + �(x)]4 . (2.444)

From this form above we see that �(x) is the massive real scalar field with

m� =

p
2� v , (2.445)

just as before. This also means that ⇡(x) cannot get a mass, i.e.

m⇡ = 0 , (2.446)

and therefore is the NGB. In fact, it will only appear in the lagrangian in derivative form since it is the
only way it will come down from the exponentials before these annihilate in the kinetic scalar term.

From the parametrization (2.443) it is also obvious how to remove ⇡(x) by means of a gauge transfor-
mation. Clearly, choosing the gauge transformation

�(x) ! �0(x) = e�i⇡(x)/v �(x) , (2.447)

results in

�0(x) = [v + �(x)] . (2.448)

Of course, the gauge transformation (2.447) is the same we introduced earlier in (2.436) only substituting
⇡(x) for ⇠(x), and it therefore results in the same transformation for the gauge fields as in (2.437).
Therefore, our conclusions are exactly the same as the ones we derived by using (2.430) as the field
expansion: there is a massive gauge boson field with mass mA = e v and a massive reals scalar with
mass given by (2.445).

We finally comment on the meaning of spontaneously breaking a gauge symmetry. Specifically, we want
to address the point that although the gauge boson has acquired a mass, the gauge symmetry is still
present. To show this, let us go back to the gauge where we have both the gauge boson and the NGB. We
want to compute the gauge boson two-point function at tree level. In particular we want to consider the
effect of spontaneous symmetry breaking. We will need to use the Feynman rule illustrated in Figure 19.
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= +

q

Fig. 20: New contributions to the gauge boson two-point function at tree level in the presence of spon-
taneous symmetry breaking. The first diagram is the gauge boson mass term insertion. The second one
corresponds to the massless NGB contribution.

The calculation is illustrated in Figure 20. In addition to the tree-level gauge boson propagator, there are
two new terms contributing: the gauge boson mass insertion and the massless NGB pole. They are

i�⇧µ⌫ = im2
Agµ⌫ +mAqµ

i

q2
mA(�q⌫)

(2.449)

= im2
A

✓
gµ⌫ �

qµq⌫
q2

◆
.

In the first line in (2.449) we used the gauge boson–NGB mixing Feynman rule of Figure 19. The result
is that the new additions to the two-point function result to be actually transverse. That is, we have that

qµ�⇧µ⌫ = 0 , (2.450)

so that the two-point function remains transverse, therefore respecting the Ward identities. Since the
Ward identities are equivalent to current conservation, we conclude that the gauge symmetry is still
preserved, even in the presence of the gauge boson mass term. We can see that this required the presence
of the NGB pole. Just having the gauge boson mass term would have resulted in a non-transverse
contribution to the two-point function, and an explicit violation of the gauge symmetry. So having a
gauge boson mass is compatible with gauge invariance as long as it is the result of spontaneous symmetry
breaking.

2.3.3 Spontaneous Breaking of Non Abelian Global Symmetries

Before we can finally go into the application of the ABEH mechanism to the EWSM, we need to gener-
alize the spontaneous breaking to the cases of non-abelian symmetries, both global and gauged. We start
with the simpler case of the global symmetry and we will restate Goldstone’s theorem in a more gen-
eral way so as to include different symmetry breaking patterns, which will result in a different number
of Nambu–Goldstone Bosons (NGBs). Then we will consider the spontaneous breaking of non abelian
gauge symmetries, i.e. the most general version of the ABEH mechanism.

We start with the lagrangian for a scalar field �,
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L = @µ�
†@µ�� µ2

2
�†�� �

4

⇣
�†�

⌘2
. (2.451)

The lagrangian above is invariant under the transformation

�(x) ! ei↵
a
t
a
�(x) , (2.452)

where the ta are the generators of the non abelian group G, and the arbitrary parameters ↵a are constants.
Here the scalar field �(x) must carry a group index in order for (2.452) to make sense. We say the
symmetry is spontaneously broken if we have

µ2
= �m2 < 0 , (2.453)

then the potential has a non trivial minimum at

⇣
�†�

⌘

0
= h�†�i = m2

�
⌘ v2 . (2.454)

However, we need to ask how is the symmetry spontaneously broken. In other words, Spontaneous
Symmetry Breaking (SSB) means that the value of the field at the minimum, let us call it the vacuum
expectation value (VEV) of the field h�i , is not invariant under the symmetry transformation (2.452).
That is,

h�i ! ei↵
a
t
a h�i =

⇣
1 + i↵ata + · · ·

⌘
h�i , (2.455)

can be either equal to h�i or not. This tells us that if

tah�i = 0 , (2.456)

the ground state is invariant under the action of the symmetry (unbroken symmetry directions ), whereas
if

tah�i 6= 0 , (2.457)

the ground state is not invariant (broken symmetry directions). We see that some of the generators will
annihilate the ground state h�i, such as in (2.456), whereas others will not. In the first case, these
directions in group space will correspond to preserved or unbroken symmetries. Therefore, there should
not be massless NGBs associated with them. On the other hand, if the situation is such as in (2.457),
then the ground state is not invariant under the symmetry transformations defined by these generators.
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These directions in group space defined broken directions or generators and there should be a massless
NGB associated with each of them. Thus, as we will see in more detail below, the number of NGB will
correspond to the total number of generators of G, minus the number of unbroken generators, i.e. the
number of broken generators.

Example: SU(2)

As a first example, let us consider the case where the symmetry transformations are those associated with
the group G = SU(2). The three generators of SU(2) are

ta =
�a

2
, (2.458)

with �a the three Pauli matrices. This means that the scalar fields appearing in the lagrangian (2.451) are
doublets of SU(2), i.e. we can represent them by a column vector

�(x) =

0

B@
�1(x)

�2(x)

1

CA , (2.459)

and that the symmetry transformation can be written as6

�i(x) =
⇣
�ij + i↵ataij + · · ·

⌘
�j(x) , (2.460)

where i, j = 1, 2 are the group indices for the scalar field in the fundamental representation. We now
need to choose the vacuum h�i. This is typically informed by either the physical system we want to
describe or by the result we want to get. Let us choose

h�i =
 

0

v

!
. (2.461)

Clearly this satisfies (2.454). This choice corresponds to having

hRe[�1]i = 0 hIm[�1]i = 0

hRe[�2]i = v hIm[�2]i = 0 , (2.462)

in (2.459). We can now test what generators annihilate the vacuum (2.461) and which ones do not. We
6We put the group indices in the fields upstairs for future notational simplicity. There is no actual meaning to them being “up”
or “down” indices, but the summation convention still holds.
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have

t1 h�i = 1

2

 
0 1

1 0

!  
0

v

!
=

1

2

 
v

0

!
6=
 

0

0

!
. (2.463)

Similarly, we have

t2 h�i = 1

2

 
0 �i

i 0

!  
0

v

!
=

1

2

 
�iv

0

!
6=
 

0

0

!
, (2.464)

and

t3 h�i = 1

2

 
1 0

0 �1

!  
0

v

!
=

1

2

 
0

�v

!
6=
 

0

0

!
. (2.465)

So we conclude that with the choice of vacuum (2.461), all SU2) generators are broken. This means
that all the continuous symmetry transformations generated by (2.452) change the chosen vacuum h�i.
Thus, Goldstone’s theorem predicts there must be three massless NGBs. In order to explicitly see who
are these NGBs, we write the lagrangian (2.451) in terms of the real scalar degrees of freedom as in

�(x) =

0

B@
Re[�1(x)] + i Im[�1(x)]

v +Re[�2(x)] + i Im[�2(x)]

1

CA , (2.466)

which amounts to expanding about the vacuum (2.461) as long as (2.462) is satisfied. Substituting in
(2.451) we will find that there are three massless states, namely, Re[�1(x)] , Im[�1(x)] and Im[�2(x)],
and that there is a massive state corresponding to Re[�2(x)] with a mass given by m. this looks very
similar to waht we obtain in the abelian case, of course. Also analogously to the abelian case, we could
have parametrized �(x) as in

�(x) = ei⇡
a(x)ta/f

 
0

v + c�(x)

!
, (2.467)

where �(x) and ⇡a(x), with a = 1, 2, 3 are real scalar fields, and the scale f and the constant c are to be
determined so as to obtain canonically normalized kinetic terms for them in L. In fact, choosing

f =
vp
2
, c =

1p
2
, (2.468)

we arrive at
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L =
1

2
@µ�@µ� +

1

2
@µ⇡a@µ⇡

a � m2

2

⇣
v +

�(x)p
2

⌘2
+
�

4

⇣
v +

�(x)p
2

⌘4
, (2.469)

from which we see that the three ⇡a(x) fields are massless and are therefore the NGBs. Furthermore,
using m2

= �v2, we can extract

m� = m = � v (2.470)

The choice of vacuum h�i resulting in this spectrum could have been different. For instance, we could
have chosen

h�i =
 

v

0

!
. (2.471)

But it is easy to see that this choice is equivalent to (2.461), and that it would result in an identical real
scalar spectrum. Similarly, the aparently different vacuum

h�i = 1p
2

 
v

v

!
, (2.472)

results in the same spectrum. All these vacuum choices spontaneously break SU(2) completely, i.e.
there are not symmetry transformations that respect these vacua. Below we will see an example of
partial spontaneous symmetry breaking.

2.3.3.1 Goldstone Theorem Revisited

We now can reformulte Goldstone theorem for the case of the spontaneous breaking of the global non
abelian symmetry. We go back to considering the infinitesimal transformation (2.460), but we rewrite it
as

�i ! �i +�
i
(�) , (2.473)

where we defined

�
i
(�) ⌘ i↵a

(ta)ij�
j . (2.474)

If the potential has a non trivial minimum at �i
(x) = �i0, then it is satisfied that

@V (�i)

@�i

���
�0

= 0 . (2.475)

92



CERN Yellow Reports: Monographs, CERN-2023-XXX

We can then expand the potential around the minimum as

V (�i) = V (�i0) +
1

2

⇣
�i � �i0

� ⇣
�j � �j0

⌘ @2V

@�i@�j

���
�0

+ · · · , (2.476)

where the first derivative term is omitted in light of (2.475). The second derivative term in (2.476) Above
defines a matrix with units of square masses:

M2
ij ⌘

@2V

@�i@�j

���
�0

� 0 . (2.477)

where the last inequality results from the fact that �0 is a minimum. M2
ij

is the mass squared matrix. We
are now in the position to state Goldstone’s theorem in this context.

Theorem:
“For each symmetry of the lagrangian that is not a symmetry of the vacuum �0, there is a zero eigenvalue
of M2

ij
.”

Proof:
The infinitesimal symmetry transformation in (2.473) leaves the lagrangian invariant. In particular, it
also leaves the potential invariant, i.e.

V (�i) = V
⇣
�i +�

i
(�)

⌘
. (2.478)

Expanding the right hand side of (2.478) and keeping only terms leading in �
i
(�), we can write

V (�i) = V (�i) +�
i
(�)

@V (�i)

@�i
, (2.479)

which, to be satisfied requires that

�
i
(�)

@V (�)

@�i
= 0 . (2.480)

To make this result useful, we take a derivative on both sides and specified for �i = �i0, i.e. we evaluate
all the expression at the minimum of the potential. We obtain

@�i
(�)

@�j

���
�0

@V (�)

@�i

���
�0

+�
i
(�0)

@2V (�)

@�j@�i

���
�0

= 0 . (2.481)

But by virtue of (2.475), the first term above vanishes, leaving us with
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�
i
(�0)

@2V (�)

@�j@�i

���
�0

= 0 . (2.482)

There are two ways to satisfy (2.482):

1. �
i
(�0) = 0.

But this means that, under a symmetry transformation, the vacuum is invariant, since according to
(2.473) this results in

�i0 ! �i0 . (2.483)

2. �
i
(�o) 6= 0.

This requires that the second derivative factor in (2.482) must vanish, i.e.

M2
ij = 0 . (2.484)

We then conclude that for each symmetry transformation that does not leave the vacuum invariant

there must be a zero eigenvalue of the mass squared matrix M2
ij

. QED.

2.3.4 Spontaneous Breaking of Non Abelian Gauge Symmetries

We will now consider the case when the spontaneously broken non abelian symmetry is gauged. As we
saw for the case of abelian gauge symmetry, the spontaneous breaking of the symmetry will be realized
in the sense of the ABEH mechanism, i.e. the NGBs would not be in the physical spectrum, and the
gauge bosons associated with the broken generators will acquire mass. We will derive these results
carefully in what follows.

We consider a lagrangian invariant under the gauge transformations

�(x) ! ei↵
a(x) ta �(x) , (2.485)

where ta are the generators of the group G, and the gauge fields transform as they should. If we consider
infinitesimal gauge transfomations and write out the field �(x) in its groups components, we have

�i(x) !
�
�ij + i↵a

(x) (ta)ij
�
�j(x) (2.486)

In general, we consider representations where the �i(x) fields in (2.486) are complex. But for the purpose
of our next derivation, it would be advantegeous to consider their real components. So if the original
representation had dimension n, we now have 2n componentes in the real fields �i(x). If this is the case,
then the generators in (2.486) must be imaginary, since the ↵a

(x) are real paramenter functions. This
means we can write them as
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taij = i T a

ij , (2.487)

where the T a

ij
are real. Also, since the ta are hermitian, we have

�
taij
�†

= taij , (2.488)

we see that

T a

ij = �T a

ji , (2.489)

so the T a are antisymmetric. In general, the lagrangian of the gauge invariant theory for a scalar field in
terms of the real scalar degrees of freedom would be7

L =
1

2

⇣
Dµ�i

⌘⇣
Dµ�i

⌘
� V

�
�i
�
, (2.490)

where the repeated i indices are summed. We can write the covariant derivatives above as

Dµ�(x) =
�
@µ � igAa

µ(x)t
a
�
�(x) =

�
@µ + gAa

µ(x)T
a
�
�(x) , (2.491)

where we omitted the group indices for the fields and the generators. We are interested in the situation
when the potential in (2.490) induces spontaneous symmetry breaking. To see how this affects the gauge
boson spectrum we must examine in detail the scalar kinetic term:

1

2

�
Dµ�i

� �
Dµ�i

�
=

1

2
@µ�i @

µ�i +
1

2
g2Aa

µA
bµ
�
T a�

�
i

�
T b�

�
i

(2.492)

+ gAa

µ

�
T a�

�
i
@µ�i ,

where we used the notation

�
T a�

�
i
= T a

ij�j , (2.493)

and as usual repeated group indices i, j are summed. If the potential V (�i) has a non trivial minimum
then, the vacuum expectation value (VEV) of the fields �i at the minimum is

7Here we concentrate on the scalar sector of L since it is here that SSB of the gauge symmetry arises. We can imagine adding
fermion terms to L coupling them both to the gauge bosons through the covariant derivative, as well as Yukawa couplings
between the fermions and the scalars. Of course, all these terms must also respect gauge invariance.
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h0|�i|0i = h�ii ⌘
�
�0
�
i
, (2.494)

which says that we are signling out directions in field space which may have non trivial VEVs. Then the
terms in L quadratic in the gauge boson fields, i.e. the gauge boson mass terms, can be readily read off
(2.492):

Lm =
1

2
M2

ab
Aa

µA
bµ , (2.495)

where the gauge boson mass matrix is defined by

M2
ab

⌘ g2
�
T a�0

�
i

�
T b�0

�
i
. (2.496)

Since the T a’s are real, the non zero eigenvalues of M2
abv

are definite positive. We can clearly see now
that if

T a�0 = 0, (2.497)

then the associated gauge boson Aa
µ remains massless. That is, theunbroken generators, which as we

saw in the previous lecture, do not have NGBs associated with them, do not result in a mass term for the
corresponding gauge boson. On the other hand, if

T a�0 6= 0 , (2.498)

then we see that this results in a gauge boson mass term. The generators satisfying (2.498) are of course
the broken generators which result in massless NGBs. However, just as we saw for the abelian case,
these NGBs can be removed from the spectrum by a gauge transformation. To see how this works we
consider the last term in (2.492), the mixing term. This is

Lmix. = gAa

µ

�
T a�0

�
i
@µ�i . (2.499)

Thus, we see that if the associated generator is broken, i.e. (2.498) is satisfied, then there is mixing of the
corresponding gauge boson with the massless �i fields, the NGBs. It is clear that, just as in the abelian
case, we can eliminate this term by a suitable gauge transformation on Aa

µ. This would still leave the
mass term unchanged, but would completely eliminate the NGBs mixing in (2.499) from the spectrum.
But even if we leave the NGBs in the spectrum, and we still have to deal with the mixing term (2.499),
we can still see that the gauge boson two point function remains transverse, a sign that gauge invariance
is still respected despite the appearance of a gauge boson mass. This is depicted in Figure 21.
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(a) (b) (c)

Fig. 21: Contributions to the gauge boson two point function in the presence of spontaneous gauge
symmetry breaking. Diagram (a) includes the tree level as well as loop diagrams, all of which are
transverse contributions. Diagram (b) is the contribution from the gauge boson mass term. Diagram (c)
depicts the contribution from the massless NGBs.

In order to obtain diagram (c) we need to derive the Feynman rule resulting from the mixing term Lmix

(2.499). In momentum space this becomes

q
a

= g
�
T a�0

�
i
qµ ,

where the NGB momentum is flowing out of the vertex (its sign changes if it is flowing into the vertex).
The contributions to diagram (a) are transverse as they come from either the leading order propagator or
the loop corrections to it, both already shown to be transverse. Then the two point function for the gauge
boson in the presence of spontaneous symmetry breaking is

⇧µ⌫ = ⇧
(a)
µ⌫ + iM2

ab
gµ⌫ + g

�
T a�0

�
i
qµ

i�ab
q2

g
�
T b�0

�
i
(�q⌫

�

= ⇧
(a)
µ⌫ + iM2

ab

�
gµ⌫ �

qµ a⌫
q2

�
, (2.500)

where to obtain the second line we used (2.496). Then, just as we saw for the abelian case, we see that
the gauge boson two point function is transverse even in the presence of gauge boson masses.

Example: SU(2)

In this first example we gauge the SU(2) of the first example in the previous lecture. The lagrangian

L =
�
Dµ�

�†
Dµ�� V (�†�)� 1

4
F a

µ⌫F
aµ⌫ , (2.501)

with the covariant derivative on the scalar field is8

Dµ�(x) =
�
@µ � igAa

µ(x)t
a
�
�(x) , (2.502)

where the SU(2) generators are given in terms of the Pauli matrices as
8We have gone back to complex scalar fields for the remaining of the lecture.
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ta =
�a

2
, (2.503)

with a = 1, 2, 3. Since they transform according to

�(x)j ! ei↵
a(x)tajk �k(x) , (2.504)

with j, k = 1, 2, then that are doublets of SU(2). Since each of the �j(x) are complex scalar fields, we
have four real scalar degrees of freedom. We will consider the vacuum

h�i =
 

0

vp
2

!
, (2.505)

such that, as required by imposing a non trivial minimum, we have

h�†�i = v2

2
, (2.506)

where the factor of 2 above is chosen for convenience. We are particularly interested in the gauge boson
mass terms. These can be readily obtained by substituting the vacuum value of the field in the kinetic
term. This is

Lm =
�
Dµh�i

�†
Dµh�i ,

=
g2

2
Aa

µA
bµ
�
0 v

�
tatb

 
0

v

!
, (2.507)

where we used (2.505) in the second line. But for the case of SU(2) we can use the fact that

�
�a,�b

 
= 2�ab , (2.508)

which translates into

�
ta, tb

 
=

1

2
�ab , . (2.509)

Then, if we write

Aa

µA
bµ ta tb =

1

2
Aa

µA
bµ ta tb +

1

2
Ab

µA
aµ tb ta
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=
1

2
Aa

µA
bµ
�
ta, tb

 
=

1

4
Aa

µA
aµ , (2.510)

where in the last euality we used (2.509). Then we obtain

Lm =
1

8
g2 v2Aa

µA
aµ , (2.511)

which results in a gauge boson mass of

MA =
g v

2
. (2.512)

Notice that all three gauge bosons obtain this same mass. It is interesting to compare this result with
what we obtained in the previous lecture for the spontaneous breaking of a global SU(2) symmetry
using the same vacuum as in (2.505). In that case, we saw that all generators were broken, i.e. there are
three massless NGBs in the spectrum and the SU(2) is completely (spontaneously) broken in the sense
that none of its generators leaves the vacuum invariant. In the case here, where the SU(2) symmetry is
gauged, we see that all three gauge bosons get masses. This is in fact the same phenomenon: none of the
gauge symmetry leaves the SU(2) vacuum (2.505) invariant. However, the end result is three massive
gauge bosons, not three massless NGBs. We argued in our general considerations above that, just as for
the abelian case before, the NGBs can be removed by a gauge transformation. Let us see how this can
be implemented. We consider the following parametrization of the SU(2) doublet scalar field:

�(x) = ei⇡
a(x)ta/v

0

B@
0

v+�(x)p
2

1

CA , (2.513)

where �(x) and ⇡a(x) with a = 1, 2, 3 are real sclalar fields satisfying

h�(x)i = 0 = h⇡a(x)i , (2.514)

so that this choice of parametrization is consistent with the vacuum (2.505). Clearly, the potential will
not depend on the ⇡a(x) fields

V (�†�) = �m2

2
�†�+

�

2

�
�†�

�2
, (2.515)

The minimization results in9

9Notice the different factor in the denominator of the second term. This is due to the factor of
p
2 in the definition of the

vacuum.
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h�†�i = m2

2�
, (2.516)

which results in

v2 =
m2

�
. (2.517)

Replacing this in the potential (2.515) we obtain

m� =

p
2� v . (2.518)

And of course, the implicit result of having

m⇡1 = m⇡2 = m⇡3 = 0 . (2.519)

But how do we get rid of the massless NGBs ? If we define the following gauge transformation

U(x) ⌘ e�i⇡
a(x)ta/v (2.520)

under which the fields transform as

�(x) ! �0(x) = U(x)�(x) =

0

B@
0

v+�(x)p
2

1

CA ,

(2.521)

Aµ ! A0
µ = U(x)Aµ U

�1
(x)� i

g

�
@µU(x)

�
U�1

(x) ,

where we used the notation Aµ = Aa
µt

a. It is clear from the first transformation above, that �0(x) does
not depend on the ⇡a(x) fields. Thus, the gauge transformation (2.521) has removed them from the
spectrum completely. However, the number of degrees of reedom is the same in boths gauges. We had
three transverse gauge bosons (i.e. 6 degrees of freedom) and four real scalar fields. In this new gauge
we have three massive gauge bosons (i.e. 9 degrees of freedom) plus one real scalar, �(x). The total
number of degrees of freedom is always the samee. The gauge were the NGBs diissapear of the spectrum
is called the unitary gauge.
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2.3.5 The ABEH Mechanism in the Electroweak Standard Model

In order to apply what we learned in the previous section to the EWSM, we have to introduce a scalar
field in to it. We must define the representation of SU(2)L ⇥ U(1)Y for this new field. We consider a
scalar field � in the fundamental representation of SU(2)L and with assignmento of hypercharge U(1)Y ,

Y� = 1/2 . (2.522)

That the scalar is in the fundamental representation of SU(2)L means that it is a scalar doublet, dubbed
the Higgs doublet. It can be written as

� =

 
�+

�0

!
, (2.523)

where �+ and �0 are complex scalar fields, resulting in four real scalar degrees of freedom10. Under a
SU(2)L ⇥ U(1)Y gauge transformation, the Higgs doublet transforms as

�(x) ! ei↵
a(x)ta ei�(x)Y� ,�(x) , (2.524)

where ta are the SU(2)L generators (i.e. Pauli matrices divided by 2), ↵a
(x) are the three SU(2)L

gauge parameters, �(x) is the U(1)Y gauge parameter, and it is understood that the U(1)Y factor of the
gauge transformation contains a factor of the identity I2⇥2 after the hypercharge Y�. Thus, the covariant
derivative on � is given by

Dµ�(x) =
⇣
@µ � igAa

µ(x)t
a � ig0Bµ(x)Y�I2⇥2

⌘
�(x) . (2.525)

Here, Aa
µ(x) is the SU(2)L gauge boson, Bµ(x) the U(1)Y gauge boson, and g and g0 are their corre-

sponding couplings. The lagrangian of the scalar and gauge sectors of the SM is then

L =
�
Dµ�

�†
Dµ

�� V (�
†
�)� 1

4
F a

µ⌫F
aµ⌫ � 1

4
Bµ⌫B

µ⌫ , (2.526)

where F a
µ⌫ is the usual SU(2) field strength built out of the gauge fields Aa

µ(x) and Bµ⌫ is the U(1)Y

field strength given by the abelian expression

Bµ⌫ = @µB⌫(x)� @⌫Bµ(x) . (2.527)

As usual, we consider the potential

10At this point, the labels “+” and “0” are just arbitrary, since we have not even defined electric charges But these labels will
be consistent in the future, after we have done this.
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V (�
†
�) = �m2

�
�
†
�
�
+ �

�
�
†
�
�2

, (2.528)

which is minimized for

h�†
�i = m2

2�
⌘ v2

2
. (2.529)

In order to fulfil this, we choose the vacuum

h�i =
 

0

vp
2

!
. (2.530)

Just as in the previous examples of SSB of non abelian gauge symmetries, the next question is what
is the symmetry breaking pattern, i.e. what gauge bosons get what masses, if any. In particular, we
want one of the four gauge bosons in G to remain massless after imposing the vacuum h�i in (2.530).
This means that there must be a generator or, in this case, a linear combination of generators of G that
annihilates h�i, leaving the vacuum invariant under a G transformation. This combination of generators
must be associated with the massless photon in U(1)EM, the remnant gauge group after the spontaneous
breaking. One trick to identify this combination of generators is to consider the gauge transformation
defined by

↵1
(x) = ↵2

(x) = 0

↵3
(x) = �(x) . (2.531)

The exponent in the gauge transformation has the form

i↵3
(x)t3 + i�(x)Y�I2⇥2 = i

�(x)

2

h 
1 0

0 �1

!
+

 
1 0

0 1

!i

=
i�(x)

2

 
1 0

0 0

!
. (2.532)

Then we see that this combination

�
t3 + Y�

�
h�i = 0 , (2.533)

indeed annihilates the vacuum, leaving it invariant. Thus, we suspect that this linear combination of
SU(2)L ⇥ U(1)Y generators must be associated with the massless photon. We will come back to this

102



CERN Yellow Reports: Monographs, CERN-2023-XXX

point later.
We now go to extract the gauge boson mass terms from the scalar kinetic term in (2.526). This is

Lm =
�
Dµh�i

�†
Dµh�i

=
1

2
(0 v)

�
gAa

µt
a
+ g0Y�Bµ

��
gAbµtb + g0Y�B

µ
�
 

0

v

!
. (2.534)

For the product of the two SU(2) factors we will use the trick in (2.510). Then, the only terms we need
to be careful about are the mixed ones: one SU(2) times one U(1)Y contribution. There are two of them,
and each has the form

1

2
(0 v) g g0

�3

2
Y�

 
0

v

!
= �1

2

v2

4
g g0A3

µB
µ , (2.535)

where in the second equality we used Y� = 1/2. We then have

Lm =
1

2

v2

4

n
g2A1

µA
1µ

+ g2A2
µA

2µ
+ g2A3

µA
3µ

+ g02BµB
µ � 2gg0A3

µB
µ

o
. (2.536)

From this expression we can clearly ee that A1
µ and A2

µ acquire masses just as we saw in the pure SU(2)

example. It will be later convenient to define the linear combinations

W±
µ ⌘

A1
µ ⌥ iA2

µp
2

, (2.537)

which allows us to write the first two terms in (2.536) as

LW

m =
g2 v2

4
W+

µ W�µ . (2.538)

These two states have masses

MW =
g v

2
. (2.539)

On the other hand, the fact that A3
µ and Bµ have a mixing term prevents us from reading off masses.

We need to rotate these states to go to a bases without mixing, a diagonal basis. In order to clarify what
needs to be done, we can write the last three terms in (2.536 in matrix form
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Lneutral
m =

1

2

v2

4
(A3

µ Bµ)

 
g2 �g g0

�g g0 g02

!  
A3µ

Bµ

!
, (2.540)

where the task is to find the eigenvalues and eigenstates of the matrix above. It is clear that one of the
eigenvalues is zero, since the determinant vanishes. Then the squared masses of the physical neutral
gauge bosons are

M2
� = 0

(2.541)

M2
Z =

v2

4
(g2 + g02)

The eigenstates in terms of A3
µ and Bµ, the original SU(2)L and U(1)Y gauge bosons respectively, are

Aµ ⌘ 1p
g2 + g02

�
g0A3

µ + gBµ

�
(2.542)

Zµ ⌘ 1p
g2 + g02

�
gA3

µ � g0Bµ

�
. (2.543)

Alternatively, we could have obtained the same result by defining an orthogonal rotation matrix to diag-
onalize the interactions above. That is, rotating the states by

 
Zµ

Aµ

!
=

 
cos ✓W � sin ✓W

sin ✓W cos ✓W

!  
A3

µ

Bµ

!
, (2.544)

results in diagonal neutral interactions if we have

cos ✓W ⌘ gp
g2 + g02

, sin ✓W ⌘ g0p
g2 + g02

, (2.545)

where ✓W is called the Weinberg angle. It is useful to invert (2.544) to obtain

A3
µ = sin ✓WAµ + cos ✓WZµ (2.546)

Bµ = cos ✓WAµ � sin ✓WZµ . (2.547)
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Using these expressions for A3
µ and Bµ we can replace them in the covariant derivative acting on the

scalar doublet �. Their contribution fo Dµ is

�igA3
µt

3 � ig0Y�Bµ = �iAµ

�
g sin ✓W t3 + g0 cos ✓WY�

�
� i

�
g cos ✓W t3 � g0 sin ✓WY�

�
Zµ

(2.548)

= �ig sin ✓W
⇣
t3 + Y�

⌘
Aµ � i

g

cos ✓W

⇣
t3 � (t3 + Y�) sin

2 ✓W
⌘
Zµ ,

where it is always understood that the hypercharge Y� is always multiplied by the identity, and in the last
identity we used the fact that

g0 cos ✓W = g sin ✓W , (2.549)

and trigonometric identities. We can conclude that is Aµ is to be identified with the photon field, then its
coupling must be e times the charged of the particle it is coupling to (e.g. �1 for an electron. Thus we
must impose that

e = g sin ✓W , (2.550)

and that the charge operator, acting here on the field � coupled to Aµ is defined as

Q = t3 + Y� . (2.551)

Then we can read the photon coupling to the doublet scalar field � from

� i eAµQ�(x) = �i eAµQ

 
�+

�0

!
. (2.552)

Substituting Y� = 1/2 we have

Q

 
�+

�0

!
=

 
1 0

0 0

!  
�+

�0

!
=

 
�+

0

!
, (2.553)

which tells us that the top complex field in the scalar doublet has charge equal to 1 (in units of e, the
proton charge), whereas the bottom component has zero charge, justifying our choice of labels. On the
other hand, we see that fixing Q to be the electromagnetic charge operator, completely fixes the couplings
of Zµ to the scalar �. This is now, from (2.548),
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� i
g

cos ✓W
Zµ

⇣
t3 �Q sin

2 ✓W
⌘
� . (2.554)

We will see below that the choice of fixing the Aµ couplings to be those of electromagnetism, fixes
completely the Zµ couplings to all fermions, giving a wealth of predictions.

2.3.6 Gauge Couplings of Fermions

The SM is a chiral gauge theory, i.e. its gauge couplings differ for different chiralities. To extract the
left handed fermion gauge couplings, we look at the covariant derivative

Dµ L =
�
@µ � igAa

µt
a � ig0Y LBµ

�
 L , (2.555)

where Y L is the left handed fermion hypercharge. On the other hand, since right handed fermions do
not feel the SU(2)L interaction, their covariant derivative is given by

Dµ R =
�
@µ � ig0Y RBµ

�
 R , (2.556)

with Y R its hypercharge. Using the covariant derivatives above, we can extract the neutral and charged
couplings. We start with the neutral couplings, which in terms of the gauge boson mass eigenstates are
the couplings to the photon and the Z.

Neutral Couplings: From (2.555), the neutral gauge couplings of a left handed fermions are

�
�igt3A3

µ � ig0Y LBµ

�
 L = ig sin ✓W

�
t3 + Y L

�
Aµ  L

� i

�
g2t3 � ig02Y L

�
p
g2 + g02

Zµ  L , (2.557)

where on the right hand side we made use of (2.546) and (2.547). Now, we know that the photon coupling
should be

� ieQ L , (2.558)

with Q L the fermion electric charge operator. Thus, we must identify

Q L = t3 + Y L , (2.559)

as the fermion charge. We can use our knowledge of the fermion charges to fix their hypercharges. As
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an example, let us consider the left handed lepton doublet. For the lightest family, this is written in the
notation

L =

 
⌫eL

e�
L

!
. (2.560)

The action of t3 on L is

t3 L =

 
1/2 0

0 �1/2

!  
⌫eL

e�
L

!

=

 
(1/2) ⌫eL
(�1/2) e�

L

!
⌘
 

t3⌫eL ⌫eL
t3eL e�

L

!
, (2.561)

where in the last equality we defined t3⌫eL = 1/2 and t3eL as the eigenvalues of the operator t3 associated
to the electron neutrino and the electron. Then, we have

QL L =

 
1/2 + YL 0

�1/2 + YL 0

!  
⌫eL

e�
L

!
=

 
(1/2 + YL) ⌫eL
(�1/2 + YL) eL

!
. (2.562)

But we know that the eigenvalue of the charge operator applied to the neutrino must be zero, as well as
that the eigenvalue of the electron must be �1. Thus, we obtain the hypercharge of the left handed lepton
doublet

YL = �1

2
, (2.563)

which is fixed to give us the correct electric charges for the members of the doublet L. We can do the
same with the right handed fermions. These, however do not have t3 in the covariant derivative (see
(2.556) ). Then, for e�

R
, the right handed electron, we have that t3eR = 0, which means that, since

Q
e
�
R
= �1 , (2.564)

then the right handed electron’s hypercharge is equal to it:

Y
e
�
R
= �1 . (2.565)

Similarly, the right handed electron neutrino has zero electric charge, which results in
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Y⌫R = 0 . (2.566)

Now that we fixed all the lepton hypercharges by imposing that they have the QED couplings to the
photon, we can extract their couplings to the Z as predictions of the electroweak SM. From (2.557) we
have

�i
�
g cos ✓W t3 � g0 sin ✓W Y 

�
Zµ  = �i

g

cos ✓W

�
cos

2 ✓W t3 � sin
2 ✓W Y 

�
Zµ  

= �i
g

cos ✓W

�
t3 � sin

2 ✓W Q 

�
Zµ  , (2.567)

where the initial expressios makes use of cos ✓W and sin ✓W in terms of g and g0, in the first equality we
used that tan ✓W = g0/g and, in the final equality, we used that in general Q = t2 + Y , independently
of the fermion chirality, as long as we generalize (2.559) for right handed fermions using t3

 R
= 0. For

instance, from (2.567) we can read off the lepton couplings of the Z boson. These are,

⌫eL : �i
g

cos ✓W

⇣
1

2

⌘

e�
L
: �i

g

cos ✓W

⇣
�1

2
+ sin

2 ✓W
⌘

(2.568)

e�
R
: �i

g

cos ✓W

⇣
sin

2 ✓W
⌘

⌫eR : 0 .

From the couplings above, we see that every lepton has a different predicted coupling to the Z. These
are, of course, three level predictions. Measurements of these Z couplings have been performed with
subpercent precision for a long time, and the SM predictions for the fermion gauge couplings have passed
the tests every time. Another, interesting point, is that right handed neutrinos have no gauge couplings

in the SM: no Z coupling, certainly no electric charge and no QCD couplings. Thus, from the point of
view of the SM, the right handed neutrino need not exist.

Charged Couplings:

We complete here the derivation of the gauge couplings of leptons by extracting their charged cou-
plings.These come from the SU(2)L gauge couplings, as we see from

� ig
�
A1

µt
1
+A2

µt
2
�
= �i

gp
2

 
0 W+

µ

W�
µ 0

!
, (2.569)

108



CERN Yellow Reports: Monographs, CERN-2023-XXX

which then involve only left handed fermions. Then, from the gauge part of the left handed doublet
kinetic term

LL = L̄i 6DL , (2.570)

we obtain their charged couplings

Lch.
L = (⌫̄eL ēL) �

µ
gp
2

 
0 W+

µ

W�
µ 0

!  
⌫eL
eL

!

(2.571)

=
gp
2

n
⌫̄eL�

µeLW+
µ + ēL�

µ⌫eL W�
µ

o
,

where we can see that, as required by hermicity, the second term is the hermitian conjugate of the first.
The Fermi lagrangian can be obtained from Lch.

L
by integrating out the W± gauge bosons.

We now briefly comment on the electroweak gauge coulpings of quarks. Just as for leptons, we concen-
trate on the first family. The left handed quark doublet is

qL =

 
uL

dL

!
, (2.572)

We know that, independently of helicity, the charges of the up and down quarks are Qu = +2/3 and
Qd = �1/3. Then we have

QqL =

⇣
t3 + YqL

⌘
=

 
+2/3 0

0 �1/3

!
, (2.573)

which results in

YqL =
1

6
. (2.574)

The hypercharge assignments for the right handed quarks are again trivial and given by the quark electric
charges. We have

YuR = +
2

3
, YdR = �1

3
. (2.575)

With these hypercharge assignments we can now write the quark couplings to the Z. Using (2.567) we
obtain
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uL : �i
g

cos ✓W

⇣
1

2
� sin

2 ✓W
2

3

⌘

dL : �i
g

cos ✓W

⇣
�1

2
+ sin

2 ✓W
1

3

⌘

uR : �i
g

cos ✓W

⇣
� sin

2 ✓W
2

3

⌘

dR : �i
g

cos ✓W

⇣
sin

2 ✓W
1

3

⌘
. (2.576)

Once again, we see that each type of quark has a different coupling to the Z. All of these predictions
have been tested with great precision, confirming the SM even beyond leading order.

The charged gauged couplings of left handed quarks are trivial to obtain: they are dictated by SU(2)L

gauge symmetry and therefore there must be the same as those of the left handed leptons in (2.571). So
we have

Lch.
q =

gp
2

n
ūL�

µdLW+
µ + d̄L�

µuLW�
µ

o
. (2.577)

2.3.7 Fermion Masses

We have seen that SSB leads to masses for same of the gauge bosons, preserving gauge invariance. We
now direct our attention to fermion masses. In principle these terms

Lfm = m  ̄L R + h.c. , (2.578)

are forbidden by SU(2)L⇥ U(1)Y gauge invariance since thy are not invariant under

 L ! ei↵
a(x)ta ei�(x)Y L  L

 R ! ei�(x)Y R  R .

But the operator

 ̄L� R , (2.579)

is clearly invariant under the SU(2)L gauge transformations, and it would be U(1)Y invariant if

� Y L + Y� + Y R = 0 . (2.580)
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Since Y� = 1/2, this form of the oprator will work for the down type quarks and charged leptons. For
instance, since YL = �1/2 and YeR = �1, the operator

� Lme = �e L̄� eR + h.c., (2.581)

is gauge invariant since the hypercharges satisfy (2.580). In (2.581) we defined the dimensionless cou-
pling �e which will result in a Yukawa coupling of electrons to the Higgs boson. To see this, we write
�(x) in the unitary gauge, so that

�Lme = �e (⌫̄eL ēL)

0

B@
0

v+h(x)p
2

1

CA eR + h.c.

= �e
vp
2
ēLeR + �e

1p
2
h(x) ēLeR + h.c. , (2.582)

where the first term is the electro mass term resulting in

me = �e
vp
2
, (2.583)

and the second term is the Yuawa interaction of the electron and the Higgs boson h(x). We can rewrite
(2.582) as

� Lme = me ēLeR +
me

v
h(x) ēLeR + h.c. , (2.584)

from which we can see that the electron couples to the Higgs boson with a strength equal to its mass in
units of the Higgs VEV v. Similarly, for quarks we have that the operator

� Lmd = �e q̄L� dR + h.c., (2.585)

is gauge invariant since YqL = 1/6 and YdR = �1/3 satisfy (2.580). Them we obtain

� Lmd = md d̄LdR +
md

v
h(x) d̄LdR + h.c. , (2.586)

and where the down quark mass was defined as

md = �d
vp
2
. (2.587)
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As we can see, it will be always the case that fermions couple to the Higgs boson with the strength m /v.
Thus, the heavier the fermion, the stronger its coupling to the Higgs.

Finally, in order to have gauge invariant operators with up type right handed quarks we need to use the
operator

� Lmu = �u q̄L�̃uR + h.c. , (2.588)

where we defined

�̃(x) = i�2�(x)⇤ =

0

B@

v+h(x)p
2

0

1

CA , (2.589)

where in the last equality we are using the unitary gauge. It is straightforward11 to prove that �̃(x) is an
SU(2)L doublet with Y�̃ = �1/2, which is what we need so as to make the operator in (2.588) invariant
under U(1)Y . Then we have

� Lmu = mu ūLuR +
mu

v
h(x) ūLuR + h.c. , (2.590)

with

mu = �u
vp
2
. (2.591)

The fermion Yukawa couplings are parameters of the SM. In fact, since there are three families of quarks
their Yuakawa couplings are in general a non diagoinal three by three matrix. This fact has important
experimental consequences. On the other hand, we could imagina having something similar if we intro-
duce a right handed neutrino. This however, might be beyond the SM, since this state does not have any
SM gauge quantum numbers. Overall, the SM is determined by the paremeters v, g, g0 and sin ✓W in the
electroweak gauge sector, plus all the Yukawa couplings in the fermion sector leading to all the observed
fermion masses and mixings.

2.3.8 Fermion Mixing

In the previous section, we considered the fermion masses arising from Yukawa couplings assuming only
one generation of fermions. But instead of (2.581), (2.585) and (2.588), the most general interactions of
fermions with the Higgs doublet can be written as

� LHF = �iju q̄L,i�̃uR,j + �ij
d
q̄L,i�dR,j + �ij

`
¯̀
L,i�`R,j , (2.592)

11Only need to use that �2�2 = 1, and that �2(�a)⇤�2 = ��a.
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where (i, j) = 1, 2, 3 are generation indices, we denote the quark and lepton three generation doublets as
qL,i and `L,i respectively, and similarly with the right handed fermions uR,i, dR,i and `R,i. The Yukawa
couplings now are 3 ⇥ 3 matrices in flavor space: �iju , �ij

d
and �ije . These matrices are genrally non

diagonal and complex. Therefore, so are the mass matrices

M ij

u = �iju
vp
2
, M ij

d
= �ij

d

vp
2
, M ij

`
= �ij

`

vp
2
. (2.593)

These matrices need to be diagonalized by unitary transformation on the fermion fields. For instance, for
the up quark mass matrix we want

Mdiag.
u =

0

B@
mu 0 0

0 mc 0

0 0 mt

1

CA , . . . , (2.594)

where the eigenvalues above are the physical (real) masses of the up type quarks, and similarly for Mdiag.
d

and Mdiag.
`

.

We now concentrate on the quark sector. A similar procedure can be followed in the lepton sec-
tor [3]. The quark mass terms before diagonalization are

� Lmass = ūiLM ij

u uj
R
+ d̄iLM ij

d
dj
R
+ h.c. , (2.595)

To obtain diagonal mass matrices, we define four unitary transformations acting separately on left and
right handed up and down type quarks. These are

uL ! Su

L uL uR ! Su

R uR

dL ! Sd

L dL dR ! Sd

R dR . (2.596)

We choose these quark field unitary transformations such that they satisfy

Mdiag.
u = (Su

L)
†Mu S

u

R and Mdiag.
d

= (Sd

L)
†Md S

d

R . (2.597)

At the same time that the quark field rotations above not diagonalize the mass matrices, it also does so
with the Yukawa couplings of the Higgs bosons to fermions, which are diagonal and in fact given by

mf

v
. (2.598)

However, we should rotate the quark fields appearing in the vector currents, both neutral and charged.

Let us first consider the neutral currents. Since vector currents do not change chirality, we always have

ūL�
µuL or ūR�

µuR , (2.599)

or alternatively,
d̄L�

µdL or d̄R�
µdR . (2.600)

113



2. The Electroweak Standard Model
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Fig. 22: Charged current vertices with an up quark. In addition to the generation-conserving vertex with
a down quark, the CKM matrix allows the generation-changing vertices with the strange and bottom
quarks.

But these currents are clearly invariant under the unitary transformations in (2.596), since they involve
the product of a unitary transformation and its hermitian adjoint, i.e. its inverse. We then conclude that
in the SM there are no flavor changing neutral currents (FCNC) at leading order in perturbation
theory.12

We now consider the quark charged currents . Their contribution to the lagrangian is given by

Lch. =
gp
2
ūiL�

µdiLW+
µ + h.c. , (2.601)

where the repeated flavor index is summed over, and the fields above are those before the diagonalization
of the mass matrices. But once we applied the different field transfomations on ui

L
and di

L
defined in

(2.596), the charged current becomes

Lch ! gp
2
((Su

L)
†Sd

L)ij ū
i

L�
µdj

L
W+

µ + h.c.

=
gp
2
(VCKM)ij ū

i

L�
µdj

L
W+

µ + h.c. , (2.602)

where we defined the Cabibbo-Kobayashi-Maskawa (CKM) matrix as

VCKM ⌘ (Su

L)
† Sd

L . (2.603)

The CKM matrix is non-diagonal which results in generation-changing charged currents. As an example,
Figure 22 shows the possible charge current vertices involving an up quark. Not only can it go to a first
generation anti-down quark, but also –thanks to the CKM matrix being non-diagonal – it can go to an
anti-strange or an anti-bottom quarks. As indicated in (2.602), each of these vertices is accompanied by
a factor of the corresponding CKM matrix element: in this case Vud, Vus and Vub. The conjugate vertices
involving a W� and a ū quark, are multiplied by the complex conjugate of the CKM matrix elements
mentioned above. Of course, similar vertices can be obtained for the other up-type quarks, c and t.

These charged current vertices and the CKM matrix are at the heart of a wealth of phenomena that
we typically call quark “flavor physics”. Not only are behind the typical (unsuppressed, leading order)
decays of heavier quarks, but also enter crucially in the loop generated FCNC in the SM, such b ! s�,
as well as b ! s`+`�, K0 � K̄0, D0 � D̄0 and B0 � B̄0 mixing among others.

12FCNC can be generated in the SM at one loop order. We will see this briefly below, but in much more detail in [4] .
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Of all the possible phases in VCKM all but one can be removed by fields redefinitions. This leads to the
phenomenon of CP violation, which was first observed in kaon decays in 1964, and was further observed
in B meson decays, leading to a precisa mapping of the CKM matrix elements and phase structure. A
detailed presentation of these topics can be found in [4]. A similar application to leptons is in the lectures
of Ref. [3].

3 Testing the Electroweak Standard Model

Now that we know how all the particles in the electroweak SM couple to each other, we can turn to testing
the SM. In this lecture we review the past, present and future tests of the various sectors of the SM that
consolidated our understanding of particle physics in the last decades. We devide this in three distinct
parts: testing the couplings of fermions to gauge bosons, the gauge boson self-couplings and finally the
Higgs couplings to all particles in the SM. However, due to the high precision the experimental tests have
achieved, we need to match this with theoretical precision. This requires that, in many cases we need to
go beyond leading order calculations in order to make predictions in the EWSM that can be meaningfully
tested by these experiments. This forces us to introduce one more aspect of the quantum field theory tool
box: renormalization. We start with a brief summary of renormalization and its applications to some of
the electroweak observables of interest. Then we move to the tests of the electroweak SM.

3.1 Renormalization

Virtual processes in quantum field theory will modify the parameters of a theory, i.e the parameters in the
lagrangian. In perturbation theory these contributions are ordered by an expansion parameter, typically
a coupling constant, in order to have a controlled approximation. For instance, in a theory with a real
scalar with the lagrangian given by

L =
1

2
@µ�@

µ�� 1

2
m2 �2 � �

4!
�4 , (3.604)

the two-point function to order � admits the one-particle irreducible diagrams (1PI) shown in Figure 23.

Fig. 23: 1PI diagrams contributing to the two-point function in the theory with lagrangian (3.604), to
order �.

The first diagram is the free propagator. The second one gives a contribution to the two-point function
that must be integrated over the undetermined four-momentum k, and is

(�i�)

2

Z
d4k

(2⇡)4
i

k2 �m2 + i✏
, (3.605)
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