Machine Learning
Links and References

- Book: *Artificial Intelligence: A Modern Approach*
- Book: *An Introduction to Machine Learning*
- Machine Learning Tutorial
- Machine Learning Tutorial 2
- Video Tutorial: Supervised vs. Unsupervised Learning
Definitions

- Science (or art) of computer programming so that they can **learn from data**;
- "Field of study that gives computers the ability to learn without being explicitly programmed". Arthur Samuel, 1959
- A deterministic algorithm has clear rules to return results according to the provided input.
- If the input can vary widely, this set of rules will be very large, making the execution time unfeasible.
“Traditional” Programming (Rule-Based Systems)

- Dynamic nature of problems requires constant redefinition of rules
- Email SPAM detection system
 - E.g., a machine learning-based spam filter is capable of using various criteria for such classification
 - Characterization of a SPAM can be dynamically adapted according to user markings
 - *Spammers* identify that rules do not detect numbers and change "Two" to 2
“Traditional” Programming (Rule-Based Systems)

- Dynamic nature of problems requires constant redefinition of rules
- Email SPAM detection system
 - E.g., a machine learning-based spam filter is capable of using various criteria for such classification
 - Characterization of a SPAM can be dynamically adapted according to user markings
 - *Spammers* identify that rules do not detect numbers and change "Two" to 2
- Every small change will require rule adaptation.
Machine Learning

- Fundamentally involves building mathematical models to help understand data
 - Arbitrarily complex functions
- Parameter adjustments
 - Allows models to be adapted to observed data
- Thus, such models can be used to predict and understand aspects of unknown data
Utilization of Machine Learning

- Algorithms can be improved based on result analysis;
- Application of techniques to evaluate large amounts of data
 - Discovering patterns that were not apparent
- Used as an iterative process, seeking solutions from data, and optimizing the use of data and algorithms
- This process can be automated to some extent;
Development Cycle

Machine Learning life cycle

1. Data collection
2. Pre-processing
3. Feature engineering
4. Data cleaning
5. Model Training and Validation
6. Deployment
7. Model Testing
8. Maintenance and improvements

MLOps pipeline:
Until the 1990s, it was a problem of estimating a function from a given data collection; With the development of new analysis techniques in the 1990s (e.g., Support Vector Machines)

- Not only a tool for theoretical analysis
- Tool for creating practical algorithms to estimate functions with inputs in N-Dimensions;
How to estimate the function f?

- The statistical process starts from a set of known events
 - Training set
- Each event has one or more predictor variable values $X : X_1, X_2, ..., X_n$ and an output value Y
- Evaluation of function f performance
- Distance between the predicted value and the observed value ε
- Use *statistical learning* on the training set to estimate function f;
 - Find a function \hat{f} such that $Y \approx \hat{f}(X)$ for any observation (X, Y)
Why estimate the function f?

- Prediction: estimate the value of an output variable Y from one or more input variable values X
 - Taking into account future data (i.e., unseen by the model - for which we do not know the value Y)

- Inference: understand the relationship between each variable X and variable Y - how changes in $X_1, ..., X_n$ affect the value of Y
 - Which predictors are associated with the response?
 - What is the relationship between the response and each predictor?
Elementary Categories of Machine Learning Algorithms

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Clustering
 - Dimensionality Reduction
- Semi-Supervised
 - Generative Models
Machine Learning

Supervised Learning
Supervised Learning

- Involves modeling the relationship between data’s characteristic measures and some associated data label
- The determined model can be used to apply labels to new data
- Types of supervised algorithms
 - Classification: labels are discrete categories
 - Example of spam filter: Emails are marked as spam or non-spam. Model classifies new emails
 - Regression: labels are continuous quantities
 - Example: predicting the price of a car considering a set of predictor variables (mileage, age, brand)
Supervised Learning (cont.)

□ Given a training set with N examples of input-output pairs $(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)$
 ▪ Each y_i is generated by an unknown function $y = f(x)$;
□ The function \hat{f} is called a hypothesis;
□ Learning is a search in the space of possible hypotheses that will have good performance, even on new examples beyond the training set;
□ To measure the accuracy of a hypothesis, we provide a set of test examples that are distinct from the training set
 ▪ A hypothesis generalizes well if it predicts the y value correctly for new examples
□ f can be stochastic - not strictly a function of \mathcal{X}
 ▪ Learning the conditional probability distribution, $P(\mathcal{Y}|\mathcal{X})$.
Supervised Learning (cont.)

- Hypothesis space \mathcal{H}
- A consistent hypothesis agrees with all the data;

- *How can we choose between various consistent hypotheses?*
Supervised Learning (cont.)

- Hypothesis space \mathcal{H}
- A consistent hypothesis agrees with all the data;

- How can we choose between various consistent hypotheses?
- Ockham’s razor
Supervised Learning (cont.)

- Choosing the hypothesis space:
- Polynomial in \mathcal{X} vs $\sin(\mathcal{X})$
Supervised Learning (cont.)

- In the case of classification:
Classification vs Regression

- **In a nutshell:**
 - Classification is the task of predicting a discrete class label.
 - Regression is the task of predicting a continuous quantity.

- There’s some overlap between classification and regression algorithms; for example:
 - A classification algorithm can predict a continuous value, but the continuous value is in the form of a probability for a class label.
 - A regression algorithm can predict a discrete value, but the discrete value in the form of an integer quantity.
Classification vs Regression (cont.)

- Some algorithms can be used for both with slight modifications
 - Decision trees and artificial neural networks;

- How we evaluate classification and regression predictions vary and do not overlap
 - Classification predictions can be evaluated using accuracy, while regression predictions cannot.
 - Regression predictions can be evaluated using root mean squared error (RMSE), while classification predictions cannot.
Key Characteristics

For any problem to be investigated as Machine Learning, we have some common characteristics:

- Samples: rows in the dataset
- Features: columns in the dataset
- Feature Matrix: Combination of rows and features
- Target vector: column to be predicted
Key Characteristics (cont.)

- Machine Learning algorithms usually require a large amount of data to provide a satisfactory solution
- Data needs to be representative concerning the problem being investigated
- Consider the influence of categories in relation to the complete dataset
- Data Quality:
 - Consider detecting and, if possible, eliminating outliers and noise
 - Discard redundant data
 - They are unnecessary when placed in the context of another attribute
 - E.g., Social class and monthly income
 - Discard irrelevant data
 - They have no relation to the target attribute
 - E.g., Social Security Number and disease
Iterative Machine Learning Design

- Define the problem to be tackled with a predictive model
- Organize data according to the defined problem
- Define an evaluation metric
- Split the data into training and testing according to the metric
- Inspect the solution
- Propose improvements to the model or data organization
The process of organizing data according to the defined model involves the following activities:

- Exchange categorical or ordinal data for numbers
- Change the scale of the data
- Eliminate missing values or replace them with another value
- Separate predictor variables and target variables
- Split the dataset into training and testing