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What are our objectives?

First, learn how Convolutional Neural Networks (CNNs) work for
image segmentation (detection) and identification [Book20].

Second, learn how to build explainable encoders for such problems.
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Agenda

What are CNNs?

Basic definitions and image processing operations.

CNNs for image identification and segmentation.

Hands-on – How to design and evaluate CNNs using pytorch.

Explainable encoders for identification and segmentation.

Hands-on – CNNs with explainable encoders using pytorch.

Final remarks.
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What are CNNs?

CNNs are neural networks composed by an encoder for feature
extraction and a predictor for classification/regression.

The predictor may use the activation map from multiple
convolutional blocks, which is usually the case for segmentation.
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What is the content of a convolutional block?

Convolutional blocks may contain image operations such as
convolution (CO), batch normalization (BN), activation (AC),
pooling (PO), concatenation (CC), adition (+), etc.

What are those image processing operations?
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Basic definitions and image processing operations

Multichannel image.

Adjacency relation and image patch.

Kernel and kernel bank.

Convolution, bias and activation (one perceptron per pixel).

Other image processing operations.
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Multichannel image

A 2D multichannel image Î is a pair (DI , I) in which I(p) ∈ ℜm

assigns m scalar values to each pixel p ∈ DI ⊂ Z2.

For m = 3 channels, each pixel p is represented by a point
I(p) = (I1(p), I2(p), I3(p)) ∈ ℜ3.
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Adjacency relation

An adjacency relation A is a binary relation that considers the
distance between pixels. CNNs adopt rectangular relations in 2D.

A(p) = {q ∈ DI | |xq − xp| ≤
w

2
and |yq − yp| ≤

h

2
}

where p = (xp, yp) ∈ DI ⊂ Z2.

Two examples for pixels p, p = (1, 1) and p = (6, 5), with
w = h = 3, A(p) = {q1, q2, . . . , q9} where q5 = p.
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Image patch

Let |A(p)| = n be a fixed number for any p ∈ DI (e.g., n = w × h
when A is rectangular).

The concatenation of the attributes I(q1) • I(q2) • . . . • I(qn) of the
adjacent pixels of p defines an image patch X(p) ∈ ℜn×m centered
at p.
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Kernel and kernel bank

A kernel is a weight vector W ∈ ℜn×m with the same size of
the image patches. A kernel bank is just a set of kernels.

The convolution between an input image (activation map),
with m channels, and a kernel bank with b kernels, with m
channels each, outputs an activation map with b channels.
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Convolution

The convolution between a multichannel image Î = (DI , I) and a
kernel W with the same size of the patches X(p) defined by some
adjacency relation A generates a single-channel activation map
Ĵ = (DI , J) such that

J(p) = ⟨X(p),W⟩

as W slides over the image.
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Convolution

When convolving Î = (DI , I) with a bank {W1,W2, . . . ,Wb} of b
kernels, the output activation map Ĵ = (DI , J) has b channels,
such that

Jk(p) = ⟨X(p),Wk⟩

for k = 1, 2, . . . , b.

J(p) = (J1(p), J2(p), . . . , Jb(p)) ∈ ℜb then contains the activation
values at p.
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Convolution

Zero-padding is usually adopted when defining X(p). Kernel and
patch must have the same shape before their vectorization. This
example shows the case the input image and kernel have single
channels.
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Activation

Among several activation functions, the Rectified Linear Unit
(ReLU) is the most popular.

From the multichannel output Ĵ = (DI , J) of a convolution, ReLU
creates a map R̂ = (DI ,R), R(p) = (R1(p),R2(p), . . . ,Rb(p)),

Rk(p) = max{0, Jk(p)},

for p ∈ DI and k ∈ [1, b].
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Convolution followed by activation

Transitions from dark to bright are enhanced.

15 / 1



Convolution, bias, and activation

For patch X(p) = (x1(p), x2(p), . . . , xd(p)) and k-th kernel
Wk = (wk,1,wk,2, . . . ,wk,d), k ∈ [1, b], d = n ×m, convolution
plus bias wk,0 ∈ ℜ followed by ReLU defines one perceptron per
pixel p (artificial neuron).

Jk(p) =
d∑

i=1

xiwk,i

Rk(p) = max{0, Jk(p) + wk,0}
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Convolution, bias, and activation

Each kernel Wk is orthogonal to an affine hyperplane P and
convolution plus bias measures a signed distance D(X(p),P) from
X(p) to P.

D(X(p),P) = ⟨X(p),Wk⟩+ wk,0 = Jk(p) + wk,0.

Alternatively, one may force unit norm to Wk .
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Convolution, bias, and activation

The perceptron at p selects Rk(p) as a local feature only when the
activation

⟨X(p),wk⟩+ wk,0 = Jk(p) + wk,0 > 0,

meaning that, the bias moves P such that X(p) falls in its positive
side.
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Convolution, bias, and activation

Therefore, the convolution, bias, and activation — a neuronal layer
(layer of perceptrons p ∈ DI ) — should activate parts that best
represent classes (object/background).

Output of activation for four random kernels: some kernels may be
better than others and some may be redundants.
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Other image processing operations

Some pooling types.

Some normalization types.

Transpose convolution.

Flattening.

20 / 1



Pooling

The activations Rk(p) related to an object might also appear at
nearby positions within and across images.

Max-pooling can aggregate them by transforming R̂ = (DI ,R) into
P̂ = (DP ,P), P(p) = (P1(p),P2(p), . . . ,Pb(p)),

Pk(p) = max
∀q∈B(p)

{Rk(q)},

where B is an adjacency relation.

In this case, the widest component is the plate.
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Pooling with stride

It is also common to apply padding and down-sampling with
displacements (strides) sx ≥ 1 and sy ≥ 1.

For a w × h rectangular adjacency and image domain DI with
nx × ny pixels, the image domain DP will have ⌊2nx−w

2sx
⌋ × ⌊2ny−h

2sy
⌋

pixels without padding and ⌈nxsx ⌉ × ⌈nysy ⌉ pixels with padding.
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Pooling

Other examples that create P̂ = (DI ,P) by pooling are
min-pooling and average pooling.

Min-pooling:

Pk(p) = min
∀q∈B(p)

{Rk(q)}.

Average pooling:

Pk(p) =
1

|B(p)|
∑

∀q∈B(p)

{Rk(q)}.

Indeed, any other image filtering could be used here to eliminate
undesirable features and/or aggregate the desirable ones for better
image processing.
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Normalization

Normalizations may be applied to any image Î = (DI , I) with m
channels or, in batch, to a set I = {Îj}nj=1 of m-channel images
before/after any step in a convolutional layer.

They are important to avoid discrepancies among local activations
along the network.

They create a new image N̂ = (DI ,N) with m channels or a new
set N = {N̂j}nj=1 of m-channel images.
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Linear normalization

For N̂ = (DI ,N), N(p) = (N1(p),N2(p), . . . ,Nm(p)),

Nk(p) =
Ik(p)−min∀q∈DI

{Ik(q)}
max∀q∈DI

{Ik(q)} −min∀q∈DI
{Ik(q)}

,

Nk(p) =
Ik(p)−minnj=1{Ij ,k(p)}

maxnj=1{Ij ,k(p)} −minnj=1{Ij ,k(p)}
,

k ∈ [1,m] and p ∈ DI , we have a linear normalization.
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Batch normalization

Batch normalization is very useful to standardize local activations
and eliminate the need of bias learning.

It creates an image N̂ = (DI ,N), with

Nk(p) =
Ik(p)− µk(p)

σk(p)
γ + β,

µk(p) =
1

n

n∑
j=1

Ij ,k(p),

σ2
k(p) =

1

n − 1

n∑
j=1

(Ik(p)− µk(p))
2,

for k ∈ [1,m], p ∈ DI , and γ, β ∈ ℜ are parameters that can be
learned and even undo this operation. Let γ = 1 and β = 0 be
their default values.
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Batch normalization

Batch normalization affects the patch space with points Xj(p)

from an image set I = {Îj}nj=1 for all pixels p ∈ DI .

Just the centralization of the point cloud already shows that
training can adjust a kernel to select more activations from a given
class with no need of bias.
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Transposed convolution

The transposed convolution is a way to perform up-sampling
by exploring a kernel of size (Kx ,Ky ), padding (Px ,Py ) and
strides (Sx ,Sy ). It transforms an image with (Nx ,Ny ) pixels
into another with (Ox ,Oy ) pixels, where
O∗ = (N∗ − 1)S∗ + K∗ − 2P∗.

Predictors for image segmentation often use this operation.

Transposed convolution can also be substituted by a
linear/cubic interpolation.
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Transposed convolution
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Flattening

Flattening is the vectorization of each channel Bk , k = 1, 2, . . . , b,
of an activation map followed by their concatenation.

It represents a global feature vector for the input image Î .

X(Î ) = vec(B1) • vec(B2) • . . . • vec(Bb)

The size of X(Î ) will depend on DI , b, zero-padding and stride
options in the encoder.
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CNNs for identification and segmentation

CNNs for identification and segmentation mainly differ in the
predictor.

For identification, they use flattening followed by a pattern
classifier, usually a multi-layer perceptron (MLP) due to the
training by backpropagation. However, it could be a support
vector machine (SVM).

For segmentation, they may use transposed and normal
convolutions, batch normalization, activations, skip
connections, and post-processing. Famous examples are the
U-shaped architectures.
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A U-shaped architecture for image segmentation

A U-shaped architecture for semantic segmentation with two
objects (classes).
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Explainable encoders for identification and segmentation

For segmentation, the kernels should create foreground and
background activations such that the latter can suppress false
positives from the former in the point-wise convolution of the
last decoder layer.

A similar effect should be observed for identification by
separating pixel activations of each class such that the classes
can be linearly separated in the resulting global feature space.

For identification, such class separation may be observed when
the global feature space of deeper convolutional/dense layers
are non-linearly projected.
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Explainable encoders for identification and segmentation

t-SNE projection after encoder block 10 in VGG-16 for image
classification of larvae of helminth and impurities.
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t-SNE projection after encoder block 12 in VGG-16 for image
classification of larvae of helminth and impurities.
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Explainable encoders for identification and segmentation

We present a methodology, named Feature Learning from
Image Markers (FLIM), to estimate kernels from disks/strokes
drawn in a few representative images (e.g., two per class),
with no need for backpropagation [GRSL20].

FLIM has been successfully used for detection, identification,
and segmentation in remote sensing [GRSL20,GRSL22], natural
[NEURIPS20,SIBGRAPI20], and medical images [EMBC21,

GRSL22, ARXIV23, SIPAIM23].

It can create lightweight models competitive or superior to
deep models for some applications [GRSL20, EMBC21,

ARXIV23], and the models usually outperform the same
architecture trained from scratch by backpropagation.
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Feature Learning from Image Markers (FLIM)

For segmentation, the expert draws markers on discriminative
regions of a few representative images as input.

The kernels are automatically estimated block by block from
this input for a given encoder architecture.

The expert may intervene by adding/removing markers,
eliminating kernels, or selecting more images.
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How does training work?

From image patches centered at marker pixels, we wish to

identify groups of patches that represent patterns of interest
in the images,

estimate one kernel W per group, such that the convolution
between W and an image can

activate regions whose patterns are similar to the ones
represented by W and

deactivate image regions with dissimilar patterns.

+ - - + -
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How does training work?

A patch X(p) ∈ ℜw×h×c at a pixel p with width w , height h, and
c channels is a local feature vector of size n = w × h × c .

Patches centered at marker pixels are grouped into a given number
of clusters.
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How does training work?

Patches X(p) = (X1(p),X2(p), . . . ,Xn(p)) in the marker patch
dataset X are normalized as Z(p) = (Z1(p),Z2(p), . . . ,Zn(p)),
where

Zi (p) =
Xi (p)− µi

σi + ϵ
,

µi =
1

|X |
∑

X (p)∈X

Xi (p),

σ2
i =

1

|X |
∑

X (p)∈X

(Xi (p)− µi )
2,

i = 1, 2, . . . , n and a very small ϵ > 0
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How does training work?

The kernels W ∈ ℜw×h×c are the cluster centers.

Each kernel W is orthogonal to a hyperplane in ℜw×h×c and
marker-based normalization aims to isolate each cluster (and
similar patches) in the positive side of the corresponding
hyperplane.
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How does training work?

The convolution Î ∗W between an image Î with marker-based
normalized patches Z(p) and W outputs an image D̂ with
pixel values D(p) = ⟨Z(p),W⟩.
ReLU activation eliminates negative values of D(p), and
max-pooling aggregates foreground activations within a given
neighborhood of each pixel.

Corresponding activations for one kernel per marker.
47 / 1



How does training work?

The convolution Î ∗W between an image Î with marker-based
normalized patches Z(p) and W outputs an image D̂ with
pixel values D(p) = ⟨Z(p),W⟩.
ReLU activation eliminates negative values of D(p), and
max-pooling aggregates foreground activations within a given
neighborhood of each pixel.

Corresponding activations for one kernel per marker.
47 / 1



How does training work?

The exact process is repeated for each convolutional block
using the markers mapped onto the activation maps of the
previous block.

The expert may examine the activation maps of other images,
remove redundant kernels, or draw markers in new images.

+ - - + -
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How does training work?

As “deeper” the encoder is, the expert should observe foreground
activation maps varying from suitable for object delineation to
object detection.

block 1 block 2 block 3 block 4
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Activation summarization for expert examination

A point-wise convolution (weighted average of the activation
maps) followed by ReLU activation can summarize the quality of
the activation maps at any block’s output – a simple decoder.

block 1 block 2 block 3 block 4

However, a kernel may activate the foreground in one image and
the background in another, asking for an adaptive decoder – a new
concep in CNNs.
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Activation summarization for expert examination

We have proposed adaptive decoders for distinct object detection
problems [ARXIV23].

Parasite Eggs Ships

Such decoders may assign weight w = 1 to foreground activations,
weight −1 to background activations, and weight 0 to neutral activations
according to an adaptation function.
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How does FLIM extend to identification?

Identification may require more kernels and blocks. The training
process is the same, but the best strategy for marker drawing is
still under investigation.

The expert can determine the number of kernels per marker and
image, but PCA can be applied to reduce the total number of
kernels to the desired one in a block.
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How does FLIM extend to identification?

Expert assessment of activations is challenging without pixel
annotation.

1) Activations from the same class are good at the same channel
pixels. Activations in distinct regions of the same channel only
increase the class’s subspace. 2) For distinct classes, activations in
different channels/pixels of the same channel are good.

53 / 1



How does FLIM extend to identification?

Expert assessment of activations is challenging without pixel
annotation.

1) Activations from the same class are good at the same channel
pixels. Activations in distinct regions of the same channel only
increase the class’s subspace. 2) For distinct classes, activations in
different channels/pixels of the same channel are good.

53 / 1



Agenda

What are CNNs?

Basic definitions and image processing operations.

CNNs for image identification and segmentation.

Hands-on – How to design and evaluate CNNs using pytorch.

Explainable encoders for identification and segmentation.

Hands-on – CNNs with explainable encoders using pytorch.

Final remarks.

54 / 1



Final Remarks

It should be clear the challenges to training CNNs from
scratch with backpropagation when the datasets are
unbalanced.

In deep learning, the ultimate goals for experts should be a
better understanding and control of the training process.

FLIM with an adaptive decoder introduces a new way to
design explainable and lightweight CNNs without
backpropagation.

In FLIM, one can devise new methods to select images,
suggest regions for marker drawing, estimate kernels from
markers, and guide the expert’s actions.
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