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Summary



Generative models at a 
glance





Google Duplex

• Natural chating with humans
• Conducting natural 

conversations

• Fully autonomous

• Synchronization

• Interrupt control

• Recurrent networks



Voice cloning



Automatic staning

• Stanning of slide 
windows from H&E

• Use of GANs to 
generate slides with 
different staing 
patterns



Leonardo.ai

A scene in a 3D disney/pixar style 
containing a york shire dog dressing a 

red and black shirt



Generative models

Definition: Machine learning models that learn to generate new data samples 
similar to the training data

Probability 
distribution

Generative models



Challenges for generative models 

Models:
- which require powerful processing resources
- are difficulty to assess performance
- require complex control to generate data diversity

Complex 
data:

- which requires very large models to capture all 
nuances of the features and distributions



Mathematical foundations of 
generative models



Probability and machine learning

P( ) = 1/6 = 16,67%

P(Y|X= ) = ?

) = ?P(Y|X=

0 ≤ P(A) ≤ 1

P(Ω) = 1

P(∅) = 0

Probability rules

... in the context of machine learning

Labels: Y=y

Features: X={x1, x2, …xn}

P(X= |Y) = ?

|Y) = ?P(X=
or

P(Y, X) = P(y, x1, x2 … xn)



Bayes theorem

prior likelihood

marginal

=
x likelihoodprior

evidence
posterior



Bayes theorem

features

labels



Discriminative models

f: separation 
hyperplane

f: X → Y or P( Y | X ) or

P( label | features )

Posterior is learnt or modeled from data 
(conditional models):

- Logistic regression 
- Redes neurais
- SVM
- CRFs
- Random forest

P(Y|X= )

)P(Y|X=



Generative models

• Rewrite Bayes:
• P(X|Y=y) = P(X,Y) / P(Y)

• We use P(X,Y) to sample new 
data: 
• Tuples (X,Y)
• Inputs using Y

• Examples:
• Naïve Bayes
• GMM
• HMM
• VAE
• GAN

Depend on a 
latent variable

P(X,Y) 



Warming up with LDA



Latent Dirichlet 
Allocation

• Method for Unsupervised Topic Modeling

• Bayesian network based on Dirichlet distribution: 

• Observable Variables: Words

• Latent variables: topics

• Goals are:

• Discovering topics in a corpus of words

• The proportion of these topics in each document

• Assuming that:

• Each document is a mixture of latent topics

• Each topic is a distribution over words





Latent Dirichlet Allocation

• Consider that we have 5 documents
• Each containing the words on the right 

side

• We have to figure out the words in 
different topics, with their respective 
probabilities

• Each document is a bag of words:
• Order of the words and grammar rules 

are NOT important
• We have to do some pre-processing

• We have to know beforehand how 
many (T) topics we want



Latent Dirichlet 
Allocation

• Pre-processing

• Tokenization
• Lemmatization: Words in the third 

person are changed to the first 
person, and verbs in the past and 
future are changed to the present.

• Stemming: Words are reduced to 
their root form.



Latent Dirichlet 
Allocation

• Distribution of:
• documents over topics – p(zdn | θd )
• topics over words – p(wdn | zdn ) 

• Notation:
• D: total number of documents
• θd: distribution for the d-th document.
• T: total number of topics
• Zd1: probability distribution of words over the

first topic
• Wdn: Probability of a word in the distribution of

the n-th topic
• V: Total number of words in a corpus.



Latent Dirichlet Allocation

• The generative process works as follows:

• For each word W in the document, do:

• choose a topic Zd of the distribution θd

• choose a word W from a topic Zd

• Assume that:

• each document is generated regardless of the others

• the same set of topics is used for all documents

• LDA allows to generate latent variables (topics) that ultimately generate the observable data 
(words)



Deep generative models



Boltzmann Machine

• Boltzmann established the concepts 
of statistical physics. 

• The Boltzmann distribution 
describes the probability of a gas 
molecule being found in a particular 
energy state.

𝑁!
𝑁
=
𝑔!𝑒

"#!$%

𝑍(𝑇)

Onde:

K: Boltzmann constant
T: temperature
gi: number of states having energy Ei
N: total number of particles

Z(T): ∑! 𝑔!𝑒
"!"
#$



Boltzmann Machine

• They are probabilistic, 
unsupervised models based on 
energy.

• For each configuration of the 
system, a value of energy is 
assigned along with an 
associated probability:

• Low energy ↓ represents 
high probability ↑

• High energy ↑ represents 
low probability ↓

• By sampling, each neuron is either 
activated or deactivated with a 
certain probability.

• After training, convergence is 
achieved to a stable state, 
represented by the minimum of the 
energy function.

• The hidden neurons work to learn 
the latent states of the joint 
distribution function P(v, h)



Restricted Boltzmann Machine

Smolensky (1986) proposes the Restricted 
Boltzmann Machine under the name 
Harmonium

Hinton (2002) proposes a learning model

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony 
theory. Colorado Univ at Boulder Dept of Computer Science. 

Hinton, G.E. (2002). Training products of experts by minimizing contrastive divergence. Neural 
computation, 14(8), 1771-1800.



Restricted Boltzmann Machine



Restricted Boltzmann Machine

Total energy:

Probability distribution
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𝑍 An RBM is totally specified 
by W, b, a



Restricted Boltzmann Machine

Training:

1. Input a vector v

2. Compute h

3. Use h to generate (samples of) visible states v’

4. Use v’ to generate (samples of) hidden states h’

5. Update the parameters W, b and c (where ∈ is the LR):

∆𝑾 =∈ (𝒗𝒉 − 𝒗’𝒉’) ∆𝒃 =∈ (𝒗 − 𝒗’) ∆𝒂 =∈ (𝒉 − 𝒉’)

Gibbs sampling: Sampling 
unknown parameters from a 
distribution while fixing the 
others.



Restricted Boltzmann Machine

Alternating step of 
Gibbs Sampling

Kulback-Leibler 
divergence



Deep Belief Network

• Stack of RBMs: The output of one RBM 
is taken as input by another RBM

• It is possible to add as many RBMs as 
you want; however, this can cause:
• Vanishing gradient
• Local minima

• DAG: directed acyclic graph

• Supervised and unsupervised

• Training: Greedy learning algorithm 
(layer-by-layer pre-training)

Building blocks



Deep Belief Network

• Pre-processing:
• Image converted to gray scale

• Pixel normalization

• Image resize to a standard size

• Training:
• DBN training using unsupervised learning, layer by layer

• Use of an RBM to train the first layer

• Using the outputs of the previous layer as inputs for the 
subsequent layer after pre-training.

• Fine-tunning:
• Adjust of the TOP layer of the DBN, using supervised learning

• Updating the network weights based on labeled training data 
using backpropagation and gradient descent.



Autoencoders

• NOT a generative model

• NOT supervised

• They are used to learn representations in a 
latent feature space (bottleneck).

• Input is an image, output is the same image.

• Encoder: h = f(x); decoder: r = g(h)

• Generate x’ similar to x

• h has an usefull property:
• h is incomplete and compressed – force h to 

capture generic features

• Parameters: Latent neurons, encoder and 
decoder layers, nodes per layer, loss.

Trained by backpropagation



Autoencoders

Autoencoders can also learn to do 
denoysing

But why learn autoencoders in 
this course?



Variational 
autoencoders

• Generative model, unsupervised, autoencoder similar 
architecture

• In the bottleneck, VAE learns a posterior
• Latent space is stochastic; a Gaussian PDF

• Sample from q to find z.

• Decoder has weights and biases, whose output allows 
for data generation

• It takes the distribution of z, and the output is the 
parameters of a Gaussian or Bernoulli distribution 
(if the input is binary) – output between 0 and 1 for 
each pixel.

• The loss is comprised of: log pφ(x ∣ z) of the 
reconstruction from z and the KL divergence 
between q and p(z), where p is a Gaussian 
distribution with zero mean and variance equal to 1



Variational autoencoders

• VAEs learn: p(x, z) = p(x ∣ z)p(z)

• For each sample, i, in the dataset:
• Find latent variables: zi ∼ p(z)

• Find xi ∼ p(x ∣ z)

• The latent variables are found from p(z)

• Model inference will be:

, where: p(x) = ∫ p(x ∣ z)p(z)dz



Variational autoencoders

• Reparametrization trick:

• Sampling from mean and standard 
deviation vector, instead of from the
latente variables



Variational autoencoders

• As p(x) is costly, the posterior is 
approximated to a family of distributions λ : 
qλ(z|x)
• For example, if q is Gaussian, so

• We use KL divergence to know how much q
is approximated of p.
• We should use an algorithm to compute KL 

divergence in a tractable way: minimizing KL 
means maximizing the Evidence Lower Bound 
(ELBO) to compute the posterior.

• We use gradient ascendent in ELBO over the 
parameters of each distribution p and q



GANs

Imagine as:

Generator – counterfeiter
Discriminator - policeman

Generative Adversarial Networks



GANs’ zoo

https://github.com/hindupuravinash/the-gan-zoo

https://github.com/hindupuravinash/the-gan-zoo


GANs

• Unsupervised generative models

• They are in an architecture that “resembles" 
supervised learning.
• Generator (G): fed by random noise 

(Gaussiano/Uniform); try to generate “fake news”

• Discriminator (D): tries to discriminate what is real 
from fake of the Generator; trained by backprop

• Generator and discriminator are trained based on 
adversarial process



GANs



GANs



GANs

• G needs to capture the distribution 
of the data.

• D Estimates the probability of a 
sample coming from the training 
data or from G.



GANs

• Work as a as a zero-sum game:

• If D successfully determines what is real or fake, 
it is rewarded, and there is no need to change 
the training parameters.

• In this case, G is penalized with updates to its 
parameters.

• Without limits, G generates perfect examples, and D
guesses correctly only 50% of the time.



GANs

Discriminator:

Generator:

IMPORTANT: Discriminator and Generator are trained independently!!!!

Adaptive Loss



GANs

Real samples Generated sample

Nash equilibrium:

𝑃data(𝑥) =𝑃gen(𝑥)∀𝑥
D(𝑥) = ½ ∀𝑥



GANs

• Training:

• D and G compete against 
each other.

• Training steps alternate 
between D and G.

• Mini-batch stochastic 
gradient descent/ascent 
is used.



GANs: Training

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative 
Adversarial Nets, NIPS, 2014



ChatGPT





NLP: The main task

• Machine translation of 2 
sequences

• Model for decoding: 
P(e | f)

• Find the translation with highest 
probability:

ebest = argmaxe P(e | f)

Example:

Ele não vai para casa

El no ba a casa

f

e



NLP: The main task

• Two types of error:
• the most probable translation is bad -> 

fix the model
• search does not find the most probably 

translation -> fix the search

• Decoding is evaluated by search 
error, not quality of translations 
(although these are often correlated)

• Inherent problems: complexity (NP-
complete), alignment / reordering, 
context 



Timeline of NLP

1950 1960 1980 1990 >2013

- Turing test
- Georgetown-IBM 

experiment
- Rules-based 

methods 

- ELIZA
- ALPAC report 

and First AI 
Winter

- Statistical models 
(TF-IDF)

- Expert systems 
(e.g. MYCIN)

- Probabilistic 
graphical models 
(especially HMM)

- RNN

- Word2vec
- Recursive neural 

tensor networks 
(RNTNs)

- …
- CNN
- LSTM
- LLMs (GPT, 

BERT)



Timeline of NLP: early models

Turing test Rule-based systems



Timeline of NLP: current models

• From 1990: sequence to sequence 
(seq2seq) probabilistic or neural 
network models

• From 2013: deep learning models 
applied on the encoder and decoder

Encoder-decoder architecture



Pathway to ChatGPT

• RNN (e.g. LSTM and GRU)

• Encoder: in charge of outputing a context 
vector (final hidden state)

• Decoder: outputs a different sequence 
(translation, question-answering, 
summarization, etc)

• Drawbacks:

• Performance drops drastically for longer 
sentences since embeddings (signals) get 
diluted as they pass through the network 



Pathway to ChatGPT

• The previous problem can be solved 
by skip connections
• feed every hidden state of the 

encoder into every input of the 
decoder

• This creates another problem:
• how to combine multiple hidden state 

into a single context vector?
• More problems: Memory (RNNs requires 

a lot of memory) and context (RNN only 
looks at the tokens to the left)



Inside Transformer

• Why do we need Transformer?

• In RNN-based networks, the decoder 
only access the last hidden state
and it will lose relevant information

• Attention can solve the last problem, 
but… RNNs treat one element at a 
time

[1] Vaswani, Ashish & Shazeer, Noam & Parmar, Niki & Uszkoreit, 
Jakob & Jones, Llion & Gomez, Aidan & Kaiser, Lukasz & 
Polosukhin, Illia, “Attention is all you need” , 2017.

Encoder

Decoder



What you will really find inside...



Tensor is all we need!



Self-attention



Self-
attention



Self-
attention



Self-
attention



Self-attention



Multi-head self-attention



Multi-head 
self-
attention



Self-attention Multi-head self-attention



All the steps 
till now



Positional 
encoding



Residuals, FFN, 
Add&Normalize



Decoder



Output



Toy example

Ground truth Trained model output



Generative Pre-trained 
Transformer

Version Architecture Parameter 
count

Training data Release date

GPT-1

12-level, 12-headed 
Transformer decoder (no 
encoder), followed by linear-
softmax.

117 million
BookCorpus: 4.5 GB of text, 
from 7000 unpublished books 
of various genres.

June 11, 2018

GPT-2 GPT-1, with modified 
normalization

1.5 billion

WebText: 40 GB of text, 8 
million documents, from 45 
million webpages upvoted on 
Reddit.

February 14, 2019

GPT-3 GPT-2, with modification to 
allow larger scaling

175 billion

570 GB plaintext, 0.4 trillion 
tokens. Mostly CommonCrawl, 
WebText, English Wikipedia, 
and two books corpora 
(Books1 and Books2).

June 11, 2020

https://en.wikipedia.org/wiki/GPT-1
https://en.wikipedia.org/wiki/BookCorpus
https://en.wikipedia.org/wiki/GPT-2
https://en.wikipedia.org/wiki/GPT-3


GPT-1

• Semi-supervised learning: unsupervised
pre-training followed by supervised fine-
tuned models – that’s why the name 
generative pre-training

• Only uses the decoder part of the 
transformer

• Supervised fine-tuning was achieved by adding 
a linear and a softmax layer to the transformer 
model to get the task labels for downstream 
tasks.

Unsupervised learning:

Supervised fine-tuning:

•                                           ,



GPT-1

• Unsupervised learning:

• Model used 768-dimensional state for encoding 
tokens into word embeddings. Position embeddings 
were also learnt during training.

• 12 layered model was used with 12 attention heads in 
each self-attention layer.

• Adam optimizer was used with learning rate of 2.5e-4.

• Attention, residual and embedding dropouts were 
used for regularization, with dropout rate of 0.1. 

• GELU was used as activation function.

• The model was trained for 100 epochs on mini-
batches of size 64 and sequence length of 512. 

• The model had 117M parameters in total.

• Supervised fine-tuning:

• Supervised fine-tuning took as few as 3 epochs for 
most of the downstream tasks. 

• Most of the hyper parameters from unsupervised pre-
training were used for fine-tuning

• GPT-1 performed better than specifically trained 
supervised state-of-the-art models in 9 out of 12 
tasks



GPT-2

• GPT-1 train the language model as P(output | input)

• GPT-2 use the same unsupervised mode, but as P(output | input , task) – this is called 
task conditioning where the model is expected to produce different outputs for the 
same input and different tasks

• Task conditioning forms the ground for zero-shot task transfer

• Zero-shot learning is a special case of zero shot task transfer where no examples are 
provided at all
• The model understands the task based on the given instruction
• Input is given in a format to help the model understand the nature of the task

• Data sets: Reddit, WebText and all Wikipedia articles

• 1.5 billions of parameters, 50,257 tokens, larger batch size (512)



GPT-3

• 175 billion parameters

• Learning objectives and concepts:
• In-context learning: When presented with few examples (or a description of what it needs to do), 

the language models matches the pattern of the examples with what it had learnt in past for similar 
data and uses that knowledge to perform the tasks

• Few-shot, one-shot and zero-shot setting: specialized case of zero-shot task transfer

• Data set: Common Crawl, WebText2, Books1, Books2 and Wikipedia

• 96 layers and 96 attention heads for each layer

• Context window size was increased from 1024 for GPT-2 to 2048 tokens for GPT-3

• Accomplish tasks for what it was not trained (generate SQL comands, comprehension 
reads, etc)



GPT-4

• It is able to provide 
image synthesis but not 
image generation

• In the side example, 
one can realize that 
this new feature is not 
working appropriately, 
yet!!!!

14



ChatGPT

- Trained with Reiforcement Learning from Human Feedback 
(RLHF), based on Proximal Policy Optimization (PPO).

- Use InstructGPT to follow instructions

- ChatGPT and GPT-3.5 were trained on an Azure AI
supercomputing infrastructure.



Some thoughts

• AI applied on text finally started achieving 
maturity to deal with big data

• Problems yet to solve are toxicity and 
hallucination

• If someone knows how to guide ChatGPT to 
answer the questions, it can make a surprising 
job. So, we must think about it as a must-
guided AI tool

• So, questions about oneself is useless. So do 
not try to make a guess about the potential 
of this tool making this kind of question

• ChatGPT is a bullshitter. It’s not a liar because 
to be a liar, you must know the truth and intend 
to mislead. ChatGPT is indifferent to the truth



Conclusions

• Modelling the probability distribution of a generative 
model is not an easy task, while requiring:

• large computational resources

• a lot of patience to efficiently modelling the 
generative side

• Understanding the fundamentals of each tecnique is of 
underlying importance to make it work, but not only... It 
is necessary a lot of patience.



lrebouca@ufba.br
@ivisionlab

http://ivisionlab.ufba.br

mailto:lrebouca@ufba.br
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