s Second School on Data Science and Machine Learning

Generative
models

Luciano Oliveira
Universidade Federal da Bahia (UFBA)

Universidade
Federal da
Bahia

INTELLIGENT VISION RESEARCH LAB

| IVISION

IVISION

About the lab Latest news

Papers in the International Symposium on
Medical Information Processing and Analysis
(SIPAIM)

Publisned: Sep 16,

Paper in Conference on Graphics, Patterns and
Images (SIBGRAPI)

Published: Sep 16, 2021

Paper in |IEEE Intelligent Vehicles Symposium

Assistirno (8 Youlsbe

Research in Computer Vision and Pattern Recognition to:

i i 5]

Smart Cities Biometric Systems Biomedicine Robotics

Agenda

(1) Generative models at a glance

(1) Mathematical foundations of generative
models

(1) Warming up with Latent Dirichlet Allocation

Deep generative models

* (2) Restricted Boltzmann Machines
(2) Deep Belief Networks
(3) Autoencoders

(3) Generative Adversarial Networks
(4) ChatGPT

(4) Conclusions

(n), where n is one of the 4 parts of the course today

| Summary

| Generative models at a

Mathematical foundations of ; .
glance | generative models I Warming up with LDA
N \ /
Conclusions _\ <
| Deep generative models

Modeliing the probability distribution of a generative
model Is not an easy task, while requiring
« large computational resources

a lot of patience to efficiently modeling the
generative side

—
'
* Understanding the fundamentals of each tecnique is of
undertying importance to make it work, but not only.. it
s necessary a lot of patience.

Generative models at a
glance

- __:;__—-::‘,,.-
- —_—
Al field is buzzing —
with ChatGPT and % —
Diffusion Models
Me:
import tensorflow as tf

import numpy as np

| Google Duplex

* Natural chating with humans

« Conducting natural
conversations

« Fully autonomous
« Synchronization
* Interrupt control

 Recurrent networks

(]

ASR

| Voice cloning

%x
SR
S
A
N

Deep speed estimation from
synthetic and monocular data

Joao Paulo” and Luciano Oliveira’

Pk
N AW 7. R
Vadner sy INTELLIGENT
—;" vumLt&.
MPOSIUM Presented by:
Prof. Dr. Luciano Oliveira
Irebouca@ufba.br

; - A
Acknowledgments: c@zﬂ\lpg i fapesb {1
m:::,;g'::'mm Ch de Pessoal de Nivei Superior Pzz;nsa do E:,l'::i: da Bahla

Article | Open access | Published: 12 August 2021

Deep learning-based transformation of H&E stained
tissues into special stains

| |
I Au t O m at I ‘ st a n I n g Kevin de Haan, Yijie Zhang, Jonathan E. Zuckerman, Tairan Liu, Anthony E. Sisk, Miguel F. P. Diaz,

Kuang-Yu Jen, Alexander Nobori, Sofia Liou, Sarah Zhang, Rana Riahi, Yair Rivenson &, W. Dean

Wallace & & Aydogan Ozcan &

Nature Communications 12, Article number: 4884 (2021)] Cite this article

— " A Stain-transformed Stain-transformed Stain-transformed
: H nstained tissue section istochemically staine ‘e i
° Stannlng Of Sllde ‘ . Jones _ Masson’s trichrome PAS

windows from H&E

« Use of GANs to
generate slides with
different staing —
p attern S staining and imaging

Stain transformation
generator networks

| Leonardo.ai

A scene in a 3D disney/pixar style
containing a york shire dog dressing a
red and black shirt

| Generative models

Definition: Machine learning models that learn to generate new data samples
similar to the training data

Probability
distribution

Generative models

Challenges for generative models

Complex - which requires very large models to capture all
data: nuances of the features and distributions

- which require powerful processing resources
- are difficulty to assess performance
- require complex control to generate data diversity

Mathematical foundations of
generative models

Probability and machine learning
Probability rules

) = 1/6 = 16,67%

..- In the context of machine learning

Labels: Y=y P(YIX="8) =" PX=" Iv) =2
Features: X={x, x,, .., e or -
XX PYIX= &) =2 P(x= & |v) =2

PY, X) = PLY, X, X; .. X,) cH ket

| Bayes theorem

prior likelihood

_ PY)PX|Y) PX)Y) ~ prior x likelihood
P(Y‘X) — P(X) = TP(X) posterior = —

l

marginal

| Bayes theorem

P(y)P(z1|y)P(z2|y) P(zs3]y). ..

P(y | L1, L2, L3, - -,) ~ P(z1)P(23)P(z3)...
features

\4

labels

| Discriminative models

f: X > YorP(Y|X)or P(YIX= "8)
P(label | features) P(YIX=J§%§)

Posterior is learnt or modeled from data
(conditional models):

- Logistic regression
- Redes neurais

. - SVM

f: separation - CRFs

hyperplane - Random forest

Generative models

« Rewrite Bayes:
« P(X]Y=y) = P(X,Y) / P(Y)
« We use P(X)Y) to sample new
data:
e Tuples (X)Y)
* Inputs using Y
« Examples:
* Naive Bayes
« GMM
« HMM

- VAE Depend on a
« GAN latent variable

| Warming up with LDA

Latent Dirichlet
Allocation

Method for Unsupervised Topic Modeling

Bayesian network based on Dirichlet distribution:
¢ Observable Variables: Words

« Latent variables: topics

Goals are:
» Discovering topics in a corpus of words

« The proportion of these topics in each document

Assuming that:
« Each document is a mixture of latent topics

« Each topic is a distribution over words

LIS
..

’ Cluster of words and distribution of words in a topic
— | Topic model
— \ Distribution of topics in the documents

‘m’ documents

Document-1 Document-m

Topic-1 Topic-2 Topic-N Topic-1 Topic-2 Topic-N

Creation of

Topics
LDA Model

Collection of
text documents Number of words in

a given document
A @‘e
Dataset EE— O_—O—O—‘ Frequency of topics

a] z w N per document

¢ V m
D < Observed
Dirichlet ocument-topic Word i !

parameter distibution Number:of D1 D2 D3 D4
Word-topic documents
assigment

=

| Latent Dirichlet Allocation

Consider that we have 5 documents
« Each containing the words on the right
side

We have to figure out the words in
different topics, with their respective
probabilities

Each document is a bag of words:

* Order of the words and grammar rules
are NOT important

« We have to do some pre-processing

We have to know beforehand how
many (T) topics we want

Docl:
Doc2:
Doc3:
Doc4:
Doc5:

wordl, word3, word5, word45, wordll, word 62, word38 ...

word9, word/77, word3l, word58, word83, word 92, word49 ...
word44, wordl8, word52, word36, word64, word 11, word20 ...
word85, word62, wordl9, word4, word30, word 94, wordb7 ...
wordl9, word53, word74, word79, word45, word 39, word54 ...

Word1 word2 word3 wordd .

Topic1
Topic2
Topic3

0.01 0.23 0.19 0.03
0.21 0.07 0.48 0.02
0.53 0.01 0.17 0.04

—

- 3
E = One of the steps to be perform in the NLP. It convert
Late nt DI r I c h Iet [FHPUE Bt] unstructured textual text into a proper format of data.
|
Allocation ,]
One of the steps to be perform in the NLP.
Sentence : <
Tokenization It convert unstructured textual text into a proper format of
» Pre-processing i data. J
* Tokenization) . . ,
. . . . One of the steps to
« Lemmatization: Words in the third : ’ [;L 4 2 [/
person are changed to the first —— | b= || periom i | I [sl
person, and verbs in the past and [Tokenization} U || sonvet | |ososans] | Gl | rtext ‘
future are changed to the present. [[1 3 [i
into a proper format data
« Stemming: Words are reduced to ‘
their root form. o o A
Stemming Lemmatization
adjustable — adjust was — (to) be
formality — formaliti better — good
formaliti —+ formal meeting — meeting

airliner — airlin A

Topic for each word Words

Latent Dirichlet o I
Allocation Distribution o

over topics

0 242 =
I a — W42

— | Wdl

* Distribution of:
« documents over topics — p(zg, | 64)
 topics over words — p(Wyn | Z4n) I
— ZdN

« Notation:

* D: total number of documents
84: distribution for the d-th document. Zan € {1..T} wq, € {1..V}
T: total number of topics

Z 41: probability distribution of words over the
first topic () 2 w

Wy,: Probability of a word in the distribution of N
the n-th topic D

V: Total number of words in a corpus. N

” Z () H[) H(l H[) rlnl()(l l) w (lnl (In

d=1 n=1

— WdN,

| Latent Dirichlet Allocation

* The generative process works as follows:
* For each word W in the document, do:
« choose a topic Z, of the distribution 64

» choose a word W from a topic Z4

 Assume that:

« each document is generated regardless of the others

« the same set of topics is used for all documents

« LDA allows to generate latent variables (topics) that ultimately generate the observable data
(words)

| Deep generative models

Boltzmann Machine

« Boltzmann established the concepts
of statistical physics.

* The Boltzmann distribution
describes the probability of a gas
molecule being found in a particular
energy state.

_E;
Nl . gie KT
N Z(T)

Onde:

K: Boltzmann constant
T: temperature
gi: number of states having energy E;

N: total number of particles
E.

2(T):3; gie &t

| Boltzmann Machine

Hidden
Nodes

Visible
Nodes

\
\
\

\

A1/ -

A N =
3\
\ S TN ~ S X
N\
N\
» N\
A /

They are probabilistic,
unsupervised models based on
energy.

For each configuration of the
system, a value of energy is
assigned along with an
associated probability:

 Low energy | represents
high probability 1

« High energy 1 represents
low probability |

By sampling, each neuron is either
activated or deactivated with a
certain probability.

After training, convergence is
achieved to a stable state,
represented by the minimum of the
energy function.

The hidden neurons work to learn
the latent states of the joint
distribution function P(v, h)

| Restricted Boltzmann Machine

Boltzmann Machine under the name

, Smolensky (1986) proposes the Restricted
Harmonium

ﬁ Hinton (2002) proposes a learning model

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony
theory. Colorado Univ at Boulder Dept of Computer Science.

Hinton, G.E. (2002). Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8), 1771-1800.

Visible units

Hidden units

| Restricted Boltzmann Machine

/
hidden nodes (0
\ P=0.354 !

—
©
o
=]
w
]
—
e
o
")
o
~N

/I’ \\ =
\
1]
! |
1 : !
‘\ t
7/
@ ‘-/'\‘-” i

\

L
FEERS
R

/\
e (305 (0)

Lord of the Rings The Matrix Fight Club Harry Potter Titanic The Hobbit

7’
-

| Restricted Boltzmann Machine

Total energy:

np ny ny Np
E(v,h) = —Ebjbh —z 22 Wi,
=1 i=1j=1

Probability distribution

e —E(U,h) a a as i

7 An RBM is totally specified
by W, b, a

P(v,h) =

| Restricted Boltzmann Machine

Training:
1. Input a vector v
Compute h

Use h to generate (samples of) visible states v’ Gibbs sampling: Sampling

unknown parameters from a
distribution while fixing the

Update the parameters W, b and ¢ (where € is the LR): others.

Use v’ to generate (samples of) hidden states k’

o > 0D

AW =€ (vh — v'h) Ab =€ (v —v') Aa =€ (h— k)

| Restricted Boltzmann Machine

Algorithm 1. k-step contrastive divergence
Input: RBM (Vi,...,. V.. Hy, oo, H,). training batch S
Output: gradient approximation Aw;;, Ab; and Ae¢; for i =1,..., n
=k m
1 init Aw;; = Abj=Ae; =0fori=1,..., ;-4 =T, M
2 forall the v € S do
3 v — v
4 fort=10..., k—1do
5 fori=1,..., n do sample h\"” ~ p(hi| o) Alternating step of
6 | forj=1,..., m do sample ¢r§'+l) ~ p(v; | RD) Gibbs Sampllng
7 fordi=1,:.:4 n, =100 m do
Awij + Awij + p(Hi = 1|v'?). l.'jo) — p(Hi = 1] 0™). vik) _
" Ab; + Abj +v(® — oV K_uIback—LelbIer
10 | Aeci + Aci +p(Hi =1 |'v(“)) —p(H: =1 Iv(k)) dlvergence

| Deep Belief Network

 Stack of RBMs: The output of one RBM | |
is taken as input by another RBM .

 |tis possible to add as many RBMs as Feature 2 .\,'",-
. - . N
you want; however, this can cause: | Y

Output

T Al B e A
= e f NS0)\

 Vanishing gradient Feature 3 —+»
» Local minima

« DAG: directed acyclic graph
- Supervised and unsupervised Feauren —+(Q)

- Training: Greedy learning algorithm S T——
(layer-by-layer pre-training) RBM L

Building blocks

| Deep Belief Network

* Pre-processing: Class

« Image converted to gray scale Labels

« Pixel normalization
- Image resize to a standard size (R Top Layer

Classifier M

* Training:

« DBN training using unsupervised learning, layer by layer
RBM

* Use of an RBM to train the first layer Layers

« Using the outputs of the previous layer as inputs for the

subsequent layer after pre-training. ’ Bfttom
ayer

* Fine-tunning:
« Adjust of the TOP layer of the DBN, using supervised learning

« Updating the network weights based on labeled training data put
‘ . . Vectors
using backpropagation and gradient descent.

| Autoencoders

« NOT a generative model
* NOT supervised

« They are used to learn representations in a
latent feature space (bottleneck).

* Input is an image, output is the same image.
« Encoder: h = f(x); decoder: r = g(h)
« Generate x’ similar to x

* h has an usefull property:

* hisincomplete and compressed - force h to
capture generic features

« Parameters: Latent neurons, encoder and
decoder layers, nodes per layer, loss.

Compressed Data
Original Learned
mushroom representation
Encode Decode
Original Input Latent Representation Reconstructed Output
=
‘ ‘ — Encoder — — Decoder — ‘ {
X h r

Trained by backpropagation

Original Images

Autoencoders

Autoencoders can also learn to do
denoysing

Autoencoder Output

But why learn autoencoders in
this course?

Original Noisy Code Qutput
mage

Variational
autoencoders

Generative model, unsupervised, autoencoder similar
architecture

In the bottleneck, VAE learns a posterior
« Latent space is stochastic; a Gaussian PDF
« Sample from q to find z.

Decoder has weights and biases, whose output allows
for data generation

It takes the distribution of z, and the output is the
parameters of a Gaussian or Bernoulli distribution
(if the input is binary) — output between O and 1 for
each pixel.

 The loss is comprised of: log p,(x | z) of the
reconstruction from z and the KL divergence
between q and p(z), where p is a Gaussian
distribution with zero mean and variance equal to 1

Y4

T

Encoder q(z|x)

!

Data: x

V4

!

Decoder p,(x|2)

l

Reconstruction: x

| Variational autoencoders

« VAEs learn: p(x, z) = p(x | z)p(z)

* For each sample, 1, in the dataset:
« Find latent variables: z; ~ p(z)
* Find x; ~ p(x | 2)

« The latent variables are found from p(z)

« Model inference will be:

p(z | z)p(2)

,where: p(x) = [p(x | z)p(z)dz
p(z)

p(z | z) =

(™

| Variational autoencoders

 Reparametrization trick:

S;~N(0,1).2€0,....n
Z.s-(mzph'(l.z' = [+ ('Si ® O-é)s L€ 0- ey N

« Sampling from mean and standard
deviation vector, instead of from the
latente variables

Q(Z|X) ~ P(Z|X) P(X|2)

X ez =5y

ENCODE DECODE

| Variational autoencoders

« As p(x) is costly, the posterior is
approximated to a family of distributions A :
qx(zlx)

« For example, if q is Gaussian, so

AIE-{, — (/'I’CBH O-Z%l))

* We use KL divergence to know how much q
is approximated of p.

* We should use an algorithm to compute KL
divergence in a tractable way: minimizing KL
means maximizing the Evidence Lower Bound | BSS S
(ELBO) to compute the posterior. . QuIX)~P(z|X) P(X|2)

- We use gradient ascendent in ELBO over the X ——> VA —> X'
parameters of each distribution p and q SRR HEEORE

| GANs

Generative Adversarial Networks

I6LU6669
Discriminator i D~ =ap

// > Real

Training set V

2

L {Fa ke

Random
noise i |

Imagine as:

Generator - counterfeiter
Discriminator - policeman

| GANS’ zoo

900 ~

800 -
762

700 - 680
600 -

500 - 506
400 A

300 1 284
200

TOTAL NUMBER OF PAPERS

100 -
57

0'—2 T -‘5 T T T T T
2014 2015 2016 2017 2018 2019 2020

https://github.com/hindupuravinash/the-gan-zoo

https://github.com/hindupuravinash/the-gan-zoo

| GANs

» Unsupervised generative models

» They are in an architecture that “resembles”
supervised learning.

« Generator (G): fed by random noise
(Gaussiano/Uniform); try to generate “fake news”

« Discriminator (D): tries to discriminate what is real
from fake of the Generator; trained by backprop

« Generator and discriminator are trained based on
adversarial process

| GANs

User edits Generated images

| GANs

| GANs

« G needs to capture the distribution

of the data.
« D Estimates the probability of a A
sample coming from the training q4ining set V -
data or from G. / N Discriminator
A7 Rea
Rand -/ = —
hoise 27} . Fake
— % B
Generator —/ /Fake image

GANs

« Work as a as a zero-sum game:

it is rewarded, and there is no need to change Training set

Discriminator

 If D successfully determines what is real or fake, zv / _

the training parameters.

\ -
_ _ _ _ _ Random / — @ — {Féke
* In this case, G is penalized with updates to its f@ %]
—

parameters.

Generator Fake image

« Without limits, G generates perfect examples, and D
guesses correctly only 50% of the time.

| GANs

Adaptive Loss

A
(|

Discriminator: V()d% i [logD (x(z')) + log (1 =) (G (z(i)»)]
=1

Generator: Vog% ilog (1 - D (G (z(i))))
i=1

IMPORTANT: Discriminator and Generator are trained independently!!!!

| GANs

Min Max | Expx) [log D(X)] el i o llog i — D(G(Z)))‘

G D
a] |) -
| I

Real samples Generated sample

Nash equilibrium:

P gata(x) =P gen(x)Vx
D(x) =15 Vx

GANs

e Training:

D and G compete against

each other.

Training steps alternate
between D and G.

Mini-batch stochastic
gradient descent/ascent
is used.

Generator Discriminator

Real Money

T et
: S = - _@P /
B @ L

e 30O

ABaT 3 N

, _ _ Fake Money
Counterfeiter prints fake money. It is labeled as fake for > i
police training. Sometimes, the counterfeiter attempts to The pqlice are tralned tq distinguish between.
fool the police by labeling the fake money as real. Sometimes, the police give feedback to the

counterfeiter about why the money is fake.

| GANSs: Training

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z!), ..., z(™)} from noise prior p,(z).
e Sample minibatch of m examples {z'V), ..., ")} from data generating distribution
Pdala(w)'

e Update the discriminator by ascending its stochastic gradient:
1 m
Vo~ [logD () +10g (1- D (G (2)))].
m =4

end for
e Sample minibatch of m noise samples {z'!) ..., z'")} from noise prior py(2z).
e Update the generator by descending its stochastic gradient:

m

Real images

V;)»_J%Zl();.{ (l - D (G’ (z“'))) .
i=1

Generator

A4

Sample

Random input

Sample

Discriminator

ss0|
Jojeulwiasiqg

lan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative

Adversarial Nets, NIPS, 2014

ss0|
lojelauan

| ChatGPT

! NLP: The main task

« Machine translation of 2
sequences

 Model for decoding:
P(e |)

* Find the translation with highest
probabillity:

Epest = @argmax, P(e | f)

Example:

Ele

El

nao

no

vai

para

ba

casa

casa

! NLP: The main task

« Two types of error:

« the most probable translation is bad ->
fix the model

« search does not find the most probably
translation -> fix the search

lm { Pun ishm eﬂ}
/

{ Provinces]

[States]

[
| lnvestments}

« Decoding is evaluated by search
error, not quality of translations =

(although these are often correlated)

« Inherent problems: complexity (NP-
complete), alignment / reordering,
context

A
"‘ T 2 . *]
{Capital Gains} {Blllldlng ‘

5 ‘ Country l

| Timeline of NLP

Turing test ELIZA - Statistical models - Probabilistic Word2vec
Georgetown-IBM - ALPAC report (TF-IDF) graphical models Recursive neural

experiment and First Al - Expert systems (especially HMM) tensor networks
Rules-based Winter (e.g. MYCIN) - RNN (RNTNSs)
methods -

- CNN

- LSTM

- LLMs (GPT,

BERT)

| Timeline of NLP: early models

Turing test Rule-based systems

Is 1t a person or a machine? (:\I_"_(—‘ ii?e \ The p: >

(" Person A h b Dictionary: Red < » Rosso
& House < > Casa

) >C/\f ~ Word order rules: Adjective + Noun <« Noun + Adjective
_/\\
_/\

The red house Il casa rosso
But it should be..

Y, -+ |l rosso casa | La casa rossa
J Dictionary lookup Reorder words

| Timeline of NLP: current models

 From 1990: sequence to sequence
(seg2seq) probabilistic or neural

Encoder-decoder architecture

network models Translating with an Encoder-Decoder system
« From 2013: deep learning models e Fonse Lo casa rossa
applied on the encoder and decoder
1 3
Ich habe ecinen apfel gegessen <eos>
ENCODER (; =l F : Encoder Context vector Decoder

[03,06,-02, .., 0]

.

2

[ate an apple<eos>||Ich habe einen apfel gegessen

DECODER

Pathway to ChatGPT

« RNN (e.g. LSTM and GRU)

* Encoder: in charge of outputing a context
vector (final hidden state)

« Decoder: outputs a different sequence
(translation, question-answering,
summarization, etc)

« Drawbacks:

» Performance drops drastically for longer
sentences since embeddings (signals) get
diluted as they pass through the network

ENCODER DECODER

am good

000C H O

[Embedding

I I I T

how are you ?

| Pathway to ChatGPT

The previous problem can be solved
by skip connections

feed every hidden state of the
encoder into every input of the
decoder

This creates another problem:

how to combine multiple hidden state
into a single context vector?

More problems: Memory (RNNs requires
a lot of memory) and context (RNN only
looks at the tokens to the left)

ENCODER

FOCUS ON
THE

SOLUTION,
4NOT THE
"PROBLEM

Inside Transformer

 Why do we need Transformer?

In RNN-based networks, the decoder
only access the last hidden state
and it will lose relevant information

Attention can solve the last problem,
but... RNNs treat one element at a

time

[1] Vaswani, Ashish & Shazeer, Noam & Parmar, Niki & Uszkoreit,
Jakob & Jones, Llion & Gomez, Aidan & Kaiser, Lukasz &
Polosukhin, lllia, “Attention is all you need” , 2017.

Qutput

Probabilities

Decoder
Linear
~
(| Add & Norm |<ﬂ
Encoder v
Forward
4 1 ™~ ((Add & Norm Iﬂ
£0d & Norm Multi-Head
Feed Attention
Forward g)) N x
e r_%‘
N Add & Norm =
* | 1 Add & Norm J Masked
Multi-Head Multi-Head
Attention Attention
A_t > A 2
_ J . _J)
Positional Paosilional
o) &
Encoding D ¢ Encoding
Input Output
Embedding Embedding
Inputs Qutpuls

(shifted right)

What you will really find inside...

am a student

a

a B
ENCODER DECODER
-
) 4
(~ =\
ENCODER DECODER
\. 7
4 4
@ B
ENCODER DECODER
. =
))
g o
ENCODER DECODER
. S
) 3
(N
ENCODER DECODER
§ S
) 3
- ™)
ENCODER DECODER
. J
@ /) L

INPUT

suis etudiant

Tensor is all we need!

ENCODER 4

4
I

—

Feed Forward

f
[
f

T

2]

?

zs [

Self-Attention

,C
(

¥

4 & 4
| 1 1

X1] X2 l xs[[]
Je suis étudiant

ENCODER #1

f

t

Feed Forward
Neural Network

r. T
Feed Forward
Neural Network

z) [ETEEE
Self-Attention
f T
xi [T T o | [
Thinking Machines

Layer:| & :_lAttention:\ Input - Input

The_
animal_
didn_

t

Cross

the_

street_

because_
it

was

too

tire

The_
animal_
didn_

t

Cross_
the

street_
because_
it

was
too

tire

Self-attention

Input

Embedding

Queries

Keys

Values

Thinking

x[CITT]

a[TT]

K1

vil [T]

Machines

X2 T T 1]

g T[]

Kz

vo[T 1]

wv

Self-
attention

Input

Embedding

Queries

Keys

Values

Score

g1

Thinking

Machines

2

Self-
attention

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (dy)

Softmax

g1 ®

x2 [
o [T
[TT1]
[TT1]
s

Self-

attention

Input

Embedding
Queries

Keys

Values

Score

Divide by 8 (v)
Softmax

Softmax

X

Sum

Thinking

Machines
vMacnines

X2
o [T

[T]
EE|

0
@
]

Self-attention

Multi-head self-attention

hinking

Machine

ATTENTION HEAD #0

o ms

; 1]

f(o

Vo

WoV

ATTENTION HEAD #1

Q4

HH

Ki
H

A

WK

W,V

ATTENTION
HEAD #0

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
v
ATTENTION ATTENTION
HEAD #1 HEAD #7

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained

l | jointly with the model
[3) The result would be the ~ matrix that captures information
att e nt I o n from all the attention heads. We can send this forward to the FFNN

Self-attention Multi-head self-attention

Layer:| 5 $| Attention: | Input - Input #| Layer:| 5 $| Attention: | Input - Input #|
The_ The_ The_ The_
animal_ animal_ animal_ animal_

didn_ didn_ didn_ didn_

t_ t_ t_ t_
Cross._ Cross_ Cross_ Cross_
the_ the_ the_ the_
street_ street_ street_ street_
because_ because because_ because_

it_ it_

was_ was_
too_

tire

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting - matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
W, @
Q.’]

}. I V I) v ' . B AL
5 [. |
V\f 1 Q
* |n all encoders other than #0, Q"
we don't need embedding. — e
- I I We start directly with the output == { ¢) T ’ : | |

of the encoder right below this one

W-0

Positional
encoding

ENCODER #1 DECODER #1
A ¥ N A
ENCODER #0 DECODER #0
L r 3 a A
EMBEDDING
WITH TIME
SIGNAL X X2 xa[|
POSITIONAL T i T T
ENCODING t I [‘ l t"|] ‘ I W t [[I
+ - -
EMBEDDINGS [T T < I
INPUT Je suis éetudiant
POSITIONAL 1 1 0.84 [INGEN 0.54 1 X EI 0.0002 | -0.42 1
ENCODING 7
- - -
EMBEDDINGS xi [[[] e T T[] xs L[T T]
INPUT Je SUis étudiant

...

-/

: : (Softmax
6,(. Add & Normalize . ‘)\ (Lin’ear)
N : T
: RV DECODER #2
' .
& "(Add & Normalize)
:\ } s (Feed Forward) (Feed Forward)
R u d I F F N /,4»(Add & Normalize)\ ‘P(Add & Normalize)
esiauais Hp— O ;
I , , - E (Feed Forward) (Feed Forward) N "':"(Encoder-Decoder Attention)
™ ‘ YSiseanaa Bomonsmmisamwas e 4 TeeTooes A it i i o o L
Ad d & N O r m a I Ize : ,o(Add & Normalize) ,»(Add & Normalize)
=1) [E t L.
E (Self-Attention) - C Self-Attention)
\~ -------- e 4 _/ R S
L ® cIa <1>
[11 1] x| [1]

Thinking Machines

Decoder

Decoding time step: 1@3 4 56 OUTPUT

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

Kencdec Vencdec (Linear + Softmax
ENCODERS DECODERS

4) * 4
LITT] LITT] SEEE) CITT]
EmEE=] [I [[[El=TEE] (ITTT]
Je suis étudiant PREVIOUS

OUTPUTS

Output

Which word in our vocabulary
is associated with this index?

Get the index of the cell

with the highest value
(argmax)

log_probs

logits

Decoder stack output

am

012345

.. vocab_size

.. vocab_size

Toy example

Target Model Outputs

Output Vocabulary: a am I thanks student <eos>

position #1 0 0 1.0 0.0 0.0 0.0
1

position #2 K¢ 1.0 0.0 0.0

0 0.0 0.0 .0 0.0
position #4 0] 0 0.0 0.0 0.0
position #5 M0 0 0.0 0.0 .0 1.0

a am | thanks student <eos>

.0 0. :
.0 0. ;
.0 0. ; 0]

Ground truth

Trained Model Outputs

Output Vocabulary: a am I thanks student <eos>

position #1 KON EEEON0Y 0.01 0.03 0.01

position #2 N

SO BRI R°lY 0.001 0.001 0.001 0.002 0.001

S E: 28 0.001 0.002 0.001 0.02 0.01

SLHILEE 0.01 0.01 0.001 0.001 0.001 peRets

a am | thanks student <eos>

Trained model output

| Generative Pre-trained
Transformer

Parameter

Version Architecture Training data Release date
count
}f;ﬁ;}?;’r:fé?zae%i%er (no BookCorpus: 4.5 GB of text,
GPTH) 117 million from 7000 unpublished books June 11,2018
encoder), followed by linear- :
of various genres.
softmax.
WebText: 40 GB of text, 8
GPT-2 GPTH, ywth modified 15 billion m!ll!on documents, from 45 February 14, 2019
= normalization million webpages upvoted on
Reddit.
570 GB plaintext, 0.4 trillion
: e s tokens. Mostly CommonCrawl,
GPT-3 GP1-2, with modification to 175 billion | WebText, English Wikipedia, June 11,2020
allow larger scaling
and two books corpora
(Books1 and Books2).

https://en.wikipedia.org/wiki/GPT-1
https://en.wikipedia.org/wiki/BookCorpus
https://en.wikipedia.org/wiki/GPT-2
https://en.wikipedia.org/wiki/GPT-3

pr;ei::ion c,;g:::ier Classification ’ Start | Text | Extract H—*{ Transformer |—>| Linear ‘
— \ /'
LayerTNom Entailment ’ Start | Premise | Delim I Hypothesis | Extract |-—[Transformer H Linear |
PT 1 ét R R P e PR S EL AR S TP LA TS ORR I O G G S OV LA, :. ...
(; - Start Text 1 Deli Text 2 Extract Transf
Feed Trward Similarity I l ex l elim I ex I xtrac |:-—[ransformer 0
%= | Start | Text 2 | Delim I Text 1 | Extract |-—[Transformer
e S A
[=
Mask:; i | [Start [Context I Delim I Answer 1 [Extract] +l Transformer |~>I Linear
Self Attention =
: Multiple Choice | Start | Context | Delim | Answer 2 | Extract |—-l Transformer H Linear
Text & Position Embed | Start I Context | Delim | Answer N | Extract |_——| Transformer H Linear
Semi-supervised learning: unsupervised Unsupervised learning:

pre-training followed by supervised fine-
tuned models - that’s why the name

: LS L(T) = Zl P(ti|tiok,mnnrti1; 6
generative pre-training 1(T) i og P(tilti—k,...,ti-1;6)

Only uses the decoder part of the

transformer Supervised fine-tuning:

Supervised fine-tuning was achieved by adding _

a linear and a softmax layer to the transformer L2(C) = Z log P(y|xs,..., %) L3(C) = L2(C) + ALy (C)
model to get the task labels for downstream Xy

tasks.

GPT-1

Unsupervised learning:

Model used 768-dimensional state for encoding
tokens into word embeddings. Position embeddings
were also learnt during training.

12 layered model was used with 12 attention heads in
each self-attention layer.

Adam optimizer was used with learning rate of 2.5e-4.

Attention, residual and embedding dropouts were
used for regularization, with dropout rate of O.1.

GELU was used as activation function.

The model was trained for 100 epochs on mini-
batches of size 64 and sequence length of 512.

The model had 117M parameters in total.

Supervised fine-tuning:

Supervised fine-tuning took as few as 3 epochs for
most of the downstream tasks.

Most of the hyper parameters from unsupervised pre-
training were used for fine-tuning

GPT-1 performed better than specifically trained
supervised state-of-the-art models in 9 out of 12
tasks

GPT-2

« GPTA1 train the language model as P(output | input)

« GPT-2 use the same unsupervised mode, but as P(output | input , task) — this is called
task conditioning where the model is expected to produce different outputs for the
same input and different tasks

« Task conditioning forms the ground for zero-shot task transfer

« Zero-shot learning is a special case of zero shot task transfer where no examples are
provided at all

The model understands the task based on the given instruction
Input is given in a format to help the model understand the nature of the task

« Data sets: Reddit, WebText and all Wikipedia articles
« 1.5 billions of parameters, 50,257 tokens, larger batch size (512)

! GPT-3

175 billion parameters

Quantity Weight in Epochs elapsed when
Dataset (tokens) training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Booksl 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Learning objectives and concepts:

In-context learning: When presented with few examples (or a description of what it needs to do),
the language models matches the pattern of the examples with what it had learnt in past for similar
data and uses that knowledge to perform the tasks

Few-shot, one-shot and zero-shot setting: specialized case of zero-shot task transfer
Data set: Common Crawl, WebText2, Books1, Books2 and Wikipedia

96 layers and 96 attention heads for each layer
Context window size was increased from 1024 for GPT-2 to 2048 tokens for GPT-3

Accomplish tasks for what it was not trained (generate SQL comands, comprehension

reads, etc)

| GPT-4

* |t is able to provide
Image synthesis but not
Image generation

* |n the side example,
one can realize that
this new feature is not
working appropriately,
yet!!!

given this image here https:/fimg.freepik.com/free-vector/celebratory-balloons-isolated-
background_1284-52282.jpg?w=360 , write a caption

Based on the image you provided, here is a possible caption:

"A festive arrangement of colorful balloons isolated on a white background, creating a

joyful and celebratory atmosphere."

how many balloons in that image?

As an Al language model, | do not have the ability to directly analyze images or count the

number of balloons in the image you provided. However, based on a visual inspection of
the image, it appears that there are around 14 balloons in the arrangement. Please note
that this is just an estimation based on a visual assessment and may not be entirely

accurate.

| ChatGPT

Step 1

Collect demonstration data,
and train a supervised policy.

A prompt is
sampled from our -
xplain the meon
prompt dataset. Ianding 16 a & year old
\
Alabeler
demonstrates the @
desired output Z
behavior. o m‘pk_ et
1o the moon
Y
This datais used SFT
to fine-tune GPT-3 e ay
with supervised 0\}5'2(./'
learning. 2
EEE

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moan
landing to 5 & yenr old

Bacton garny Suner

c] o)

Macn s marerss Py wenr ta
st ef thermzen

)

0-6:0:0

)

Trained with Reiforcement Learning from Human Feedback
(RLHF), based on Proximal Policy Optimization (PPO).

Use InstructGPT to follow instructions

ChatGPT and GPT-3.5 were trained on an Azure Al
supercomputing infrastructure.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

; ™

is sampled from A

the dataset. abeut frogs
|

The policy =2y

2rat N)

generates .U?.VQ.

an output. 7
Y

]
The reward model 25
calculates a .M.
reward for N2y
the output.

V
The reward is
used to update rk

the policy
using PPO.

Dataset Dataset
RealToxicity TruthfulQA

GPT 0.233 GPT

Supervised Fine-Tuning 0.199 Supervised Fine-Tuning
I I
InstructGPT 0.196 InstructGPT

| ——]

API Datasel AP Dataset
Hallucinations Customer Assistant Appropriate
GPT 0.414 GPT

Supervised Fine-Tuning 0.078 Supervised Fine-Tuning
InstructGPT 0.172 InstructGPT
jee—————}

0.224

0.206

0.413

0.880

0.902

Some thoughts

Al applied on text finally started achieving
maturity to deal with big data

Problems yet to solve are toxicity and
hallucination

If someone knows how to guide ChatGPT to
answer the questions, it can make a surprising
job. So, we must think about it as a must-
guided Al tool

* S0, questions about oneself is useless. So do
not try to make a guess about the potential
of this tool making this kind of question

ChatGPT is a bullshitter. It’s not a liar because
to be a liar, you must know the truth and intend
to mislead. ChatGPT is indifferent to the truth

\ /

Conclusions

« Modelling the probability distribution of a generative
model is not an easy task, while requiring:

4, /
.

1111

» large computational resources

 alot of patience to efficiently modelling the
generative side

« Understanding the fundamentals of each tecnique is of
underlying importance to make it work, but not only... It
is necessary a lot of patience.

Jhrt g

lIrebouca@ufba.br

@ivisionlab
http://ivisionlab.ufba.br

mailto:lrebouca@ufba.br
http://ivisionlab.ufba.br/

