
Generative
models

Luciano Oliveira

Universidade Federal da Bahia (UFBA)

Second School on Data Science and Machine Learning

Universidade
Federal da
Bahia

Agenda

• (1) Generative models at a glance

• (1) Mathematical foundations of generative
models

• (1) Warming up with Latent Dirichlet Allocation

• Deep generative models
• (2) Restricted Boltzmann Machines
• (2) Deep Belief Networks
• (3) Autoencoders

• (3) Generative Adversarial Networks
• (4) ChatGPT

• (4) Conclusions

(n), where n is one of the 4 parts of the course today

Summary

Generative models at a
glance

Google Duplex

• Natural chating with humans
• Conducting natural

conversations

• Fully autonomous

• Synchronization

• Interrupt control

• Recurrent networks

Voice cloning

Automatic staning

• Stanning of slide
windows from H&E

• Use of GANs to
generate slides with
different staing
patterns

Leonardo.ai

A scene in a 3D disney/pixar style
containing a york shire dog dressing a

red and black shirt

Generative models

Definition: Machine learning models that learn to generate new data samples
similar to the training data

Probability
distribution

Generative models

Challenges for generative models

Models:
- which require powerful processing resources
- are difficulty to assess performance
- require complex control to generate data diversity

Complex
data:

- which requires very large models to capture all
nuances of the features and distributions

Mathematical foundations of
generative models

Probability and machine learning

P() = 1/6 = 16,67%

P(Y|X=) = ?

) = ?P(Y|X=

0 ≤ P(A) ≤ 1

P(Ω) = 1

P(∅) = 0

Probability rules

... in the context of machine learning

Labels: Y=y

Features: X={x1, x2, …xn}

P(X= |Y) = ?

|Y) = ?P(X=
or

P(Y, X) = P(y, x1, x2 … xn)

Bayes theorem

prior likelihood

marginal

=
x likelihoodprior

evidence
posterior

Bayes theorem

features

labels

Discriminative models

f: separation
hyperplane

f: X → Y or P(Y | X) or

P(label | features)

Posterior is learnt or modeled from data
(conditional models):

- Logistic regression
- Redes neurais
- SVM
- CRFs
- Random forest

P(Y|X=)

)P(Y|X=

Generative models

• Rewrite Bayes:
• P(X|Y=y) = P(X,Y) / P(Y)

• We use P(X,Y) to sample new
data:
• Tuples (X,Y)
• Inputs using Y

• Examples:
• Naïve Bayes
• GMM
• HMM
• VAE
• GAN

Depend on a
latent variable

P(X,Y)

Warming up with LDA

Latent Dirichlet
Allocation

• Method for Unsupervised Topic Modeling

• Bayesian network based on Dirichlet distribution:

• Observable Variables: Words

• Latent variables: topics

• Goals are:

• Discovering topics in a corpus of words

• The proportion of these topics in each document

• Assuming that:

• Each document is a mixture of latent topics

• Each topic is a distribution over words

Latent Dirichlet Allocation

• Consider that we have 5 documents
• Each containing the words on the right

side

• We have to figure out the words in
different topics, with their respective
probabilities

• Each document is a bag of words:
• Order of the words and grammar rules

are NOT important
• We have to do some pre-processing

• We have to know beforehand how
many (T) topics we want

Latent Dirichlet
Allocation

• Pre-processing

• Tokenization
• Lemmatization: Words in the third

person are changed to the first
person, and verbs in the past and
future are changed to the present.

• Stemming: Words are reduced to
their root form.

Latent Dirichlet
Allocation

• Distribution of:
• documents over topics – p(zdn | θd)
• topics over words – p(wdn | zdn)

• Notation:
• D: total number of documents
• θd: distribution for the d-th document.
• T: total number of topics
• Zd1: probability distribution of words over the

first topic
• Wdn: Probability of a word in the distribution of

the n-th topic
• V: Total number of words in a corpus.

Latent Dirichlet Allocation

• The generative process works as follows:

• For each word W in the document, do:

• choose a topic Zd of the distribution θd

• choose a word W from a topic Zd

• Assume that:

• each document is generated regardless of the others

• the same set of topics is used for all documents

• LDA allows to generate latent variables (topics) that ultimately generate the observable data
(words)

Deep generative models

Boltzmann Machine

• Boltzmann established the concepts
of statistical physics.

• The Boltzmann distribution
describes the probability of a gas
molecule being found in a particular
energy state.

𝑁!
𝑁
=
𝑔!𝑒

"#!$%

𝑍(𝑇)

Onde:

K: Boltzmann constant
T: temperature
gi: number of states having energy Ei
N: total number of particles

Z(T): ∑! 𝑔!𝑒
"!"
#$

Boltzmann Machine

• They are probabilistic,
unsupervised models based on
energy.

• For each configuration of the
system, a value of energy is
assigned along with an
associated probability:

• Low energy ↓ represents
high probability ↑

• High energy ↑ represents
low probability ↓

• By sampling, each neuron is either
activated or deactivated with a
certain probability.

• After training, convergence is
achieved to a stable state,
represented by the minimum of the
energy function.

• The hidden neurons work to learn
the latent states of the joint
distribution function P(v, h)

Restricted Boltzmann Machine

Smolensky (1986) proposes the Restricted
Boltzmann Machine under the name
Harmonium

Hinton (2002) proposes a learning model

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony
theory. Colorado Univ at Boulder Dept of Computer Science.

Hinton, G.E. (2002). Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8), 1771-1800.

Restricted Boltzmann Machine

Restricted Boltzmann Machine

Total energy:

Probability distribution

𝐸 𝑣, ℎ = −(
$%&

'!

𝑏$𝑏(−(
)%&

'"

𝑎)𝑣) −(
)%&

'"

(
$%&

'!

ℎ$𝑤$)𝑣)

𝑃 𝑣, ℎ =
𝑒*+(-,()

𝑍 An RBM is totally specified
by W, b, a

Restricted Boltzmann Machine

Training:

1. Input a vector v

2. Compute h

3. Use h to generate (samples of) visible states v’

4. Use v’ to generate (samples of) hidden states h’

5. Update the parameters W, b and c (where ∈ is the LR):

∆𝑾 =∈ (𝒗𝒉 − 𝒗’𝒉’) ∆𝒃 =∈ (𝒗 − 𝒗’) ∆𝒂 =∈ (𝒉 − 𝒉’)

Gibbs sampling: Sampling
unknown parameters from a
distribution while fixing the
others.

Restricted Boltzmann Machine

Alternating step of
Gibbs Sampling

Kulback-Leibler
divergence

Deep Belief Network

• Stack of RBMs: The output of one RBM
is taken as input by another RBM

• It is possible to add as many RBMs as
you want; however, this can cause:
• Vanishing gradient
• Local minima

• DAG: directed acyclic graph

• Supervised and unsupervised

• Training: Greedy learning algorithm
(layer-by-layer pre-training)

Building blocks

Deep Belief Network

• Pre-processing:
• Image converted to gray scale

• Pixel normalization

• Image resize to a standard size

• Training:
• DBN training using unsupervised learning, layer by layer

• Use of an RBM to train the first layer

• Using the outputs of the previous layer as inputs for the
subsequent layer after pre-training.

• Fine-tunning:
• Adjust of the TOP layer of the DBN, using supervised learning

• Updating the network weights based on labeled training data
using backpropagation and gradient descent.

Autoencoders

• NOT a generative model

• NOT supervised

• They are used to learn representations in a
latent feature space (bottleneck).

• Input is an image, output is the same image.

• Encoder: h = f(x); decoder: r = g(h)

• Generate x’ similar to x

• h has an usefull property:
• h is incomplete and compressed – force h to

capture generic features

• Parameters: Latent neurons, encoder and
decoder layers, nodes per layer, loss.

Trained by backpropagation

Autoencoders

Autoencoders can also learn to do
denoysing

But why learn autoencoders in
this course?

Variational
autoencoders

• Generative model, unsupervised, autoencoder similar
architecture

• In the bottleneck, VAE learns a posterior
• Latent space is stochastic; a Gaussian PDF

• Sample from q to find z.

• Decoder has weights and biases, whose output allows
for data generation

• It takes the distribution of z, and the output is the
parameters of a Gaussian or Bernoulli distribution
(if the input is binary) – output between 0 and 1 for
each pixel.

• The loss is comprised of: log pφ(x ∣ z) of the
reconstruction from z and the KL divergence
between q and p(z), where p is a Gaussian
distribution with zero mean and variance equal to 1

Variational autoencoders

• VAEs learn: p(x, z) = p(x ∣ z)p(z)

• For each sample, i, in the dataset:
• Find latent variables: zi ∼ p(z)

• Find xi ∼ p(x ∣ z)

• The latent variables are found from p(z)

• Model inference will be:

, where: p(x) = ∫ p(x ∣ z)p(z)dz

Variational autoencoders

• Reparametrization trick:

• Sampling from mean and standard
deviation vector, instead of from the
latente variables

Variational autoencoders

• As p(x) is costly, the posterior is
approximated to a family of distributions λ :
qλ(z|x)
• For example, if q is Gaussian, so

• We use KL divergence to know how much q
is approximated of p.
• We should use an algorithm to compute KL

divergence in a tractable way: minimizing KL
means maximizing the Evidence Lower Bound
(ELBO) to compute the posterior.

• We use gradient ascendent in ELBO over the
parameters of each distribution p and q

GANs

Imagine as:

Generator – counterfeiter
Discriminator - policeman

Generative Adversarial Networks

GANs’ zoo

https://github.com/hindupuravinash/the-gan-zoo

https://github.com/hindupuravinash/the-gan-zoo

GANs

• Unsupervised generative models

• They are in an architecture that “resembles"
supervised learning.
• Generator (G): fed by random noise

(Gaussiano/Uniform); try to generate “fake news”

• Discriminator (D): tries to discriminate what is real
from fake of the Generator; trained by backprop

• Generator and discriminator are trained based on
adversarial process

GANs

GANs

GANs

• G needs to capture the distribution
of the data.

• D Estimates the probability of a
sample coming from the training
data or from G.

GANs

• Work as a as a zero-sum game:

• If D successfully determines what is real or fake,
it is rewarded, and there is no need to change
the training parameters.

• In this case, G is penalized with updates to its
parameters.

• Without limits, G generates perfect examples, and D
guesses correctly only 50% of the time.

GANs

Discriminator:

Generator:

IMPORTANT: Discriminator and Generator are trained independently!!!!

Adaptive Loss

GANs

Real samples Generated sample

Nash equilibrium:

𝑃data(𝑥) =𝑃gen(𝑥)∀𝑥
D(𝑥) = ½ ∀𝑥

GANs

• Training:

• D and G compete against
each other.

• Training steps alternate
between D and G.

• Mini-batch stochastic
gradient descent/ascent
is used.

GANs: Training

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative
Adversarial Nets, NIPS, 2014

ChatGPT

NLP: The main task

• Machine translation of 2
sequences

• Model for decoding:
P(e | f)

• Find the translation with highest
probability:

ebest = argmaxe P(e | f)

Example:

Ele não vai para casa

El no ba a casa

f

e

NLP: The main task

• Two types of error:
• the most probable translation is bad ->

fix the model
• search does not find the most probably

translation -> fix the search

• Decoding is evaluated by search
error, not quality of translations
(although these are often correlated)

• Inherent problems: complexity (NP-
complete), alignment / reordering,
context

Timeline of NLP

1950 1960 1980 1990 >2013

- Turing test
- Georgetown-IBM

experiment
- Rules-based

methods

- ELIZA
- ALPAC report

and First AI
Winter

- Statistical models
(TF-IDF)

- Expert systems
(e.g. MYCIN)

- Probabilistic
graphical models
(especially HMM)

- RNN

- Word2vec
- Recursive neural

tensor networks
(RNTNs)

- …
- CNN
- LSTM
- LLMs (GPT,

BERT)

Timeline of NLP: early models

Turing test Rule-based systems

Timeline of NLP: current models

• From 1990: sequence to sequence
(seq2seq) probabilistic or neural
network models

• From 2013: deep learning models
applied on the encoder and decoder

Encoder-decoder architecture

Pathway to ChatGPT

• RNN (e.g. LSTM and GRU)

• Encoder: in charge of outputing a context
vector (final hidden state)

• Decoder: outputs a different sequence
(translation, question-answering,
summarization, etc)

• Drawbacks:

• Performance drops drastically for longer
sentences since embeddings (signals) get
diluted as they pass through the network

Pathway to ChatGPT

• The previous problem can be solved
by skip connections
• feed every hidden state of the

encoder into every input of the
decoder

• This creates another problem:
• how to combine multiple hidden state

into a single context vector?
• More problems: Memory (RNNs requires

a lot of memory) and context (RNN only
looks at the tokens to the left)

Inside Transformer

• Why do we need Transformer?

• In RNN-based networks, the decoder
only access the last hidden state
and it will lose relevant information

• Attention can solve the last problem,
but… RNNs treat one element at a
time

[1] Vaswani, Ashish & Shazeer, Noam & Parmar, Niki & Uszkoreit,
Jakob & Jones, Llion & Gomez, Aidan & Kaiser, Lukasz &
Polosukhin, Illia, “Attention is all you need” , 2017.

Encoder

Decoder

What you will really find inside...

Tensor is all we need!

Self-attention

Self-
attention

Self-
attention

Self-
attention

Self-attention

Multi-head self-attention

Multi-head
self-
attention

Self-attention Multi-head self-attention

All the steps
till now

Positional
encoding

Residuals, FFN,
Add&Normalize

Decoder

Output

Toy example

Ground truth Trained model output

Generative Pre-trained
Transformer

Version Architecture Parameter
count

Training data Release date

GPT-1

12-level, 12-headed
Transformer decoder (no
encoder), followed by linear-
softmax.

117 million
BookCorpus: 4.5 GB of text,
from 7000 unpublished books
of various genres.

June 11, 2018

GPT-2 GPT-1, with modified
normalization

1.5 billion

WebText: 40 GB of text, 8
million documents, from 45
million webpages upvoted on
Reddit.

February 14, 2019

GPT-3 GPT-2, with modification to
allow larger scaling

175 billion

570 GB plaintext, 0.4 trillion
tokens. Mostly CommonCrawl,
WebText, English Wikipedia,
and two books corpora
(Books1 and Books2).

June 11, 2020

https://en.wikipedia.org/wiki/GPT-1
https://en.wikipedia.org/wiki/BookCorpus
https://en.wikipedia.org/wiki/GPT-2
https://en.wikipedia.org/wiki/GPT-3

GPT-1

• Semi-supervised learning: unsupervised
pre-training followed by supervised fine-
tuned models – that’s why the name
generative pre-training

• Only uses the decoder part of the
transformer

• Supervised fine-tuning was achieved by adding
a linear and a softmax layer to the transformer
model to get the task labels for downstream
tasks.

Unsupervised learning:

Supervised fine-tuning:

• ,

GPT-1

• Unsupervised learning:

• Model used 768-dimensional state for encoding
tokens into word embeddings. Position embeddings
were also learnt during training.

• 12 layered model was used with 12 attention heads in
each self-attention layer.

• Adam optimizer was used with learning rate of 2.5e-4.

• Attention, residual and embedding dropouts were
used for regularization, with dropout rate of 0.1.

• GELU was used as activation function.

• The model was trained for 100 epochs on mini-
batches of size 64 and sequence length of 512.

• The model had 117M parameters in total.

• Supervised fine-tuning:

• Supervised fine-tuning took as few as 3 epochs for
most of the downstream tasks.

• Most of the hyper parameters from unsupervised pre-
training were used for fine-tuning

• GPT-1 performed better than specifically trained
supervised state-of-the-art models in 9 out of 12
tasks

GPT-2

• GPT-1 train the language model as P(output | input)

• GPT-2 use the same unsupervised mode, but as P(output | input , task) – this is called
task conditioning where the model is expected to produce different outputs for the
same input and different tasks

• Task conditioning forms the ground for zero-shot task transfer

• Zero-shot learning is a special case of zero shot task transfer where no examples are
provided at all
• The model understands the task based on the given instruction
• Input is given in a format to help the model understand the nature of the task

• Data sets: Reddit, WebText and all Wikipedia articles

• 1.5 billions of parameters, 50,257 tokens, larger batch size (512)

GPT-3

• 175 billion parameters

• Learning objectives and concepts:
• In-context learning: When presented with few examples (or a description of what it needs to do),

the language models matches the pattern of the examples with what it had learnt in past for similar
data and uses that knowledge to perform the tasks

• Few-shot, one-shot and zero-shot setting: specialized case of zero-shot task transfer

• Data set: Common Crawl, WebText2, Books1, Books2 and Wikipedia

• 96 layers and 96 attention heads for each layer

• Context window size was increased from 1024 for GPT-2 to 2048 tokens for GPT-3

• Accomplish tasks for what it was not trained (generate SQL comands, comprehension
reads, etc)

GPT-4

• It is able to provide
image synthesis but not
image generation

• In the side example,
one can realize that
this new feature is not
working appropriately,
yet!!!!

14

ChatGPT

- Trained with Reiforcement Learning from Human Feedback
(RLHF), based on Proximal Policy Optimization (PPO).

- Use InstructGPT to follow instructions

- ChatGPT and GPT-3.5 were trained on an Azure AI
supercomputing infrastructure.

Some thoughts

• AI applied on text finally started achieving
maturity to deal with big data

• Problems yet to solve are toxicity and
hallucination

• If someone knows how to guide ChatGPT to
answer the questions, it can make a surprising
job. So, we must think about it as a must-
guided AI tool

• So, questions about oneself is useless. So do
not try to make a guess about the potential
of this tool making this kind of question

• ChatGPT is a bullshitter. It’s not a liar because
to be a liar, you must know the truth and intend
to mislead. ChatGPT is indifferent to the truth

Conclusions

• Modelling the probability distribution of a generative
model is not an easy task, while requiring:

• large computational resources

• a lot of patience to efficiently modelling the
generative side

• Understanding the fundamentals of each tecnique is of
underlying importance to make it work, but not only... It
is necessary a lot of patience.

lrebouca@ufba.br
@ivisionlab

http://ivisionlab.ufba.br

mailto:lrebouca@ufba.br
http://ivisionlab.ufba.br/

