Collective behaviors in neuronal networks under the actions of electric and magnetic fields

Presented by:

SIMO Gaël Rosain

University of Ebolowa, HIGHER TECHNICAL TEACHERS’ TRAINING COLLEGE,
University of Dschang, Faculty of Science, Department of Physics,
Cameroun
1. Context and motivation of the work

➢ To understand and control certain neuronal behaviors.
 - Neurological and neurodegenerative diseases (Alzheimer's, Parkinson's, epilepsy, Multiple sclerosis, cerebrovascular accidents, etc.),
 - psychiatric diseases (anxiety, depression, addiction, schizophrenia, autism),
 - deficiencies of the sense organs (visual and hearing impairments, somesthetics or olfactory) are most affected by research on the brain.

➢ We live every day accompanied by the electromagnetic fields that surround us.

Fig 0: Some electromagnetic fields sources.
1. Context and motivation of the work

- The brain as a complex system
- Neuronal synchronization links to several brain pathologies
- Chimera state and similarity in certain animals
- Traveling chimera state as a variant of chimera state

Fig 0: Google Research & Lichtman Lab (Université de Harvard)/Rendu par D. Berger
2. Problem statement

What would be the influence of the electromagnetic fields on chimera states in a network of Hindmarsh-Rose neurons?
3. What’s Neuron?

Fig1: Schematic view of a neuron(Kandel et al., 1991)
4. HR neuronal models

a) Three-equations model

\[
\begin{align*}
\dot{x} &= y - ax^3 + bx^2 + I - z \\
\dot{y} &= c - dx^2 - y \\
\dot{z} &= r(s(x - x_0) - z).
\end{align*}
\]

(Hindmarsh and Rose, 1984)
6. Phenomenon appearing in 1D-NN

Network Equations

\[
\begin{align*}
\dot{x}_i &= y_i - ax_i^3 + bx_i^2 - z_i + I + J_i + C_i \\
\dot{y}_i &= 1 - dx_i^2 - y_i \\
\dot{z}_i &= r(s(x_i - x_{i0}) - z_i)
\end{align*}
\]

(1)

\[
J_i = k_1 \sum_{j=i-1}^{j=i+1} (x_j - x_i)
\]

(2)

\[
C_i = \frac{k_2}{2p-2} (x_s - x_i) \left(\sum_{j=i-p}^{i+p} \Gamma(x_j) - \sum_{j=i-1}^{i+1} \Gamma(x_j) \right)
\]

(3)

where \[
\Gamma(x) = \frac{1}{1 + \exp(-\lambda(x - \theta))}
\]
6. Phenomenon appearing in 1D-NN

a) Traveling chimera

Fig 3: Traveling chimera pattern for only chemical synaptic coupling, $k_1 = 0$, $k_2 = 9$, $I = 3.5$. (a) Spatiotemporal evolution of x_i shows the traveling chimera pattern, where the magnitude of x_i is indicated by the color bar; (b) Time series of x_i of: node 5 in blue and node 50 in red.
Fig 4: Traveling chimera pattern for $k_2 = 4$, $k_1 = 3$, $I = 3.5$. (a) Spatiotemporal evolution of x_i where the magnitude of x_i is indicated by the color bar. The pattern travels from bottom left to upper right corner in time. (b) Snapshots of x_i of all nodes at two different instants. (c) Time series shows a chaotic bursting behavior.
Fig5: Role of the number of neighbors p on the dynamics of the network’s traveling chimera (a), (b), (c) without electrical coupling ($k1 = 0, k2 = 9$); (d), (e), (f) with electrical coupling ($k1 = 1, k2 = 9$).
c) Traveling speed’s estimation for the traveling chimera state

\[J_{x_{\text{max}}} (t) = j \max \{x_1(t), x_2(t), \ldots, x_N(t)\} \quad (4) \]

\[v_{tr} = \frac{N}{T_{tr}} = Nf_{tr} \quad (5) \]

Fig 6: a) Position of the oscillator displaying maximum x-value with time for \(p = 15 \) for \(k1 = 1, k2 = 9 \). The periodicity of the waveform refers to that of the traveling chimera state. (b) Fourier transforms of \(J_{\text{max}}(t) \), with low frequencies, expanded in the inset, to discern the frequencies of the traveling motion around the ring (\(f_{tr} = 0.0000816 \)).
6. Phenomenon appearing in 1D-NN

d) Multicluster and traveling multicluster chimera breathers.

Fig 7: Traveling multiclusters for $k1 = 0$, $k2 = 9$ and $I = 35$. (a) Spatiotemporal evolution of the x_i. Coherent clusters in blue. (b) Plot of time series of neurons with even index i for better visualization of coherent clusters. (c) Close up on figure (b), where the coexistence of coherent regions, marked by low-frequency behavior, is distinctly seen.
e) Multicluster and traveling multicluster chimera breathers.

Fig 8: Multicluster chimera breathers, for $k_1 = 0$, $k_2 = 10$, $I = 35$. (a) Spatiotemporal evolution of x_i, marked by four coherent regions. (b) Close-up of (a), details of x_i show the existence of multiclusters. (c) Time-series of x_i for neurons inside different but subsequent clusters show that these present an “antiphase” like behavior.
6. Phenomenon appearing in 1D-NN

Local Order Parameter in one dimension

\[L_i = \left| \frac{1}{2\eta} \sum_{|i-k| \leq \eta} e^{i\phi_k} \right| \]

Fig9: Spatiotemporal evolution of the local order parameter \(L_i \) with \(\eta = 2 \), the magnitude of \(L_i \) is indicated using color bars: (a) For the parameters of Fig.10; (b) For the parameters of Fig.11.
7. Phenomenon appearing in 2D-NN

Network Equations

\[\dot{x}_{i,j} = y_{i,j} - ax_{i,j}^3 + bx_{i,j}^2 - z_{i,j} + I + J_{i,j} + C_{i,j}, \]
\[\dot{y}_{i,j} = 1 - dx_{i,j}^2 - y_{i,j}, \]
\[\dot{z}_{i,j} = r(s(x_{i,j} - x_{i,j0}) - z_{i,j}). \]

(7)

\[J_{i,j} = \frac{k_i}{4} \left(\sum_{l=-1}^{i+1} (x_{i,j} - x_{l,j}) + \sum_{l=-1}^{j+1} (x_{i,l} - x_{i,j}) \right) \]

(8)

\[C_{i,j} = \frac{k_2}{4p-4} \left(v_s - x_{i,j} \right) \left(\sum_{l=-p}^{i+p} \Gamma(x_{i,j}) + \sum_{l=-p}^{j+p} \Gamma(x_{i,l}) \right). \]

(9)
7. Phenomenon appearing in 2D-NN

a) Traveling chimera state in 2D-NN

Fig11: Traveling chimera patterns in 2D network for synaptic coupling $k_2 = 9$ ($k_1 = 0$). (a,b) Spatiotemporal evolution of $x_{i,j}$ for M_2 neurons, (c) snapshots of M_2 number of $x_{i,j}$ variables in 2D plane at two different instant of times. Blue curve is for a later time than the red snapshot implying a traveling pattern. The color bars in (a, b) represent the variation of $x_{i,j}$.
7. Phenomenon appearing in 2D-NN

a) Traveling chimera state in 2D-NN

Fig 12: Traveling chimera patterns in 2D network for synaptic coupling $k_1 = 2$ and electrical coupling $k_2 = 3$. (a) Spatiotemporal evolution of $x_{i,j}$ for M_2 neurons, b) snapshots of the M_2 $x_{i,j}$ variables in two different instants of times. Blue curve is for a later time than the red snapshot implying a traveling pattern.
Fig13: Traveling chimera patterns in 2D network for synaptic and electrical coupling with $k_1 = 5$, (a) $k_2 = 2.5$, traveling chimera state, (b) $k_2 = 2.75$, imperfect traveling chimera patterns, (c) $k_2 = 3$, traveling chimera state. Here, the direction of traveling pattern in (b) changes with the direction of (a, c).
7. Phenomenon appearing in 2D-NN

Figure 14: Traveling multi-cluster in 2D network for electrical coupling $k_1 = 1$ and synaptic coupling $k_2 = 1$. (a,b) spatiotemporal evolution of $x_{i,j}$ for $M2$ neurons at two different times.
7. Phenomenon appearing in 2D-NN

c) Alternating Traveling Chimera state in 2D-NN

Fig15: Alternating Traveling Chimera state in 2D-NN
7. Phenomenon appearing in 2D-NN

c) Alternating Traveling Chimera state in 2D-NN

Fig 16: Alternating Traveling Chimera state in 2D-NN
3. Confirmation of coherent states by using 2D-LOP

\[
L_{i,k} = \frac{1}{(2\eta + 1)^2} \left| \sum_{|i-\alpha| \leq \eta} \sum_{|k-\beta| \leq \eta} e^{i\phi_{\alpha,\beta}} \right|
\]

(10)

Figure 17: The variation of the 2D local order parameter at a numerical time \(t = 9700 \): corresponding coupling strengths (a) \(k_1 = 0, k_2 = 9 \), (b) \(k_1 = 1, k_2 = 1 \), (c) \(k_1 = 3, k_2 = 2 \) and (d) \(k_1 = 5, k_2 = 2.75 \).
Figure 18: Variation of energies in the 2D plane of the 2D neuronal network at $t=9700$, and the temporal evolution of the derivative energies $D_{H_{i,j}}$ of the cross-section defined by $(i = 10, j = 1, \ldots, M)$. (a, c) $k1 = 5$, $k2 = 2.5$, and (b, d) $k1 = 5$, $k2 = 2.75$.
8. Influence of electric field on 1D-NN

\[
\begin{align*}
\dot{x}_i &= y_i - ax_i^3 + bx_i^2 - z_i + I + J_i + C_i \\
\dot{y}_i &= 1 - dx_i^2 - y_i + k_i E_i \\
\dot{z}_i &= r(s(x_i - x_i(0)) - z_i) \\
\dot{E}_i &= k_2 y_i + E_{ext}
\end{align*}
\]

(11) Where \(E_{ext} = E_{\text{max}} \sin(2\pi ft) \) (12)

(Ma et al., 2019).

Strength of Incoherence (SI) and Discontinuity Measure (DM)

\[
\sigma(m) = \left\langle \left\{ \frac{1}{n} \sum_{j=n(m-1)+1}^{nm} [z_j - \bar{z}]^2 \right\} \right\rangle
\]

(13)

\[
SI _ or _ S = 1 - \frac{\sum_{m=1}^{M} S_m}{M}
\]

(14)

With \(S_m = \Theta(\delta - \sigma(m)) \)

\[
DM _ or _ \eta = \frac{\sum_{i=1}^{M} |s_i - s_{i+1}|}{2}, (s_{M+1} = s_1)
\]

(15)

Table I: Characterization of chimera and multichimera states (Gopal et al., 2014).

<table>
<thead>
<tr>
<th>Dynamical state</th>
<th>(S, \eta)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coherent</td>
<td>(0,0)</td>
<td></td>
</tr>
<tr>
<td>Chimera</td>
<td>(c,1)</td>
<td>0 < c < 1</td>
</tr>
<tr>
<td>Multichimera</td>
<td>(c, d)</td>
<td>2 \leq d \leq M/2</td>
</tr>
<tr>
<td>Incoherent</td>
<td>(1,0)</td>
<td></td>
</tr>
</tbody>
</table>
a) Bursting death and chimera states

Fig19: Influence of frequency f: For $f = 0.01$: (a) Spatio-temporal evolution of the x-variables; (b) time series of the x-variables for neurons in the immersed(red) and non-immersed (blue) regions, where color bars show the amplitude values of the x-variables, For $f = 12$: (c) Spatio-temporal evolution of the x-variables; (d) time series of the x-variables for neurons in the submerged (red) and non-submerged (blue) regions. Color bars show the amplitude values of x-variables.
Fig 20: Influence of the number of neurons N subjected to the external electric field with the frequency $f = 12$. (a) For $N = 75$, spatiotemporal evolution for all the nodes, where we observe a chimera state for the first non-immersed 25 neurons; (b) Imperfect traveling chimera in the non-submerged zone; (c) Strength of incoherence SI and (d) Discontinuity Measure DM as a function of N. Chimera state appears from $N = 20$.
8. Influence of electric field on 1D-NN

c) Multichimera state

Fig 21: (a) Multichimera state induced by application of an electric field in two nonconsecutive regions \((q_1 = 0\) and \(q_2 = 9)\); (b) Correspondent snapshot of the variables \(x_i\)

Figure 22: Impact of electrical coupling \((q_1 = 2\) and \(q_2 = 3)\) for \(f = 12\). (a) Spatiotemporal evolution of the \(x\)-variables shows a Multicluster traveling chimera. (b) Time series shows chaotic bursting. The blue curve is for the neurons of the part immersed in the field and red for the part not immersed in the electric field.
9. Influence of magnetic field on 1D-NN

3.4 Network Equations

\[
\begin{align*}
\dot{x}_i &= y_i - ax_i^3 + bx_i^2 - z_i + I_{ext} + J_i + C_i + k_i x_i W(\phi), \\
\dot{y}_i &= c - dx_i^2 - y_i, \\
\dot{z}_i &= r(s(x_i + 1.56) - z_i), \\
\dot{\phi}_i &= x_i - k_2 \phi_i + \phi_{ext}.
\end{align*}
\]

(16)

\[\phi_{ext} = B_m \sin(2\pi ft)\]

(17)

(Lv and Ma, 2016)
9. Influence of magnetic field on 1D-NN

Fig 23: Impact of magnetic field ($q_1 = 0$ and $q_2 = 9$) for $f = 0.68$. (a) Spatiotemporal evolution of the x-variables shows a chimera state. (b) Time series shows chaotic bursting and oscillations of neurons. The red curve is for the neurons of the part immersed in the field and blue for the part not immersed in the electric field.

Figure 24: Multichimera state induced by magnetic field for $f = 0.68$. (a) Spatiotemporal evolution of the x-variables shows multicenter chimera state for $q_1 = 0$ and $q_2 = 9$. (b) Spatiotemporal evolution of the x-variables shows multicenter traveling chimera state for $q_1 = 2$ and $q_2 = 3$.
Network Equations

\[
\begin{align*}
\dot{x}_i &= y_i - ax_i^3 + bx_i^2 - z_i + c_i x_i (\alpha + \beta \varphi_i^2) + I_{\text{ext}} + J_i + C_i, \\
\dot{y}_i &= c - dx_i^2 - y_i + 0.7 E_i, \\
\dot{z}_i &= r(s(x_i + x_{ir}) - z_i), \\
\dot{\varphi}_i &= x_i - 0.5 \varphi_i + \varphi_{\text{ext}}, \\
\dot{E}_i &= 0.001 y_i + E_{\text{ext}}.
\end{align*}
\] (18)

\[
B_{\text{max}} = \sigma E_{\text{max}}
\] (19)

\[
\sigma = \left(\frac{n_i}{v} \right)
\] (20)

(Zhou and Wei, 2021)
November 11. Influence of electromagnetic wave on 1D-NN

Figure 25: Impact of the electromagnetic wave for $f = 0.68$. (a) Spatiotemporal evolution of the x-variables shows one cluster chimera state for $q1 = 0$ and $q2 = 9$. (b) Spatiotemporal evolution of the x-variables shows multicluster chimera state for $q1 = 0$ and $q2 = 9$. (c) Spatiotemporal evolution of the x-variables shows multi traveling wave for $q1 = 2$ and $q2 = 3$.
Figure 26: Summary
3. Conclusion

- Highlight the phenomena appearing without external fields in a 1D network which has local electrical and nonlocal chemical couplings.

- Check for the presence of these phenomena in a larger network (2D)

- Highlight the influence of these external electromagnetic fields on the dynamics observed.

In conclusion, we can impose a variety of chimera behaviors on the network just by acting on external currents and external electromagnetic fields.
Contributors

Gaël R. Simo
Thierry Njougouo
R. P. Aristides
Patrick Louodop
Dibakar Ghosh
Robert Tchitnga
Hilda A. Cerdeira

CITED PUBLICATION

Thank you for your kind Attention!!!
4. HR neuronal models

1.2 Evolution of the Hindmarsh-Rose model

a) Two-equations model
\[
\begin{align*}
\dot{x} &= y - ax^3 + bx^2 + I \\
\dot{y} &= c - dx^2 - y.
\end{align*}
\]
(Hindmarsh and Rose, 1982)

b) Three-equations model
\[
\begin{align*}
\dot{x} &= y - ax^3 + bx^2 + I - z \\
\dot{y} &= c - dx^2 - y \\
\dot{z} &= r(s(x - x_0) - z).
\end{align*}
\]
(Hindmarsh and Rose, 1984)

c) Four dimensional/Extended HR model
\[
\begin{align*}
\dot{x} &= ay + bx^2 - cx^3 - dz + I \\
\dot{y} &= e - fx^2 - y - g\omega \\
\dot{z} &= \mu(-z + S(x + h)) \\
\dot{\omega} &= \nu(-k\omega + r(y + l)).
\end{align*}
\]
(Pinto et al., 2000)

d) Hindmarsh-Rose model with electric field
\[
\begin{align*}
\dot{x} &= y - ax^3 + bx^2 - z + I_{\text{ext}} \\
\dot{y} &= c - dx^2 - y + rE \\
\dot{z} &= \nu[s(x + x_0) - z] \\
\dot{E} &= k_y + E_{\text{ext}}.
\end{align*}
\]
(Ma et al., 2019)

e) Hindmarsh-Rose model with electromagnetic field
\[
\begin{align*}
\dot{x} &= y - ax^3 + bx^2 - z + I_{\text{ext}} - k_1W(\varphi)x \\
\dot{y} &= c - dx^2 - y + k_1x(\alpha + \beta\varphi^2) \\
\dot{z} &= r(s(x + 1.6) - z) \\
\dot{\varphi} &= k_x - k_2\varphi + \varphi_{\text{ext}}.
\end{align*}
\]
(Lv and Ma, 2016)

f) Hindmarsh-Rose model with electric and magnetic field
\[
\begin{align*}
\dot{x} &= y - ax^3 + bx^2 - z + I_{\text{ext}} - k_1W(\varphi)x \\
\dot{y} &= c - dx^2 - y - rE \\
\dot{z} &= \nu[s(x + 1.6) - z] \\
\dot{\varphi} &= k_2x - k_3\varphi + \varphi_{\text{ext}} \\
\dot{\omega} &= \nu(-\omega + e(y + 0.9)) \\
\dot{\phi} &= x - k_2\phi + \phi_{\text{ext}}.
\end{align*}
\]
(Wang et al., 2020b)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
5. Neuronal Network topologies under study

Fig 2: Schematic diagram of a neuronal network. Blue dots represent HR neurons connected to their nearest neighbors by local Electrical coupling in black lines. Red lines represent non-local chemical synaptic coupling shown for one node, which is true for all other nodes.

Fig 3: Schematic diagram of a two-dimensional grid: the \((i, j)\)-th node (red dot) is locally connected to four nearest-neighbors (blue circles) and non-locally connected to \(p\) nearest-neighbors (green circles). Black circles represent other nodes on the network. For the simple illustration, we choose \(M = 11\) and \(p = 4\).
Influence of electric field on 1D-NN

8. Influence of electric field on 1D-NN

c) Influence of the total number of elements M of the ring

![Graphs showing the influence of the number of neurons M on the ring strength of incoherence and discontinuity measure for $f = 12$.](image)

Fig 22: Influence of the number of neurons M of the whole ring for $f = 12$. Strength of incoherence and discontinuity measure for (a) & (c) $M = 20$, (b) & (d) $M = 50$. Appearance of the chimera state from 20% of the total number of neurons in the ring.
Fig 23: Influence of the number of neurons M of the whole ring for $f = 12$. Strength of incoherence and discontinuity measure for (e) & (g) $M = 150$, (f) & (h) $M = 200$. Appearance of the chimera state from 20% of the total number of neurons in the ring.