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Neutrino oscillations
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Produced and detected in flavor basis but 
travel in mass basis
Interference of mass states → flavor transitions

Neutrino mixing encoded in PMNS matrix

Atmospheric Reactor Solar
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Parameters to measure
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θ12 32 – 38 deg

θ13 8.0 – 8.9 deg

θ23 42 – 51 deg

|Δ12
2 | (7.1 – 8.2) e-5 eV2

|Δ32
2 | (2.33 – 2.54) e-3 eV2

δ𝐶𝑃 157 – 349 deg

3 σ ranges 

3 Euler 
angles

2 mass
splittings

CP 
violation

For today: cover historical
experiments that determined
five known parameters

Solar, atmospheric, and 
reactor neutrinos
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Parameters to measure

4

θ12 32 – 38 deg

θ13 8.0 – 8.9 deg

θ23 42 – 51 deg

|Δ12
2 | (7.1 – 8.2) e-5 eV2

|Δ32
2 | (2.33 – 2.54) e-3 eV2

δ𝐶𝑃 157 – 349 deg

3 σ ranges 

3 Euler 
angles

2 mass
splittings

CP 
violation

Tomorrow: efforts to answer 
remaining questions

Is CP conserved?

Is θ23 45 deg?  And if not, is it
> or < 45 deg?

Is 𝜈2 or 𝜈3 the most massive
state?
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Two-flavor oscillations
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𝑃𝛼𝛽 = sin2 2𝜃 sin2
𝛥𝑚2𝐿

4𝐸

𝑃𝛼𝛼 = 1 − 𝑃𝛼𝛽

λ/2 = 2π𝐸/𝛥𝑚2

Δ𝑚32
2

Δ𝑚21
2 ~30

Oscillations at different
length scales – they factor
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Solar 
neutrinos 6
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Solar neutrinos
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Nuclear processes that fuel the sun also produce 
neutrinos – huge flux physicists can study
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The Davis experiment
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Installation underground ≈ 1965
Sanford underground research facility
(SURF), USA

Cavern filled with water as passive shield

Portion of tank
saved in Lead, SD

Ray Davis searched for solar neutrinos via:

Built 620 ton tank of dry cleaning fluid (C2Cl4) and
observed ≈ 15 interactions / month for 30 yrs

ν𝑒 + 37Cl → 𝑒− + 37Ar   Eν > 814 keV   
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A chemist’s neutrino experiment
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Chemistry experiment discovered solar neutrinos

1: C2Cl4 pumped through system with eductors 
introducing bubbles of He into tank
2: Argon is a noble gas!  Argon atoms that contact 
a He bubble get absorbed in gaseous state
3: Gaseous bubbles escape the tank entering a 
gaseous processing line.  C2Cl4 vapor removed in 
-40 C condenser
4: Gas routed through liquid N2 cooled 
charcoal trap.  Argon freezes, He passes
5: Monthly, solate charcoal trap and heat, 
count 37Ar decays in proportional counter

1
2

3

4
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A chemist’s neutrino experiment
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Chemistry experiment discovered solar neutrinos

1: C2Cl4 pumped through system with eductors 
introducing bubbles of He into tank
2: Argon is a noble gas!  Argon atoms that contact 
a He bubble get absorbed in gaseous state
3: Gaseous bubbles escape the tank entering a 
gaseous processing line.  C2Cl4 vapor removed in 
-40 C condenser
4: Gas routed through liquid N2 cooled 
charcoal trap.  Argon freezes, He passes
5: Monthly, solate charcoal trap and heat, 
count 37Ar decays in proportional counter

1

45

2

3
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Discovering neutrinos – with a catch
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The solar neutrino problem

1/3 the rate
expected!
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Cross-checking with gallium experiments
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Cl threshold
Ga

– By 1980s, we – understood the Davis 
experiment was right
– 99% of solar neutrinos from p+p->d+e++νe

– Maybe, the lower-flux, higher-energy 
processes mis-modeled due to theory
uncertainties in the sun.  Measure pp!

Response: radiochemical
experiment based on Ga

ν𝑒 + 71Ga → 𝑒− + 71Ge
Threshold: 233 keV
Studied in GALLEX, SAGE
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A decade of gallium data: the plot thickens

13

pp ν’s Be, pep,
8B ν’s

Gallium also sees
a deficit!  But it’s
different from 
Davis.  Energy
dependence?
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A decade of gallium data: the plot thickens

14

pp ν’s Be, pep,
8B ν’s

Gallium also sees
a deficit!  But it’s
different from 
Davis.  Energy
dependence?

Add 51Cr source
Monoenergetic 746 keV
neutrinos emitted in 
electron capture.

Sage: Russia
Gallex: Gran Sasso      
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First data from SuperKamiokande
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SK, PRL 81, 1158 (1998)

SK sensitive to neutrino-electron
elastic scattering (ES) of 8B 
neutrinos: Ee > 6.5 MeV
Also sees a deficit!

ν𝑥 + 𝑒− → ν𝑥 + 𝑒− 
Points to sun for 
background rejection

Kamioka, Japan

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.1158
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The SNO experiment
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Heavy water Cherenkov

– 1 kt of d2O held in 6-m 
radius acrylic vessel
– d2O is sunk into 8.5-m
radius H2O tank providing
shielding
– 9600 PMT’s monitor the
Cherenkov light from both
regions
– vertex reconstruction 
allows fiducialization
– calorimetric information
of solar neutrinos in d2O

Sudbury Ontario, Canad



Neutrino oscillationsD. Pershey

SNO discovers neutrino oscillations
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Multiple interaction channels!

Neutral current (NC)
ν𝑒 + 𝑑 → ν𝑒 + 𝑛 + 𝑝 
doesn’t oscillate

Charged current (CC)
ν𝑒 + 𝑑 → 𝑒− + 𝑝 + 𝑝 
Oscillates

Electron scatter (ES)
ν𝑥 + 𝑒 → ν𝑥 + 𝑒 
Mostly oscillates

SNO, PRL 87 071301 (2001)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.87.071301
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SNO discovers neutrino oscillations
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Multiple interaction channels!

Neutral current (NC)
ν𝑒 + 𝑑 → ν𝑒 + 𝑛 + 𝑝 
doesn’t oscillate

Charged current (CC)
ν𝑒 + 𝑑 → 𝑒− + 𝑝 + 𝑝 
Oscillates

Electron scatter (ES)
ν𝑥 + 𝑒 → ν𝑥 + 𝑒 
Mostly oscillates

SNO, PRL 87 071301 (2001)

NC flux from SNO
consistent with
solar models!
First consensus in 
33 years

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.87.071301


Neutrino oscillationsD. Pershey

Analyzing the survival probability

19

𝐻 =
1

2𝐸
 𝑈

0 0
0 Δ𝑚2 𝑈† + 8𝐺𝐹𝑛𝑒𝐸 0

0 0
 

Vacuum

𝜃12 ≈ 34°

Matter
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Analyzing the survival probability

20

𝐻 =
1

2𝐸
 𝑈

0 0
0 Δ𝑚2 𝑈† + 8𝐺𝐹𝑛𝑒𝐸 0

0 0
 

Vacuum
Low-energy (E << Δ𝑚2/ 8𝐺𝐹𝑛𝑒):
Vacuum term dominates:

𝑃𝑒𝑒 = 1 − sin2 2𝜃12 sin2
𝛥𝑚2𝐿

4𝐸
𝑃𝑒𝑒 = 1 −

1

2
sin2 2𝜃12

𝜃12 ≈ 34°1 −
1

2
sin2 2𝜃12 ≈ 0.57

Matter
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Analyzing the survival probability

21

𝐻 =
1

2𝐸
 𝑈

0 0
0 Δ𝑚2 𝑈† + 8𝐺𝐹𝑛𝑒𝐸 0

0 0
 

Vacuum Matter
Low-energy (E << Δ𝑚2/ 8𝐺𝐹𝑛𝑒):
Vacuum term dominates:

𝑃𝑒𝑒 = 1 − sin2 2𝜃12 sin2
𝛥𝑚2𝐿

4𝐸
𝑃𝑒𝑒 = 1 −

1

2
sin2 2𝜃12

𝜃12 ≈ 34°

sin2 𝜃12 ≈ 0.31

1 −
1

2
sin2 2𝜃12 ≈ 0.57

High-energy (E >> Δ𝑚2/ 8𝐺𝐹𝑛𝑒):
Matter term dominates:

| ۧν1 𝑚 = | ۧν2

| ۧν2 = sin2 𝜃12 | ۧν𝑒 + cos2 𝜃12 | ൿνμ

𝑃𝑒𝑒 = ν𝑒 ν2 = sin2 𝜃12

But energy of ramp-on
uncertain to order of 
magnitude
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Estimating oscillation parameters
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Nunokawa, Teves, and Funchal, PLB 562 28 (2005)

Taking Davis, Gallium, SK, and SNO data, a
statistical log-likelihood fit can determine which 
oscillation parameters best fit solar data

With earliest data, ok determination of the 
mixing angle
Uncertainty in the mass splitting was nearly an 
order of magnitude

https://www.sciencedirect.com/science/article/pii/S0370269303005501
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Reactor measurement of Δ𝑚2
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1 kt of scintillator in balloon
Buffer volume of mineral oil
Outer water Cherenkov veto
1325 20” PMT’s

KamLAND

Many reactors
<L> = 180 km

KamLAND PRL 101 221803 (2008)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.221803
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Reactor measurement of Δ𝑚2
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KamLAND

Many reactors
<L> = 180 km

1 kt of scintillator in balloon
Buffer volume of mineral oil
Outer water Cherenkov veto
1325 20” PMT’s

KamLAND PRL 101 221803 (2008)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.221803
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Precision measurements: the Borexino experiment
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Onion-like scintillator

– Inner 321-t volume with 
organic scintillator and
wavelength shifter.  8.5 m
– Inner veto volume with
dimethylphthalate, a charge
quencher.  8.5 to 11 m
– Outer veto volume with
similar chemical 
composition.  11 to 13.7 m
– Stainless steel tank with 
2212 mounted PMT’s
– Surrounding water tank
for additional passive shield

Gran Sasso, Italy
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Flux measurements from Borexino
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Borexino, Nature 562 505-510 (2018)

ES channel in scintillation
detectors – must live with
large, well-characterized
background
   Scintillator purification
   reduces 14C/12C ratio
   to 185e-18

pp chain spectroscopy
   :eading measurements
   of pp / 7Be / pep

CNO chain discovery
Nature 587 577-582 (2022)

https://www.nature.com/articles/s41586-018-0624-y
https://www.nature.com/articles/s41586-020-2934-0
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New detections from XENONnT + PandaX-4T
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Liquid xenon time projection chambers searching 
for WIMP dark matter at Gran Sasso with 3.9-4.1 t 
(XENONnT) and Jinping with 2.5 t (PandaX-4T)

2.7σ detection of CEvNS in 3.51 t-yrs (XENONnT)
and 2.6σ in 2.29 t-yrs (PandaX-4T)

PandaX-4T arXiv:2407.10892 

XENONnT IDM 2024

https://arxiv.org/pdf/2407.10892
https://agenda.infn.it/event/39713/contributions/237829/attachments/123564/181262/xenonnt-cevns-newresults-idm-2024.pdf
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Future of solar neutrinos

28

Maltoni and Smirnov, Eur. Phys. A 52 87 (2016)

One remaining flux to measure

What about here?

https://link.springer.com/article/10.1140/epja/i2016-16087-0
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The DUNE experiment
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– Upcoming neutrino experiment studying long-baseline 
oscillations, BSM searches, and astro neutrinos
– 4 far detector (FD) modules are 17-kt LArTPC’s 
1300 m below ground in the SURF laboratory
– First FD data expected in 2028
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A new technology brings two critical strengths
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Dominant channel: CC
Sub-cm tracking, reconstruction
and background rejection
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Future sensitivity to remaining questions
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Capozzi, Li, Zhu, Beacom, PRL 123 131803 (2019)

Sensitivity to CC makes DUNE ideal for studying
oscillation probability as a function of energy

Preliminary background estimates suggest
5 MeV threshold – can dig deeper into upturn
of survival probability plot

Last flux
to measure

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.131803
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Atmospheric neutrinos
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Atmospheric neutrinos

33

Atmospheric neutrinos produced when cosmic ray protons
interact with nuclei in the upper atmosphere producing mesons
With solar neutrinos, atmospheric neutrinos definitively 
proved that neutrinos oscillate and have mass
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Atmospheric neutrinos

34

Atmospheric neutrinos produced when cosmic ray protons
interact with nuclei in the upper atmosphere producing mesons
With solar neutrinos, atmospheric neutrinos definitively 
proved that neutrinos oscillate and have mass
– Arrive in detector from multiple baselines
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Atmospheric neutrinos

35

Atmospheric neutrinos produced when cosmic ray protons
interact with nuclei in the upper atmosphere producing mesons
With solar neutrinos, atmospheric neutrinos definitively 
proved that neutrinos oscillate and have mass
– Arrive in detector from multiple baselines
– 100s of MeV to multi-GeV
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Early history of atmospheric neutrinos

36

Discovery: F. Reines in East Rand
Mine, Johannesburg, South Africa, 1965

+ Kolar Gold Field, India, 1965
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Early history of atmospheric neutrinos
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Discovery: F. Reines in East Rand
Mine, Johannesburg, South Africa, 1965

1980s: dedicated study
from proton decay
experiments

Oscillations there, but
need more convincing
sample

Kamiokande II

Frejus

electrons muons
+ Kolar Gold Field, India, 1965
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First data from Super-Kamiokande

38

Downward Upward

0.4 < p < 1 GeV

0.4 < p < 1 GeV

0.4 < p < 1 GeV

p > 1 GeV

535 days of SK data shows strong preference
for disappearance of atmospheric νμ

Downward going (short baselines) agree well 
– sounds like oscillations

μ: 766 MeVe: 622 MeV

SK, PRL 81 1562 (1998)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.1562
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First data from Super-Kamiokande
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535 days of SK data shows strong preference
for disappearance of atmospheric νμ

Downward going (short baselines) agree well – 
sounds like oscillations

Maximal νμ/ντ mixing with a mass splitting
Δm2

32 ≈ 2.4e-3 eV2  (about 30x solar, 7.5e-5 eV2) 

μ: 766 MeVe: 622 MeV

SK, PRL 81 1562 (1998)

Modern best fit

Oscillations 
disfavored at 6.7 σ

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.1562
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Possible uncertainties on event rates

40

𝑁evt 𝐸 = 𝑁tar  ×  φ(𝐸) × σ(𝐸)

Flux and cross section more uncertain 
than in solar neutrino case!
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Possible uncertainties on event rates – neutrino flux

41

𝑁evt 𝐸 = 𝑁tar  ×  φ(𝐸) × σ(𝐸)

≈ 6 m

– Mass balloon flew in 1991
– Time-of-flight + magnetic 
tracker for v + p reco
→ particle identification!
– Max altitude: 36 km
– Measures primary proton
flux for input into atmospheric 
neutrino calculation

Bellotti et al., PRD 60 052002 (1999)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.60.052002
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Possible uncertainties on event rates – neutrino flux

42

𝑁evt 𝐸 = 𝑁tar  ×  φ(𝐸) × σ(𝐸)

≈ 6 m

– Mass balloon flew in 1991
– Time-of-flight + magnetic 
tracker for v + p reco
→ particle identification!
– Max altitude: 36 km
– Measures primary proton
flux for input into atmospheric 
neutrino calculation

Data agrees with expectations!

Bellotti et al., PRD 60 052002 (1999)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.60.052002
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Possible uncertainties on event rates – neutrino flux
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𝑁evt 𝐸 = 𝑁tar  ×  φ(𝐸) × σ(𝐸)

Barr, Robbins, Gaisser, Stanev, PRD 74 094009 (2006)

HARP, Nucl Phys A 821 118-192 (2009)

HARP experiment at CERN studied meson 
production from p-nucleus collisions on
multiple nuclei providing final-state kinematics

Solution to flux
uncertainties:
Data-driven model
using primary data
from balloons and
meson production
from HARP

EMPHATIC + SHINE
experiments still
using these methods
for beam oscillations

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.74.094009
https://www.sciencedirect.com/science/article/pii/S0375947409000232?via%3Dihub
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Possible uncertainties on event rates – cross section

44

𝑁evt 𝐸 = 𝑁tar  ×  φ(𝐸) × σ(𝐸)

Bubble chamber data from 1980s 
Effort to re-analyze in context of 
cross sections for atmospheric
neutrinos Lipari, Lusignoli, Sartogo, PRL 74 4384 (1995)

Uncertainty too small to 
explain oscillation effect

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.74.4384
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Final cross check: K2K

45

Want a laboratory test using
a human-made neutrino
source 

– KEK: 12 GeV proton 
synchrotron produces a beam 
of νμ 
– 1 km downstream: a 1-kt 
water Cherenkov near 
detector for uncertainties
– 250 km downstream: SK 
measures oscillated spectrum

K2K, PRL 90 041801 (2002)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.90.041801
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Reactor antineutrinos



Neutrino oscillationsD. Pershey 47

The Daya Bay experiment
Look for disappearance of reactor ҧ𝜈𝑒

Identical near/far detectors
   Each 4 x 20 ton LS-Gd detectors
IBD with prompt-capture coincidence

Water Cherenkov veto

20-t LS-Gd units
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First results – discovery of ҧ𝜈𝑒 disappearance 

48

Predicted: 10675
Observed: 10416 (-2.5%)

> 95% pure IBD sample
Small, 2.5% effect, but observed at 5.2 σ
with first result
Near/Far ratio fits well to oscillation model
Implication: νμ → ν𝑒  common enough for 

accelerator CP violation searchesDaya Bay, PRL 108 171803 (2012)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.171803
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Summary

49

– Natural sources of neutrinos – solar and atmospheric – dominate the history of 
neutrino oscillation discoveries

– SNO / SK data definitively demonstrate oscillations with solar / atmospheric 
neutrinos which were both cross-checked by 2000-2005

– Reactor data measured last mixing angle 𝜃12 in 2012
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Aside

50
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Gallium: solar neutrino problem 2 – electric boogaloo 

51

Gallium calibration: lower
event rate than expected,
but not low enough to 
explain solar deficit
Maybe new physics?

BEST, PRC 105 065502 (2022)

BEST experiment released results in 2022 with
much improved systematic uncertainties
> 5σ deficit
Could be sterile neutrino?  Unknown uncertainty?

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.105.065502
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Back to solar 
neutrinos

52
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