Recap of path integrals: unitary dynamics

— unitary evolution (recap from your reading assignment of Negele/Orland)
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' normal ordering Is crucial; it allows to convert functions of operators into regular functions (that's why we use coherent states!)
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Master equation and path integrals

Buchhold/Sieberer/Diehl, arXivI512
Buchhold/Sieberer/Marino/Diehl, arXiv2312

— open guantum systems
0p(t) = —i[H,p(t)] = p(t) = U(t,t0)poU" (¢, to)
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the goal is to find a representation of Z(f) = Tr(p())

since later on we will equip Z(f) with ‘sources’ to have a generating functional:

Z|J]| = Tr[p(t)e”nxﬁ”(x)] such that we can evaluate expectation values of n-pt functions, taking functional derivatives wrt J and then J — 0

— for now we focus only on the dynamics of the density matrix: p(¢)



Master equation and path integrals

o0(f) = 7 L5(1) = lim (1 + 6,L)" p(to) infinitesimal evolution of the Liouvillian

N—>00

Prs1 = €Fpy = (1 + 6,L) pu + O()).

Let's now decompose the density matrix at time n + 1 using coherent states insertions
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Master equation and path integrals

o0(f) = 7 L5(1) = lim (1 + 6,L)" p(to) infinitesimal evolution of the Liouvillian

N—oo00

Prs1 = €Fpy = (1 + 6,L) pu + O()).

Let's now decompose the density matrix at time n + 1 using coherent states insertions

dl//+ n+1d'7[/-|>xf n+1 dl/j— n+1dwi< n+1 % %
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U Ut 1) the actual job is getting the action of & on p,

2) we need two set of coh. states (%)

61 L 2 to convert the dens. matrix at time n into a number
Pn+1 = € pnz(]l+6+ 0(51‘)' X at ti | U
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Master equation and path integrals

<¢+,n+1 |L(|¢+n> <¢—,n|)|¢—,n+l )



Master equation and path integrals

<¢+,n+1 |L(|¢+n> <¢—,n |)|¢—,n+1 )

<¢+,n+1|£(|w+,n> <¢—,n|)|¢—,n+l> = —1 (<¢+,n+llH|w+,n> <¢—,n|¢—,n+l> - <w+,n+1|¢+,n> <w—,an|w—,n+l>) +...



Master equation and path integrals

<¢+,n+1 |L(|¢+n> <¢—,n |)|¢—,n+1 )

<w+,n+1|-[«(|¢+,n> <¢—,n|)|¢—,n+l> = —1 (<¢+,n+llH|w+,n> <¢—,n|¢—,n+l> - <w+,n+1|¢+,n> <w—,an|w—,n+l>) +...
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assume several dissipative channels («)
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Master equation and path integrals

<¢+,n+1 |‘£(|¢+n> <¢—,n|)|¢—,n+l )

<¢+,n+1|-£(|¢+,n> <¢—,n|)|¢—,n+l> = -1 (<¢+,n+llle+,n> <¢—,n|¢—,n+1> — <¢+,n+l|w+,n> <¢—,an|¢—,n+l>)

<¢+,n+1|‘£(|w+,n> <¢—,n|)|¢—,n+1> = -1 (<¢+,n+1|H|¢’+,n> <¢—,n|¢—,n+1> - <¢+,n+1|¢+,n> <‘ﬁ—,n|H|¢—,n+1>)

£,
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<¢+,n+1|Laf|w+,n> (W—,nlLilw—,nH) - 5 (<¢+,n+1|L3;La/|¢+,n> <w—,n‘w—,n+1> + <¢+,n+1|¢+,n> <¢—,n|LZ;Laf|¢—,n+l>)

case of several dissipative channels ()

.and we have a residual {y, .1 |, ) and (e, [y 1)
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And now we can re-exponentiate the outcome of the previous calculation:

Master equation and path integrals

Remember we were starting from here
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Master equation and path integrals

Remember we were starting from here

dl//+,n+1dl//-|>xf,n+l dl//—,n+1dl//>—k,n+l 0

Pn+1 = J
T /A

what happens to this?

ik — ¥ |
Yin+1¥sn+1 l//—,n+ll//—,n+1<Al7U+,n+1 |10n+1 | l//—,n+1> |w+,n+1><l//—,n+1 |

what happens to this? I

o)
Pn1 = € p,

(1 + 6.L) pn + O(5?).

And now we can re-exponentiate the outcome of the previous calculation:

d¢+,ndwi,n dlﬁ—,ndlﬁi,n

Wemerlomer | mar) = f

T

We have three leftovers:

T

-

\_

¢ Wt [ W) and (W (W) from the
previous matrix element calculation

° ¢ _ij,nl/jﬂn_wf,nwﬂn

° e_l/jjf,n+1l/j+,n+1_l/jjn+ll/j—’”+l from pn+1

2?

Eiat(—m,niatw:,n—wt,niatw}iﬂ'ﬁiw Vor e ¥-0) 4y ol m) + OGD)

° <l/j+,n+1 |l/j+,l’l> — el//jf,n+ll//+,n and <l/j—,n | l/j—,n+1> — el/ﬁ—k,nl/j—,n+1

>
° 0 _l//fl—k,nw+,n_l//i<,nl//—,n

%k k
_25 Wy nt1 = ¥+,

—_— el/jf,n+ll//+,ne_wj|-k,nl//+,n —_— e(l/jf,n+1_wf,n)l//+,n — e t 5t

l/j+,l’l —_ elét(_u/j+,natl//jf,n)



Master equation and path integrals

By iteration of Eq. (23), the density matrix can be evolved from
p(to) at 1y to p(tr) at ¢, = ty. This leads in the limit N — oo (and
hence 6, — 0) to

Zy,4, = trp(ty) = tr el p(ty)

| (25)
_ f D0 001 Wty (),

where the integration measure is given by

Al d +nd j—nd —nd >lin
DWW+, Y-, 9] = lim PerVin ¥ ’ﬂw’ ,  (26)

N—o00 T
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and the Keldysh action reads

Ly
S =f dt(!ﬁiié‘t%—!ﬁiiaﬂﬁ-—iL(Wi,%,lﬁi,!//—))- (27)

lo

just continuous version of what we just did \
v

ignored for open quantum systems, where initial condrtions
can be neglected for fy - — 00, — 00

L(Wi, 1/ !ﬁi, W—) = —1 (H+ — H—)

+ ; Ya [La,+LZ,— — % (LZ,+Laf,+ + LZ,—LCY,—)] , (28)

where H. = H,y¥.) contains fields on the + contour only,
and the same 1s true for L, .. We clearly recognize the Lindblad
superoperator structure of Eq. (16): operators acting on the den-
sity matrix from the left (right) reside on the forward, + (back-
ward, -) contour. This gives a simple and direct translation ta-




Keldysh basis

A L. V. Keldysh (1965). "Diagram technique for nonequilibrium processes". Soviet Physics JETP. 20:

1018-1026.
1 1 o | | - |
b= —=Wi+tY_ ), ¢;=—=Ws—Y_) useful for physical interpretation and avoid redundancies in the action
V2 V2
0,p,. = (classical eq. of motion) ¢, describe flucts. on top of classical eq. of motion
\\‘ ‘/ B g
Let's try to figure this out with one example: \/\ / h
H = a)OaTa, L =1/ 2Ka if T — 0 these flucts. are purely quantum

in open g. systems, this is a mix of classical and quantum

S = j; {a’ (i0; — wp) a; — a” (i0; — wp) a- LWy, ¥, ) =—i(H, — H_)

s * * * . | . .
ik [2a.a* — (ata, + a*a.)]) + Za: Ve [LCHLG,_ -5 (Ly Lo + La,_La,_)], (28)

where H. = H(Y,,y.) contains fields on the + contour only,
and the same 1s true for L, .. We clearly recognize the Lindblad
superoperator structure of Eq. (16): operators acting on the den-
sity matrix from the left (right) reside on the forward, + (back-
ward, -) contour. This gives a simple and direct translation ta-
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Keldysh basis

A L. V. Keldysh (1965). "Diagram technique for nonequilibrium processes". Soviet Physics JETP. 20:
1018-1026.

1

S = I{ai (i0; — wo) ay — a (i0; — wo) a- G = % Wi +¥-), ¢q — \/i W —¢-)

—ik [2a,a” — (@ a, +a’a )]} >

— conservation probability (cf. Sieberer et al. arXivI512, page 17)

A
S = fw (a’é(w)a al'}(‘“)) (PR(zw) PP(Kw)) (Z;EZ;)

PR (w) = PA(w) = w—-wy + ik, P% =2«

What's the physical content of this action?

imagine to compute expectation value of some observable O
<0> = J'Dacha;’;'[Danaj O eldadcidydg) auxiliary variable
- ‘ , . _ — [dt| = &(t)* - 2i . . .
notice that the ‘Keldysh' term can be written as e ™14 K ay(t) = JDée I t[’Cé(—t) lf—(t)aq(t)] using GGaussian integration formula

which results in (O) = J Dée™! df%f(f)zj' Da.. [ Da,.. O ¢~ 2t dta,(kd,a.+0ya,—E(1))



Keldysh basis

A L. V. Keldysh (1965). "Diagram technique for nonequilibrium processes". Soviet Physics JETP. 20:
1018-1026.

1

S = [{ai (i0; — wo) ay — a (i0; — wo) a- G = % Wi +¥-), ¢q — \/i W —¢-)

—ik [2a,a” — (@ a, +a’a )]} >

— conservation probability (cf. Sieberer et al. arXivI512, page 17)

A
S = fw (a’é(w)a a;(w)) PR(zw) PP(Kw) ZZEZ;

PR (w) = PA(w)* = w—wo + ik, P% =2ik

* the loss rate in the retarded sector (cl-q) is a damping term;
* the constant term in the Keldysh sector (g-q) has the meaning of noise variance

What's the physical content of this action?

imagine to compute expectation value of some observable O
<0> = "Dacha;‘;'[Danaj O eldadcidydg) auxiliary variable

- ‘ : . _ — [dt| = &(t)* - 2i . . .
notice that the ‘Keldysh' term can be written as e ™14 K ay(t) = JDée I t[’Cé(—t) lf—(t)aq(t)] using GGaussian integration formula , |
l Langevin equation

which results in {O) = JD&.%‘J dt%f(t)zj,Dad. . [Daq.. O =2 diag(Koertma =) — JD&e‘f dt%f(t)ZJ'Dacl. . [Daq.. O 6(kd.a.; + wya.; — &E(1))



Keldysh basis

A L. V. Keldysh (1965). "Diagram technique for nonequilibrium processes". Soviet Physics JETP. 20:
1018-1026.

S = j;{a:- (i0; — wo) a; — a” (id; — wo) a- Pc = %(¢+ +Yo), ¢g= %(‘/4 ~¥-)

—ik [2a,a” — (@ a, +a’a )]} >

— conservation probability (cf. Sieberer et al. arXivI5 12, page | /)

A
S = j; (¢:(w), a(w)) (PR(()w) PP(Kw)) (328)

PR (w) = PA(w)* = w—wo + ik, P% =2ik

Exercise 2
Write the Keldysh action for the anharmonic oscillator H = wya'a + A(a’a)? (careful about normal ordering!)

Write the Keldysh action for the anharmonic oscillator H = a)OaTa + M(a"a)? with two body loss L = \/;_/az

and interpret the result distinguishing the effect of ¥ In the retarded and Keldysh sectors




Computing non-equilibrium Green’s functions

e compute them: introduce sources (cf. Stat Mech)

Z =Tr(l-p)=(1)

Zj,j-] = (& Urditi=otrec)y 00,0 = (1) =1

normalization

e example
2714, 4 NB: Functional integrals al
(Tl () = o] compu time-crdered correlation
(Sj_|_(t)(5]i(t/) 7=0 functions
But ...

- what does physically mean the index %!
~ how can | connect operator exp .value with path integral?
~ what's the relation between corr. functions in = basis and ¢/q basis!

~ how these correlation functions connect with conventional ones! (e.g. retarded Green's function)



Computing non-equilibrium Green’s functions

e Along the contour, we imagine that an initial state p(t = 0) is evolved from ¢t = 0 to the final
time p(t = t¢) for some t; > 0. Then the trace is performed. Pictorially this looks like

trace of
p(t = ts) [ z

e We now switch to a Heisenberg picture for operators

] p(t = 0)

A

b(z,t) = M d(z) e, Ol (', ¢) = e ¢l (a')e 1"
——

Schrodinger operator

and 0 < t,t' < t;.

Definition: a fixed pair of times 0 < ¢,t’ < t¢, we can
define two independent Green’s functions for an initial state p:

—’i<q§(3), t)qu (:L", t,)> = —1 tr(qg(mv t)é[;T ('77,7 t,)ﬁ),
_i<q§T (:B’, t,)gﬁ(ma t)> = —1 tr(Q;T (xla t,)$($7 t)ﬁ)

e Note: It is convention for G=7( z,t , z',t' ) that the arguments on the left correspond

28 28
annihilation creation

to annihilation and those on the right to creation operators. G='~ exchange the order of
creation /annihilation not their arguments.

”G-greater”: G~ (z,t,z’,t)
?G-lesser”: G=(z,t,z’,t)

~»




Computing non-equilibrium Green’s functions

define two independent Green’s functions for an initial state p:

Definition: a fixed pair of times 0 < ¢,t' < tf, we can

"G-greater”: G (z,t,2',t') = —i{d(z, 1) (z', 1)) = —itr(d(z, t) (2, 1)p),
?G-lesser”: G=<(z,t,z',t') = —i{p! (&', t)p(z, 1)) = —itr(dT (', t)d(z, t)p).

e For the path integral, we need to distinguish two cases:

(i) £ > t’: We can write this as

,I:G> (fE, t, m/’ t/) §= tr (e;iH(tf_t)(]ﬁ(:E)e_iH(t_t ) ¢($,)T8_th ﬁOe’thf)?
forward backward :

Ez tr (e—’iﬁ(tf—t,) q’;-'- (ml)e—iﬁt’ﬁoeiﬁté(g})e’ifl(tf—t)) ég [

< >

forward backward

operator averages

o)
P
~

te) > D O e,
t I RN ACRD)
b(x) < xfy (')
>t<¢($)> p(t =JO)
y = (¢p—(z, )97 (2, 1))
= tf) < xqu (:I)’) ...................................................



Computing non-equilibrium Green’s functions

Definition: For a fixed pair of quantum states x, 2’ and a fixed pair of times 0 < t,t’ < t¢, we can
define two independent Green’s functions for an initial state p:

?G-greater”: G (z,t,2',t') = —i{d(z, t)d' (z', 1)) = —itr(d(z, t)o' (&, t)p)
"G-lesser”: G<(z,t,z',t") = —i{p! (&', t)d(z, 1)) = —itr(dT(z, ) d(z, t)p).

The we find with the same logic as above for ¢t < ¢/

r ) ] :
i [ DI6,6¥16- (@, )% (@, ) = (b (@, )% (o, )
WCEBLTE) = 1Dlg, %16 (0, 1)8% (1) = (b (o, 1)68* (o, 1)

e In summary

((p_(z,t)o% (2", ")) for t,t’ arbitrary

'

path integral average
s

(P4 (z,t)p% (z',t')) fort >t
Lp_(x,t)o* (2, t")) fort <t

iG~ (SB, t, xl, t,) — ng(.’lf, t)gy(fv,, t,)E

operator average

e The same considerations can be repeated for G=(z,t,z’,t’)



Computing non-equilibrium Green’s functions

¢ In summary

fSQS_ (z,t)o% (2, ¢ )2 for t,t’ arbitrary

Y
< path integral average

(P4 (z,t)p% (2/,t')) fort >t
{(p_(z,t)p* (2, 1)) fort <t

iG” (z,t,2',t') = @(m, t)p'(«, t'))

operator average

e The same considerations can be repeated for G=(z,t,z’,t"). This yields

Path integral contour Green’s functions:
On the +-contour, we can define four possible two-point correlations.
no time ordering:

{p—(z, )% (z',)) = (2, t)$! (2/,t)) = iG™ (z,t,2',¢)
(p+(z,t)9* (2/,1)) = (B! (2, ) (z, 1)) = iG=(z,t,2/, 1)

time-ordered:
{ps(z, )% (2, 1)) = O(t —t')(P(z, )" (2, 1)) + Ot — t) (o' (2, ¢)d(, t))
anti-time-ordered:

(@=(2, 06" (@, £)) = Ot ~ )@ )@, ¢)) + Ot — ) (@', 1) (a, 1)

path integral averages operator averages (... y=tr(...p)

(. y=[ D[p,p*]...e*°




Computing non-equilibrium Green’s functions

Relation to cl/g Green'’s functions

G (t,1) = —i{a.(Da(t))
= - %<<a+<t> ra-(0) @.(¢) - a’(t')))

t >t
(a(a’(@)) + (a@®)a’(t)) — (@ (t)a(®) — (a’()a(t)) = 2([a(t),a’(t)])

' >t
<M> + <M)> — Mt» — ya/*(t’))

Exercise

Reminder:

Path integral contour Green’s functions:
On the +-contour, we can define four possible two-point correlations.
no time ordering:

(p—(z,0)p% (2", ) = {(z,0)$! («', 1)) = iG™ (x,t,2',1')
b+ (2, 1) 9% (¢',1)) = (P! (2', ) $(, 1)) = iG=(z,t,2",¢)

/\

time-ordered: <Tgb(aj t)qb (2, "))
(+(z, )% (2, 1)) = Ot — ') (z, 1) (2, ¢')) + Ot — )4 (', 1)d(=, 1))
anti-time-ordered: | (Td(z, t)¢! (', 1))
(p-(z,1)9% (', 1)) = Ot — t)d(z, )9 (2, ¢')) + Ot — t')(H" (¢',t)d(z, 1))

path integral averages operator averages (... y=tr(...p)

(.= D[p,p*]...e*

Repeat the same for G* G*(t,1) = — i{{a®),a"(t)})




More on R and K Green’s functions

master equation for decaying cavity:

Orp = —ilwod'a, p] + K(2apa’ — {a'a, p})
B . x 0 10 — wop — 1K el time domain
S = /dt(acla aq) ( 10 — wWo + 1K 21K ) ( Qg ) a, (t)

_ dw (, * % 0 W — wo — LK Qcl frequency domain
— 2 (a’cl7 a’q) . 9,
W —wo + 1k K a, ay(aﬁ

action:



More on R and K Green’s functions

From retarded Green function — spectral density A(w) = -2Im GR((U)'
which satisfies normalization fA(w) =(la,a']y =1 and contains information on spectral properties of the system
example of the lossy bosonic mode A(w) = 2K

(W — wp)* + K2

1.e., it 1s a Lorentzian, which is centered at the cavity frequency
wo and has a half-width at half-maximum given by «. Note that
for k — 0, the photon number states become exact eigenstates
and the spectral density reduces to a d-function peaked at wy,

G, t) = — il{a(®),a’(t))}) t— ¢ iGK(t, 1) = 2(a"(Ha(®)) + 1

cfr G commutator carries no info on mode occup. ([a,a’] = 1)

example of the lossy bosonic mode

(a'a) = % (i

fGK(w) - 1) =0 system is empty in the steady state (loss, with no pump)

w

like In equilibrium (cf. Mahan, Negele/Orland, Altland/Simons)



Relation to equilibrium

At equilibrium there i1s no need of 2 Green's functions; it Is sufficient to specify the response properties (I.e. spectrum), since the

occupation is universally given by a Gibbs state (canonical, grandcanonical, etc)

1
ePwo — 1

(a'a) = n(w) =

There is a conceptual way to formalize it, know as fluctuation-dissipation theorem, which strongly ties G to G* at equilibrium

\4

GK(w) = 2n(w) + 1) (GR(w) _ GA(w))

Exercise (pg. 20 of Sieberer et al arXivl512)

For a bosonic mode at finite temperature,
compute G®K and prove that they satisfy the
fluctuation-dissipation theorem:

1
w—wy+ i
GX(w) = —276(w — wy) 2n(w) + 1)

GR(w) = GH(w)* =




