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What does it even mean that the mass is
IN a superposition of locations?
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p Particular regime of potential theory of
guantum gravity, complementary to
approaches to a full theory.

p Playground to investigate conceptual
guestions.
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Symmetries & Counterparts

» Consider a theory @ with
symmetry group G.

» The space of all possible
configurations (models) can be

partitioned into orbits of G.

p Models on a given orbit are
pohysically indistinguishable.
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o() on each orbit @¢.

p The choice of section is a matter of
convention and can be seen as a
choice of reference frame.




Symmetries & Counterparts

p A section O picks one representative
o() on each orbit @¢.

p The choice of section is a matter of
convention and can be seen as a
choice of reference frame.

p Example: choice of origin in
translationally invariant theory.




Symmetries & Counterparts

p A section O picks one rep
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o() on each orbit @¢.

resentative

The choice of section Is a matter of
convention and can be seen as a

choice of reference frame.
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Kinematically possible models.

» Symmetry group is G = Diff ().




Coordinate fields & comparison of models

» Amodelis atuple (A, g 1 Winaster)

p Space of models D is the set of
Kinematically possible models.

» Symmetry group is G = Diff ().
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Coordinate fields & comparison of models

» Amodel is a tuple (A, &1, W,t1er)-
p Space of models @ is the set of kinematically / /
possible models.

— (D) (1) (1)
P1 = (’% g ab )((A) l//matter)

» Symmetry group is G = Diff ().

p Find a set of four scalar fields {¥(4)} 4=0.1.2.3: / /

2 2) (2
Pr = (% g(b)’)(((Ag’ l//r(ncgtter)




Coordinate fields & comparison of models

Three options for modelling scalar
reference fields:

|. 1dealised or coordinate fields

I. dynamical fields without back
reaction

ll. dynamical fields with back
reaction

9 most realistic

restrict freedom in choice of
RF drastically

y
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Coordinate fields & comparison of models

What does it mean to use
® the y-fields as coordinates?
).

p Use the values of
WX(4)tA=0.1.23 tO

identify them across th
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Coordinate fields & comparison of models

What does it mean to use
® the y-fields as coordinates?
).

p Use the values of
WX(4)tA=0.1.23 tO

identify them across th

superposition.
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p Identify a point p € | with a point

q € M, iff y'V(p)

= (g

p Comparison map relative to y-fields:
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Quantum reference frames for GR

o
‘)Ll‘\ I am “sitting” on X..

» Models aligned to the section o identified
by the gauge configuration M =x® =x,

)2 = o) @y alg™)Ix™) + 8lg™M)X®))

| ®
J
p Comparison map via x fields:

Cy = X(Q)_l 0 X(l) = Id




Quantum reference frames for GR

(J
%’\\ ..how do I "jump” from X to X ?

» Chose another section 0 corresponding to
)Z(l) _ 5{(2) — ¥,

» Align the model to & via a quantum
controlled diffeomorphism:

p» Comparison map via X fields:

C)Z:X;log*zld
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Spacetime Localisation of Events

L
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» What does it mean for an event to be o S ‘a_:;._
' ' . N
spacetime-localised? == ) AOSSSASR

» How does the localisation of an event in "W"“
. O
spacetime depend on the guantum

coordinate system®?




ldentification of points

The pair (p,q) wherep € M and g € M,
s localised iff ¢ = C,(p).



ldentification of points
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The pair (p,q) wherep € M and g € M, The pair (d(l)(p), d(z)(q)) will in general not be
s localised iff g = C)((p). ocalised: d'“(q) # C)?(d(l)(p)).
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ldentification of points
A concrete toy example

y-fields: Red - Green - Blue (RGB) y-fields: Temperature - Pressure - Luminosity

-

(17 °C, 1013 hPa, 60 W)

(193, 140, 143)
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ldentification of points
A concrete toy example

y-fields: (Riem?” — Weyl?, []R, Ric?, [
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ldentification of points
A concrete toy example

y-fields: (Riem?” — Weyl?, []R, Ric?, [

I
(1,2,3,4)




Localisation of pairs of points o

ldentification of pOintS is reference frame dependent... A
A concrete toy example

y-fields: (Riem?” — Weyl?, []R, Ric?, [

g =C (d(”(p))
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Spacetime Localisation of Events

C, :; G
\ dP(ED) /
) ) S
|dentification of spacetime points and localisation of events are
frame-dependent and have no absolute physical meaning. @Aawmm@

Hole Argumen
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The classical and quantum hole argument

+ Classical hole argument (against spacetime
substantivalism)

~— Spacetime points have no physical meaning. - |
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The classical and quantum hole argument

+ Classical hole argument (against spacetime
substantivalism)

~— Spacetime points have no physical meaning.

+ Remove descriptive redundancy induced by the
diffeomorphism invariance by using point
coincidences of physical fields.
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The classical and quantum hole argument

+ Classical hole argument (against spacetime

substantivalism)
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The classical and quantum hole argument

+ Classical hole argument (against spacetime
substantivalism)

~—P Spacetime points have no physical meaning. L ’

+ Remove descriptive redundancy induced by the Al
diffeomorphism invariance by using point | /
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coincidences of physical fields.
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+ |dentified points across manifolds in superposition by \ y
coincidences of scalar fields across the P\
superposition. \ ,‘/

... and yet again an ambiguity! \

Namely in the question of which reference fields to use N

to define coincidences! \Y/
uantum Hole Argument! g

Norton, SEP (2022)
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Relational observables

p Partial observables
O(Z) — O[gab(i)a \Pmatter(i)] : M — 8

p Dressed observables by making partial
observables relative to X:

O(’i)
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[ x (1) =x &

IS definite (not In a

FO0W(p) = 0% (q).




Relational observables

on 1

\ / q =£C%(p)
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Implications for Interference and Recombination?

Consider for illustration the BMV ex-
periment in which two masses in superposition states are taken to get entangled
with each other through gravitational interaction (and gravitational interaction
alone): the relevant literature tacitly assumes that the location of the masses are
all relative to one joint lab frame—mno matter whether the experiment is mod-
elled through a Newtonian potential, or (low-energy) metric fields, as done by
Christodoulou and Rovelli (2019). if we perform a quantum diffeomor-
phism which shifts the point at which th"cai occurs within 'Ae of
the branches then the phase c ange W1 be d1 ferent and the mterference e ec:ts
will cl an e.

Can a QRF ftransformation change the
relative phase and thus the outcome of
an interference experiment?

Adlam, Linnemann, Read (2022)
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Implications for Interference and Recombination?

p Consider qguantum diffeomorphism that
shifts the point at which recombination
OCCUrs In one branch.




Implications for Interference and Recombination?
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p Consider quantum diffeomorphism that /
shifts the point at which recombination o
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Implications for Interference and Recombination?

A 1
p Consider guantum diffeomorphism that Q
shifts the point at which recombination ~

OCCUrs In one branch.

p What matters is the relative distance to
the beamsplitter/laboratory.




Implications for Interference and Recombination?

)

)

)

Consider quantum diffeomorphism that
shifts the point at which recombination
OCCUrs In one branch.

VWhat matters Is the relative distance to
the beamsplitter/laboratory.

While the recombination now occurs in a
superposition of locations, the phase

depends only on X;; — Xgg¢ and remain
unchanged.

A1




Summary

Symmetries, counterparts, and identification

> Framework of QRFs as choices of sections in space of
models

> Application to superpositions of semiclassical
spacetimes

» Construction of quantum coordinate fields and

comparison map that identifies points across manifolds
via coincidences of physical field values




Take home messages

~

The localisation of events is frame-dependent and
has no absolute physical meaning.

\
I\
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(((

Identification is pointless!

\
~
I\

~

Observable are either definite or in a superposition
depending on the choice of the reference frame

2 (((

o
&l\‘ Thank you for your attention!
— For more detalls, see arxiv:2402.10267.



