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The chromosomes as macro-molecules, a long story

Walther Flemming, Mitosis, 1882

Edward van Beneden, Meiosis, 1883

From Janssens 1909: exchange of chromosomal segments in chiasmata

Boveri and Sutton formulated the chromosome theory of 

inheritance in terms of chromosome splitting at cell division 

(1902-1904):

- They observed that chromosomes exists in pairs

- They observed members of a chromosome pairs separate 

each other during gamete formation

A link with Mendel laws was made by Janssens and Morgan 

(1909-1911):

W. Flemming 1882



50 yeast later, a couple of theoretical physicists 
discovered the double-helix

Watson and Crick, The structure of DNA, Nature, 1953

Erwin Schrodinger prediction: What is life, 1944.
Chromosomes: “the aperiodic crystal forming the hereditary substance, largely withdrawn 
from the disorder of heat motion.”



The chromosome conformation 
during Mitosis and Meiosis should 
be tightly regulated

Over ~1 lifespan, the heat motion 
(in Schrodinger terms) corresponds 
to errors and variability

Jacques Monod: « l’homme sait enfin qu’il est seul dans l’immensité 
indifférente de l’Univers d’ou il a émergé par hasard »NOT TOO MUCH!!

W. Flemming 1882
Not only during mitosis and meiosis



How do cells bring distant genomic regions close in 3D space?

Scientific question:



How do cells bring distant genomic regions close in 3D space?

Scientific question:



Relaxation toward equilibrium Out-of-equilibrium steady state

Which forces shape the 3D genome?

Molecular

motors

ATP

External

signal

TF

3D reorganization

Configurational space
Configurational space

Silencing epigenetic
domains

[Myriam Ruault, TaddeiLab]

Ruault*, Scolari* et al, (2021) Genome res.

TranscriptionEvolution



The role of conformational memory on loop interactions

TADs
Average

contact map

Hi-C from [Rao et al. 2017]
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Explorative data-driven approach

My original way of modelling loop extrusion

Physical theory of chromatin conformation



Explorative “data-driven” modelling approach – static dataset

~ 10000 single-cell conformations available online

Oligopaint [Bintu et al. (2018) Science]

HCT116, chr21:34Mb-37Mb, 83 probes (30kbp mean probe size)

Wild-type Cohesin degron induced



Gaussian model

𝛯𝑖𝑗 = 𝑅𝑖𝑅𝑗  − 𝑅𝑖 𝑅𝑗
covariance matrix (83 by 83) 

means are taken over all configurations
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Oligopaint [Bintu et al. (2018) Science]

3x83 vectors x structure



Is the model missing anything?

𝑃 𝑅 =
1

𝑍
exp −

1

2
𝑹𝑇  𝛯−1𝑹

6889 parameters to “fit” 6889 mean observables

Original data
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Bintu et al. (2018) 



Principal component analysis
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…

𝑖 + 3

𝑖 + 2

First static model: the random polymer chain
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Second static model: the 𝛽-chain

Adapted from Polovnikov, Nechaev, Tamm 

(Soft Matter 2018)

Amitai and Holcman (PRE 2013)

𝑃 𝑅 =
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𝑘𝐵𝑇
𝑹𝑇O(c, 𝛽) 𝑹
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Random 𝛽 -chain𝑤 ~ sin𝛽  𝜋𝑘/2𝐿
𝛽 = 1.64 ± 0.02 

𝛽 –chain + 100nm

static noise



Objective: introducing a dynamics to explain the wild type

Wild type:

Original data w/o cohesin Simplified polymer model

Static model

Simplified polymer model

Dynamic model
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𝑃 𝑅, 𝑡

Bintu et al. (2018) 

Bintu et al. (2018) 
out-of-equilibrium effects!



Explorative data-driven approach

My original way of modelling loop extrusion

Physical theory of chromatin conformation



Alternative approaches to model chromatin – minimal models

…

𝑖 + 3

𝑖 + 2

𝑃 𝑅 =
1

𝑍
exp −

3

𝑏2
𝑹𝑇𝛥 𝑹

1 parameter
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2 parameters

The beta chain (Amitai-Holcman 2013)

Adapted from Polovnikov, Nechaev, Tamm 

(Soft Matter 2018)



Objective: introducing a dynamics on top of static pictures

Wild type:

Original data w/o cohesin Simplified polymer model

Static model

Simplified polymer model

Dynamic model
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Bintu et al. (2018) 
out-of-equilibrium effects!
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Histogram of 𝑥

as if we repeated the process

many times
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Brownian diffusion - simulation

polyFlux: Original semi-analytical approach



polyFlux: Semi-analytical approach

𝑥

Analytical solution for 𝑥

Calculation of the Green function

𝑡

𝑀𝑆𝐷

~ 𝑡
Main advantages:

- No need to simulate: 

extremely fast

- For free diffusion: full 𝑃 𝑥, 𝑡 , 

in closed form



Two linked beads, diffusion

Analytical solution:

Configuration space

𝑥𝑔

𝑥𝑏

Can be extended to 3D

𝜌 → 1.

Each coordinate corresponds to a 

possible realization of the two linked 

beads𝑃(𝑥𝑏, 𝑥𝑔, 𝑡)

𝑥𝑔

𝑥𝑏

𝑥𝑏𝑥𝑔

polyFlux: Original semi-analytical approach



The Rouse Model

𝑛

𝑛 + 1𝑛 − 1

N beads

Simulation

Calculation of the Green function (propagator)

polyFlux: Original semi-analytical approach

𝜕𝑃 𝑹, 𝑡

𝜕𝑡
= ෍

𝑖,𝑗

𝜕

𝜕𝑅𝑖
𝐿𝑖𝑗 𝑘𝐵𝑇

𝜕𝑃

𝜕𝑅𝑗
− 𝑘 ෠𝑂𝑖𝑗𝑅𝑗𝑃

Faster relaxation Slower relaxation

𝑘 ⋅ ෠𝑂𝑖𝑗      Chromatin elasticity

𝑘𝐵𝑇         Thermal fluctuations

𝐿𝑖𝑗   Mobility (Nucleoplasm viscosity)

       normally 1/𝜁 ⋅ 𝛿𝑖𝑗

Predicted distances

It is the simplest polymer model

 1 extra parameter, viscosity 𝜁

Provides:

- Connectivity

- Static and Dynamical aspects

Ignores:

- Steric and volume excluded effects

- Topological constraints



Loops in the analytical Rouse Model

t = 𝜏 t > 𝜏෠𝑂
𝜕2

𝜕𝑛2

𝜏𝜏

Fast relaxation Slow relaxation

Conformational

memory

Entropy

Cohesin 

mediated loop

t = 0



Changing network topology in time, we obtain loop extrusion

Cohesin

(motor)

ATP

ATP

ATP

Slow extrusion ~ 100x Faster extrusion 

What are the quantitative effects of interplay between activity and relaxation with broken detailed balance?

Non equilibrium 

steady state
෠𝑂(𝑡)

Conformational

memory

(in a toy-model form)



Dissecting the entropy dynamics

Slow extrusion ~ 100x Faster extrusion 

Cohesin

(motor)

Entropy open 

polymer

Entropy closed 

polymer

Out of equilibrium 

effects related to 

relaxation



An even simpler toy-version of loop extrusion?

Cohesin

(motor)

The model of loop-transition

Slow extrusion ~ 100x Faster extrusion 

Entropy open 

polymer

Entropy closed 

polymer

Out of equilibrium 

effects related to 

relaxation

Dissecting the entropy dynamics



An even simpler toy-version of loop extrusion, to theoretically visualize the breaking 

of detailed balance

Slow extrusion ~ 1000x Faster extrusion 

The model of loop-transition

4x cycles 4x cycles

transition Out of equilibrium 

steady state

relaxation

Entropy 

with loops



Theoretically visualize the breaking of detailed balance

Slow extrusion ~ 1000x Faster extrusion 

Time reversal symmetry Breaking of time reversal symmetry



What does it takes to reproduce the 

following kind of data?

Bintu et al. (2018) 

Mean distance matrix



simLoop: Minimal model of loop dynamics (secondary structure)

CTCF

• Position, orientation

 → ChIP-seq + motifs

• kon → same for all sites

• koff → occupancy from

     ChIP-seq data

• kon

• koff

• speed

Cohesin

5 parameters

Hypotheses:

• Cohesin loading → uniform

• Extrusion → two-sided

 → constant speed

• Upon collision cohesin/cohesin → stalling

 cohesin/CTCF → stalling

Hypotheses:

• Cohesin loading → uniform … biased?

• Extrusion → two-sided … one-sided?

 → constant speed … biased random walk?

• Upon collision cohesin/cohesin → dissociation? stabilization?

 cohesin/CTCF → stabilization?



Going 1D to 3D: Combining simLoop with polyFlux

Fast relaxation Slow relaxation
simLoop input3D contact maps

න d𝑡 න d𝑡

polyFlux distributions in time

Memory and Increased 

specificity



From Liu and Dekker (Nat Cell Biol) 2022

See also Gassler et al. (EMBO) 2017 and Scolari et al. (PRL) 2018

s

Out-of-equilibrium effects reproduce the main landmarks of 

contact maps at the TADs scale

Simulations, P(s) in function of viscosity scale (log10)

𝜁



The allows to simulate contact maps within minutes

No cohesin model simLoop + polyFlux Wild type data

Oligopaint [Bintu et al. (2018) Science]

CTCF ChIP [Rao (2017) Cells]

HCT116, chr21, 1e7·bp

Future: free and open source, community driven, development

Work in progress!!



Thanks!

Institut Curie

Genome functions in Space and Time Group

The Physics unit (PCC) – theory and experiments

 Ecosystems -> Full-organism -> Tissues -> Cells -> Molecules

The Nuclear dynamics unit:

 We do the anything about the (cell) nucleus



Forces shaping chromatin in the nucleus

Credits:  CoulonLab, funding bodies

Contacts:

vittore.scolari@curie.fr

Antoine Coulon, Kyra Borgman, Julia Ronsch, Ilham Ladid

Ex members that I thank: Lorena Kolar, Veer Keizer



Is the model missing anything?
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6889 parameters to “fit” 6889 mean observables
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Bintu et al. (2018) 
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