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DeepOrigin’s Simulation Stack

We build atomistic ond coarse-grain models across biologicd scdles to address
every stage of drug discovery ond find drugs foster.
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Outline

e Mesoscale modeling of the cytoskeleton and towards simulating
eukaryotic cells

e Modeling protein complexes: For some important drug discovery
tasks, AWSEM leaves AlphaFold2 in the dust

e Virtual Screening of Small Molecules




MEDYAN Work
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. James Komianos )
. Aravind Chandrasekaran

NSF CHEMISTRY: CTMC
NSF PHYSICS: POLS

Haoran Ni

. Carlos Floyd - Radek Erban . Arpita Upadhyaya



Stack = 1 T-cell activation

Time=10s

Eric Betzig

We would like to simulate cellular dynamics based on
the microscopic laws of physics and chemistry



A Whole-Cell Computational Model
Predicts Phenotype from Genotype /-

Jonathan R. Karr,'# Jayodita C. Sanghvi,** Derek N. Macklin,? Miriam V. Gutschow,? Jared M.

Benjamin Bolival, Jr.,? Nacyra Assad-Garcia,” John |, Glass,? and Markus W, Covert?*
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Dendritic nucleation/Array treadmilling model

1. Extraceliular stimuli 6. Growing filaments push membrane forward
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10. Profilin catlalyzes exchange of ADP for ATP



MEDYAN: Mechanochemical Dynamics of Active Networks

. 3D simulation region is divided into
compartments.

. Diffusion (Actin, Capping protein,
Arp2/3) between compartments.

. Chemical reactions in compartments:

. Polymerization, Depolymerization,
Capping, Branching...

. Monte Carlo algorithm to generate
stochastic trajectories

Y
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& K. Popov, J. Komianos, G. A. Papoian,
PLOS Comp Bio, 2016,
DOI:10.1371/journal.pchi.1004877

¢ L. Hu and G. A. Papoian, Biophys. J.;
2010, 98,1375

¢ L. Hu and G. A. Papoian, J. Phys.:
Condens. Matter; 2011, 23, 374101



The reaction-diffusion
master equation

Compartment A | ® Discretize space into

locally well-mixed

Nra HRA

N Jidid compartments (mass-
et : action kinetics)

® Includes both chemical
reactions within

Compartment B C_Omp_artments and
Nrg HRB diffusion between
’ compartments

Ne.B He.B
® Simulated using
accelerated Gillespie

A
= (AT{ + D) P(N,t) ?I{IgROI\;lI)thm variant

dP (N,t)

dt
N = {Ni a}lies.AcE



Spatially resolved chemistry
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MEDYAN: Mechanics




Finite-width Filament Model

® Designed a filament
model that includes
shearing, twisting,
stretching, and
bending

® Built on the
Cosserat theory of
elastic rods

* Spline functions
used to parameterize
rod configuration

& C.Floyd, H. Ni, R. Gunaratne,
R. Erban, G. A. Papoian, “On
Stretching, Bending, Shearing
and Twisting of Actin Filaments
I: Variational Models”, J Chem % . / g
Theor Comp, (2022), 18, 4865 . Carlos Floyd «  Haoran Ni . Ravinda Gunaratne . Radek Erban




Membrane crumpling in hyperosmotic solution

Tension: F=k,/(240)(A - A{])2 s

Bending: F = fﬂkb{H — ¢p)%dA

Volume Conservation: F=ky/(2V)(V — Vh:}g

Volume Exclusion: F = ko /d‘qﬂrb _ ,_,,p|4



Surface Reaction-Diffusion: Receptor Signaling &
Clustering

3-dimensional diffusing protein
® o
®

desorption

adsorption

actin-membrane

actin filament binding protein

< surface diffusion reactions




Time Evolution: An Adiabatic Ansatz

2. Local deformations cause changes in Ut

3. Mechanically equilibrate
network based on new
deformations

1. Evolve network
using chemical
stochastic simulation

=><Om=S

4. Mechanochemically update reaction rates,
k =ko f(Fcurrent)

Popov K, Komianos J, and Papoian GA, PLoS Comp. Biol. 2016



Timings on 1 core of 1 CPU

Wall times required to obtain 1000 seconds long trajectories

Actin 20 muM # of actin # of polymer | MEDYAN 3.2 | MEDYAN 4.0 | MEDYAN 5.1 | MEDYAN
monomers | segments Julia

a:A0.01
M:A 0.05

« Nathan
Zimmerberg

270,000 12d 22h

1,500,000 38,000 360d 27d

Mouse embryonic fibroblasts have a volume of approximately 1000 pm?3



Axon Growth Cone Simulation

279283 actin monomers.

The initial conditions and parameters for these simulations were ported from the 5 nM
Arp2/3 simulations from:

» Aravind Chandrasekaran et al., MBoC 33.11 (2022)
A MEDYAN.jl simulation takes 3 days to run on a single core with 4 GB memory.
Previously took multiple weeks using C++ version.



http://medyan.org

Home Documentation Download Publications Gallery Contact

MEDYAN - Mechanochemical Dynamics of Active Networks

Welcome 1o the wabpage of the MEDYAN, an afficlent and scalable computstional modal for mechanochemcal simulatons of active mattor
natworks creaded by the Papaian lab at the University of Maryland. This webpage containe documentation and examples for the MED YAN suftware
package, whch Is implemaniad In C++. The sourca code for Ihis packsge is downioadabie for scientific use

The cel cywskelsion plays @ key i In
human bivlogy and diseoss, conirbating
ubguitoualy 4o such impodant proceceen
a5 svbryone duvsopman. wound repar
ond  canos  melastisls.  The  Papoian
laboranory is rtaresind 0 ganng dsper
understacdting of the phweosl chamisty
botwnd thase compiox, far-from-ocpaibrium
mechanochemical geocesses

Popov, Komianos, and Papoian, PLoS Comp. Biol. 2016

Latest news

March 2022 - MEDYAN 5.4.0 & pubfishud. [Dosnicad!

March 2022 - MEDYAN 5.3.0 & putitshed

Fetruary 2022 - MEDYAN 52.1 |5 pubished.

Decamver 2021 - MEDYAN 5 £.0 & pubiished

August 2027 « Qur_paner Ntec Mamb MEDYAN Symudod
o Y shes C =] CMW C A wao
publaned in PCH and chosen ns $he cover.

Juy 2021 - MEDYAN 5.0.0 & putiiahad.

July 2021 - MEDYAN 4.3.0 & puttished.

Juy 2021 - MEDYAN 4.2.0 & putishng

March 2021 - Qur gagar tted Segmenral LannardJones eractions
for samvfiondve pofymer notworks was pubished in Molecular
Phyacs

Funding sources



http://medyan.org
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Towards Simulating a Whole Cell




Towards Simulating a Whole Cell




Entropy Production and Avalanches in
Actomyosin Networks

® Measuring entropy production in
active matter phasesis a
necessary step to understand their
self-organization

® Experimental measurements of
forces produced by migrating cells
suggests that dissipation of
mechanical energy during
migration is poorly understood

® We developed an algorithm in
MEDYAN to quantify dissipation
rates

. Floyd C, Papoian GA, Jarzynski C, Interface Focus, 10.1098/rsfs.2018.0078, (2019)
. Liman, ..., Wolynes, Levine, Cheung, PNAS, v 117, 10825, (2020)



Front Matter News Podcasts Authors

RESEARCH ARTICLE

Understanding cytoskeletal avalanches using
mechanical stability analysis

Carlos Floyd, @ Harbert Leving, @ Chastopher Jarzynsks, and © Garagin A. Papolan

+ See gl suthors and #flllistiona

PHAS Ocsodar 12, 021 118 |41) a2 1702320 1; hewps:dido om 10107 Upnas 2710232310

=

*® In vivo studies of cytoskeletal motions
reveal heavy-tailed distributions of
event sizes - similar to Gutenberg-
Richter law

® “Cytoquakes” have been introduced as
large, sudden events in cytoskeletal
dynamics
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Shi, Y., et al., PNAS (2019)




Soft and Stiff Vibrational Modes

® Numerically constructed Hessian matrix of U to find the
vibrational modes Vj, with stiffness A, and delocalization 73

® Soft modes more spatially spread out than stiff modes

400

» Unstable
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Stiff
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Avalanches in in vitro Actomyosin Systems
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The self-part of the van Hove function, G.(x,t), for
actomyosin system with 0.74nM Arp 2/3. (Murrell Lab)
(left). G(x,t) for system approximately equivalent to that . athan . Michael

Patrick Kelly

with MEDYAN. (Papoian Lab) (right). Zimmerberg Murrel




Myosin walking on two parallel filaments with a third
perpendicular filament blocking its path leads to motor stalling




This kind of motor stalling has been
observed experimentally

GFP-RLC NM2B +

WAL hAZ e

Billington et al., 288, 33398-33410, 2013 5 min

Melli, L., etal. (2018) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829915/#video3



MEDYAN Application: Dendritic Spine

Dendritic

neuron's dendrite. Most spines have a bulbous head g =1
(the spine head), and a thin neck. Our study
concentrated on the post-synaptic spine consisting
of branched F-actin, membrane and membrane
proteins.

Spine:

A

small protrusion on a

Cadherin:  an intercellular
protein anchored to F-actin via

the catenin proteins,
positioned to dynamically
regulate spine actin

cytoskeleton and is required for
the growth and persistence of a
spine.

[Bozdagi, O., 2010. Persistence of coordinated long-term
potentiation and dendritic spine enlargement at mature
hippocampal CA1 synapses requires N-cadherin. Journal
of Neuroscience, 30(30), pp.9984-9989.]

[Gumbiner, B.M., 2005. Regulation of cadherin-
mediated adhesion in morphogenesis. Nature reviews

YR PR PR T B TP PR 7 U

Korobova, F. and
Svitkina, T., 2010.
Molecular architecture
of  synaptic  actin
cytoskeleton in
hippocampal neurons
reveals a mechanism
of  dendritic  spine
morphogenesis. Molec
ular biology of the
cell, 21(1), pp.165-176.
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[Bucher, M., Fanutza, T. and Mikhaylova, M., 2020. Cytoskeletal makeup of the
synapse: Shaft versus spine. Cytoskeleton, 77(3-4), pp.55-64.]



Simplified spine model

.Y

Spine neck growth

PSD{Cadherin)

Branching F-actin

F-actin bundle

Linker
Spectrin

Spectrin increases

Spectrinis model as slip bond. Spectrin distributes
[Efimova, N., 2017. BIII spectrin is necessary for formation of the constricted neck of dendritic spines from the base Of the neck to the base Of the head

and regulation of synaptic activity in neurons. Journal of Neuroscience, 37(27), pp.6442-6459.]

Actin
filaments

Time Evolution of A Spine: with both spectrin and
cadherin, a mushroom-like shape is achieved

Cadherin o‘Iis't'r‘ib'ution



Effects of Arp2/3 Distribution

Arp2/3 Distribution ratio = d/D: 0.4 0.6 0.8

The closer the Arp2/3 area to the PSD, the larger the spine head is. And the
upwards branching is one of the reason for a expansion of spine upper surface
and contributes to the negative curvature of the post-synaptic membrane.



Filament Severing by Cofilins

Cofilins sever actin filaments mz...:m
by depolymerizing sequences — @fo@ GigE GHEHI
Gonerasng Geverating
to free monomers. The ,Jeiloesy  Qqoides
assemdly

structure of cytoskeleton can dé"“%g wge‘m%
be obviously changed. &€ gg S B -
. @ - m&‘?‘m‘ (&iq{:’?

whly .,/ HFS Recrganization and growth

AR
\ ! i/ -

Cytoskeleton is discreted

Stabilization
7-60 min

Cofilins play a key role in Long-term Potentiation (LTP)

[Hlushchenko, I., Koskinen, M. and
Hotulainen, P., 2016. Dendritic spine
actin dynamics in neuronal maturation

and synaptic
plasticity. Cytoskeleton, 73(9), pp.435-
441

[Ohashi, K., 2015. Roles of cofilin in
development and its mechanisms of
regulation. Development, growth &
differentiation, 57(4), pp.275-290.]



A tug of war between filament treadmilling and myosin induced
contractility generates actin ring

O elife, 2022, vi1,
e82658

. Arpita Upadhyaya

. Kaustubh . Vishavdeep
Wagh Vashisht
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DeepOrigin’s Simulation Stack

We build atomistic and coarse-grain models across biological scales
to address every stage of drug discovery and find drugs faster.

Target Target _ Hit Hit Lead
Discovery Characterization Discovery Prioritization Optimization
, 7
I \ )‘-‘
b5 /

Ny & TR
P‘ 4 -’7“,’)
1 Molecular
Dynamic Cell Structural ) Docking & Dynamics
Models Ensembles Virtual Cheminformatics
Screening Key:

£ Deeporign

O Available Now

@ In Development
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ML models have not solved key challenges in the study

of proteins
e Can predict:

O  Static folded structure

O  Some structural changes due to mutation (e.g., single
amino acid substitution)

e Cannot predict very well:

O  Protein-protein interactions (e.g., dimer and multimer
formation, antibody interactions)

Structwral bioinformatics

O Interaction with other macromolecules (e.g., DNA, Current structure predictors are not learning the physics
of protein folding

within a lipid membrane)
Carlos Outeiral © , Daniel A. Nissley © and Chartotte M. Deane © *
Actual protein folding pathways and kinetics

Protein dynamics

ML models are incredibly useful, but not for every problem*

& DeepCrigin * Often because insufficient data exists 36



What ML cannot predict is critical to many R&D problems

Optimization of protein-protein interactions Optimizing macromolecular interactions
(e.g., antibody design) (e.g., nanopore sequencing)

Predicting structural changes from larger Modeling complex therapeutics with multi-

Predicting changes in conformation from or multiple mutations (e.g., target step rate constants (e.g., PROTACSs,
binding (e.g., peptide drug design) discovery, drug design) molecular glues)

@ Deeplrigin All images from PDB ‘ s7



Current Landscape in Protein Structure Prediction

Multiple sequence alignment (MSA)-based approaches

e AlphaFold2/3 (Google)
e RoseTTAFold (Baker lab)

Pros:
e High accuracy for natural proteins that have many
analogs in sequence databases (MSA data)
Use both MSA and structural data for training
Database of ~200 million predicted structures
available

Cons:

e Costly to train and run predictions
Provide single or small number of conformation
Conformations may not be biologically relevant
Do not work well for sequences with no MSA data
(antibodies, orphan and synthetic proteins).
Not well applicable to sequences with mutations
e Not well suited for prediction of protein-protein

binding and multi-protein assembly

@ DeepOrigi

Large
[ J

Pros:
[ )

Cons:

language model (LLM)-based approaches
ESMFold (Facebook)

OmegaFold (Helixon)

Predictions are an order of magnitude faster to run
Work better for synthetic, mutant sequences and
orphan proteins due to using single sequence input for
training

Database of ~600 million predicted structures available

Training is very costly (15 billion parameters)

Provide single or small number of conformation
Conformations may not be biologically relevant

Lower accuracy for sequences with MSA data

Not well suited for prediction of protein-protein binding
and multi-protein assembly

Only 1/3 of the database is considered of “high
accuracy”

38



The combination of physical and bioinformatics potentials
allows for de novo prediction of protein structure

1R69 4CPV 3TMS
(RMSD 1.6 A) (RMSD 1.3 A) (RMSD 1.34 A)

The superposition of native and predicted structures

y Davtyan, Schafer, Zheng, Clementi, Wolynes, Papoian, J. Chem Phys B, 116, (2012), 1709-1715

@ DeepOrigi 39
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Application of AWSEM to complex problems:
Design of PROTACs and molecular glues

@® Targeted protein degradation and modification is the fastest growing area in drug discovery
with over 25 candidates in clinical trials for various diseases.

® However, development and optimization of PROteolysis Targeting Chimeras (PROTACs) and
molecular glues remains challenging, especially in absence of structural data.

@® Accurate binding simulations with
AWSEM can enable rational
development and optimization of
PROTACs and molecular glues.

@® The ability to sample dynamics
and assembly of large protein
complexes is key to address
unsolved problems similar to this.

@ DeepOrigi 41




Preliminary results of binding prediction between E3 ligase and
target proteins

Q of E3 ligase and target binding

Overlap with native complex of Cereblon and
BRD48P! mediated by dBET6 PROTAC
PDB ID: 6BOY

RMSD: 1.5 A

The native structure is shown in white and

Q over 0.6 indicates high degree of similarity to the native prediction in orange

structure

@ DeepOrigi

42



E3 ligase/target complex predictions: AWSEM outperforms AlphaFold2

RMSD of E3 ligase and target binding

-o- AWSEM
- AlphaFold2

o
0
=
o
=
=

@ Deeplrigin



Virtual Screening

® Problent Current VS tools produce mostly fdse positives and likely niss
highest qudlity binders
®* How BiosimVS addresses this problem:

® Provides new algorithms with significantly better accuracy
than then current SOTA

® Efficiently screens multibillion ligand databases

® Optimizes for binding affinity and desirable molecular
properties
* Highly efficient: Screening of 5B ligand library in 3 days

* SOTA property predictors for logs, logP, logD, hERG and
other molecular properties

® Novel Molecular Generative Al

£ Deeporign



Docking

The test dataset is PDBBIind
2020 core set 285 complexes

Accuracy (RMSD < 2A)

AutodockVina BRSMDOC
https://www.ncbi.nlm.nih.gov/pm
c/articles/PMC3041641/ (25K AutoDock Vina
citations)

DiffDock: DiffDock
https://arxiv.orq/abs/2210.01776
DOCK 6:

https://onlinelibrary.wiley.com/do
i/abs/10.1002/jcc.23905



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041641/
https://arxiv.org/abs/2210.01776
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23905

Docking: AF3 Results

All examplec T
All 1_v..1‘ll.;|._ S ,[3_, ':‘,h:”-v-lil‘,:-l:lc‘
High quality examples

77%

X ! r —

Q72 A \ | N—0 - ) U T
N=973 N=536 \ \ 4 N=87 { ol N=13 N=4 N=692 N=262
Protein known Protein novel Protein knowr Protein nove

ligand known ligand known ligand nove ligand novel

Protein Protein
KNnown nov i_‘!




Scoring versus Binding Energies

Biosim Score correlation coefficient: 0.90 Vina Score correlation coefficient: 0.62

Prediction

10 2 4 : 6 8 10
Binding Energy (kcalimal) Binding Energy (kcalimol)

@ Deeplrigin




Virtual Screening

Enrichment Factor (1%)
@ DEKOIS 2.0 = DEKOIS 2.0 (Similarity Filtered)

¢ Significantly outperforms the rest on new
target proteins not seen during the training

¢ |GN was trained on DUD-E dataset, which
contained major overlap with the target
proteins of DEKOIS2.0 benchmark

v
“

Our Solution i RFscore VS GhdeSP Vina

m = L’ [ I

Results as reported in “Jiang, Dejun, et al. "Interactiongraphnet: A novel and efficient deep graph representation learning
framework for accurate protein—ligand interaction predictions.” Journal of medicinal chemistry 64.24 (2021)”



logS

Rank Model

[N

Biosim Props
Chemprop-RDKit

AttentiveFP

Chemprop

RDKit2D + MLP (DeepPurpose)
Basic ML

GCN

NeuralFP

CNN (DeepPurpose)

© 00 N oo g B~ w N

1. TDC.Solubility _AqSoIDB

2. Ulrich N., Goss K. U,, Ebert A. Exploring the octanol-water partition coefficient dataset using deep

MAE
0.525
0.762
0.776
0.818
0.827
0.828
0.907
0.947
1.023

Property predictors

Rank

[EEN

© 0O N oo o B~ w N

logD

Model
Biosim Props
Chemprop-RDKit
Chemprop
BaseBoosting
ContextPred
GCN
AttrMasking
NeuralFP
AttentiveFP

MAE
0.425
0.466
0.469
0.479
0.535
0.541
0.547
0.563
0.572

Rank

© o0 o v b~ W

learning techniques and data augmentation // Communications Chemistry. — 2021. = T. 4. = Ne. 1. —

C. 90.
3. TDC.Lipophilicity _AstraZeneca

Model
OCHEM
Biosim Props
DNN(taut)
DNN(mono)
ACD/GALAS
ALOGPS
KOWWIN
JChem

logP

RMSE

0.34
I 0.449 I
0.47

0.50

0.50

0.50

0.65

0.72

SAMPLEG6
0.49
0.421
0.33
0.31
0.51
0.45
0.53
0.39



JAK2 (PK Domain)

Case StUdies A comparison to

Schrodinger’s GLIDE

Tests with small scale virtual screens to

answer the following questions: CD73
Can we rediscover known binders and Cell surface-anchored
drugs? nucleotidase implicated
How do we perform compared to other in cancer
tools?

KRAS (G12D)

GTPase and classical
challenging target

Beyond nucleotide
binders: DPP4



Undruggables: targeting KRAS G12D

The GTPase mutated in 15-25% of all cancers and classical challenging target

Mutation of G12D increases P-loop
flexibility, lowering binding to GAP
effectors prolonging GTP hydrolysis,
and extending KRAS activation

Targeting KRAS is
challenging due to
lack of apparent

binding interfaces

Source: Chen et al, 2013

@ DeepOrigi

Given the critical functions of KRAS,
drugs must target only mutant form

Only a handful are in development:
3 ]

AMGS10 MRTX845 ARS-1620 MRTX1133

MRTX1133
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N °
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Source: Zhu et al, 2022



https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055793
https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-022-01629-2

Our performance persists on KRAS G12D

Methods: BiosimAl: Autodock Vina:

o Molecule ID BiosimAl Score MoleculelD Vina Score
e Dock a larger library: i CHENBLSO8 1048 1207850075 x P009984343122
2 CHEMBLASE33T 11.83155384 2 11.90
* 100,000 random molecules from 2 e Pzt 2 1140
Enamine’s virtual library 5 et SAC AL ity 5 170
6 CHEMBLA859236 -11.35258293 8
* 16 experimentally-validated . g oncdsd s L
binders 8 CHEMBLA857718 -11.22587531 9
CHEMBLAST2788 -11.02645397 0
CHEMBLAATE040 ~10.9885075
« Rank compounds based on s i
e 1 22518 8 0 3
score of top docking pose i
1 58T 1018741281
. 1 V00713 10.16457748
- Top 100 enrichment factors aratsta

10.08416609

. Autodock Vina: 313x
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We rediscover assets in development for KRAS G12D

BiosimAI: Autodock Vina:

The top hit is MRTX1133, a Phase |

. . . Molecule 1D BiosimAl Score MoleculelD Vina Score
asset from Mirati Therapeutics i CHEMBLS0B1048 -12.07850075 1 11.90
2 CHEMBLASB3ATY “11.83155384 2 -11.90
3 CHEMBLAABTBS 1 -11.54409218 3 11,80
Kl CHEMBL4ATE243 -11.39323235 £ -11.70
8 CHEMBLA874297 1137288679 5 117
6 CHEMBLA859236 -11.35258293 ] CHEMBLA8BE3371
7 CHEMBLASSS ST -11.30750275 7 24564240867
8 CHEMBL4858164 «11.23495483 CHEMBLABS3336
8 CHEMBLAE57718 -11.22687531 P\-009757
CHEMBL4ST2T88 -11.02645397
CHEMBL4ATE040 ~10.9885075
CHEMBL4857438 -10.8617363 4 ’
CHEMBLA86333% -10.62152988 : A70661431
22518863178 10.33911133 1048644
50340864 -10.19663043 & 006906778392
PV-010058741510 1018791281
PV.007134722727 10.16457748
These compounds are . PV-006134781118 10,156

S PVODE5HR02193E 10,098 3 9 f ST0150797
patented 085980 8 0.09 00667015
22127055580 10.08410609 006151853477
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An Al Assistant Interface to Democratize Access
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ets of 1eby protesr How simiiar are caffeine and asparin molecule

Shaw me functional groups of Aspirin Which of these molecules is more drug




