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What is Machine Learning ?

Popular

Bayesian: assume data being
sampled from a PDF, infer its

I.EAIINING : parameters and learn the internal
structure of the data

Let's see who
vou really are! e answers

<

To learn the PDF of the data and

then being able to assess,

predict, generate, etc.
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More scientific
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Typical problem in science

Data

Cut based /
control-treated

Misses to take
benefit of
correlations

{ Information

\4

Simulation-based
Neural Networks

Bayesian tools

This minicourse!

Extracts correlations, Reduce simulation's

but learns impact at the price of
"too much" from increasing modelling
simulations impact




The danger of NN in natural sciences

arl <1V > stat > arXiv:2405.18095

Statistics > Machine Learning

[Submitted on 28 May 2024 (v1), last revised 31 May 2024 (this version, v2)]

Is machine learning good or bad for the natural sciences?
David W. Hogg (NYU, MPIA, Flatiron), Soledad Villar (JHU, Flatiron)

Machine learning (ML) methods are having a huge impact across all of the sciences. However, ML has a strong ontology - in which only the data
exist - and a strong epistemology - in which a model is considered good if it performs well on held-out training data. These philosophies are in
strong conflict with both standard practices and key philosophies in the natural sciences. Here we identify some locations for ML in the natural
sciences at which the ontology and epistemology are valuable. For example, when an expressive machine learning model is used in a causal
inference to represent the effects of confounders, such as foregrounds, backgrounds, or instrument calibration parameters, the model capacity
and loose philosophy of ML can make the results more trustworthy. |WEE USRS s le\IA (s ENR {3 (SR SR ole 1 Y SRR ol g R R gl dofo (e o] g o) 8\ [
introduces strong, unwanted statistical biases. For one, when ML models are used to emulate physical (or first-principles) simulations, they

amplify confirmation biases. For another, when expressive regressions are used to label datasets, those labels cannot be used in downstream
(ellg eI =T =l o] [SRE TR ELYE SR gl S L [s Mo e MU g [elel 11 (o) | [Es RO EEIEEN The question in the title is being asked of all of the natural sciences; that is, we
are calling on the scientific communities to take a step back and consider the role and value of ML in their fields; the (partial) answers we give
here come from the particular perspective of physics.
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Bayesian Inference

4 D
Bayes Theorem: Data comes from real
p(6 |X) =p(X|6) * p(B) physical process not from
P a PDF!

. 4

Our utility: X = data, B=parameters

Model cata as being
sarnpied 1rem a
clever PDF with

Connect 8 to physical
parameters of
interest

Infer 6 once you

see the data X

parameters O

Inject prior knowledge
exactly where it goes!
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Graphical Models

e Build sophisticated PDFs

e Visualize inner structure

e Maximize prior knowledge
exploitation
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Science: Mixture models

Dataset X:
Signal

packgrounds

How to create -
such a PDF I? ent s either

Rl or one of the backgrounds
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Convention:

Empty circles:
Sampled and unobserved RV

Filled circles:
Sampled and observed RV
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Each one of the K
classes has an

~\/¢ - j expected distribution

over the measured
quantities
K]




Bayesian Inference: Graphical models

Tt

O

Multinomial
parameters are part
of the PDF.

Sampled from
Dirichlet distribution




Bayesian Inference: Graphical models

Hyperparameters to
define how to sample
K parameters
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Bayesian Inference: Graphical models

Mixture Model

Model data as being
sampled from a PDF
Plug our prior knowledge
Infer the parameters
conditioned in the
observed data

P(B]X) = p(X|6) p(B) / p(x)

Infer the latent variables
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Bayesian Inference

No hard cuts
Soft assignments

No signal/control
regions

K classes &

D observables
Unfolding of data
internal structure
Controlled injection
of prior knowledge
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1D Gaussian Mixture

[ data
0.025 A
0.020 -
0.015 A
0.010 -
0.005 A
0.000 T T T T T
140 160 180 200 220
Height [cm]
Measure the height
of ma ny people Is not hard to see with enough events
(500k)



1D Gaussian Mixture

0.040 A
) [ data
0.035 A ] P
0.030 A

0.025 A

0.020 A

0.015 A

0.010 A1

0.005 A

0.000 T r T T T T
150 160 170 180 190 200
Height [cm]

Measure the height

Of ma ny people Gets more involved with less events!
(100)
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Graphical Model
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1D Gaussian Mixture

1t ~ Dirichlet(a) / z, ~Bernoulli \
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1D Gaussian Mixture

parameters

0.040 A
TR [ data
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0.020 A

0.015 ~

0.010 A

0.005 ~

0.000

15|O 16’0 1'}0 léO 19lO 260
Height [cm]
hyperparameters

Graphical Model

Gets more involved with less events!
(100)




1D Gaussian Mixture

Latent parameters
variable

1t ~ Dirichlet(a)

0.040 A
TR [ data

0.035 A ] =]

0.030 +

0.025 A

0.020 A

0.015 ~

0.010 A1

l\y 0.000

hyperparameters

Graphical Model

150 160 170 180 190 200
Height [cm]

Gets more involved with less events!
(100)




1D Gaussian Mixture

Latent pa rameters
variable

1t ~ Dirichlet(a) / \z

~B

O—=

4

01 02
hoNpo | )

Ty

hyperparameters

Graphical Model

X:{h }

B: by, 0,1, {2,)
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Latgngl parameters |
variable . marginalize
. \ X:{h_} 5

1t ~ Dirichlet(a) / z ~B over Zn

O:p,,, 00, {7}

hyperparameters

Graphical Model
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1D Gaussian Mixture

Latent pa rameters
variable

1t ~ Dirichlet(a) / \z

~B

hyperparameters

Graphical Model

X:{h }

O:p,,, 00, {7}

P(x_|6) =Tt N(h ;u.,0,) + (1-1) N(h :ju,,

02)

P(X|0) = prod(P(x_|0))




1D Gaussian Mixture

Latent
variable

-
Z

parameters

1t ~ Dirichlet(a) ~B

hyperparameters

Graphical Model

X:{h }

81y, Oy T, (7, )
Likelihood

P(x_|6) =1t N(h ;u,,0.) + (1-11) N(h_;u,,

Q

|

)
7

P(X|0) = prod(P(x_|0))




1D Gaussian Mixture

1t ~ Dirichlet(a) / z_~Bernoulli \

Gaussian Mixture
@lunch time!
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Final remarks @ Lecture 1

e Bayes equation very insightful !

e Model data as being sampled from a PDF

e Graphical Models to create PDFs

e Bayesian: learn PDF from data as it comes out

e Many tools and art-et-metier to learn !



IArxiv.org model

Final remarks @ Lecture 1 (LDA Model)

Simple game

O1T-O10O—0- O—0

a Hd Z dn | Vd,n N ,8 ke 77
D K

- Propose model
- Infer parameters' posterior from observed data
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