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length of the table

● Information: An estimation on 
the length of the table
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intrinsic information in the Data
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Science data is very 
complex and 
sophisticated

Different tools can 
explore differently 
this frontier

The carrot of a Discovery
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Typical problem in science

Data Information

Cut based / 
control-treated

Misses to take 
benefit of 

correlations

Simulation-based
Neural Networks

Extracts correlations, 
but learns 

"too much" from 
simulations

Bayesian tools

This minicourse!
Reduce simulation's 

impact at the price of 
increasing modelling 

impact
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Bayes Theorem:

p(θ|X) = p(X|θ) * p(θ)
                                        p(x)

Our utility: X = data, θ=parameters

Model data as being 
sampled from a 
clever PDF with 
parameters θ

Infer θ once you 
see the data X

Connect θ to physical 
parameters of 

interest

Data comes from real 
physical process not from 

a PDF!

Inject prior knowledge 
exactly where it goes!
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Graphical Models

● Build sophisticated PDFs
● Visualize inner structure
● Maximize prior knowledge

exploitation
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Science:  Mixture models

Dataset X:

● Signal

● Few backgrounds

● Each event is either 

signal or one of the backgrounds

How to create 
such a PDF !?



Bayesian Inference:  Graphical models

Graphical representation 
of a PDF to easily visualize 
the internal structure of 
the random variables
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zn

E.g.         pT         Emiss     NJ         Nb    …. etc

Better continuous than 
discrete observables

D

Depending on the 
class of the event, we 
sample D random 
independent variables 
of what we measureD
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Convention:

Empty circles: 
Sampled and unobserved RV 

Filled circles:
Sampled and observed RV D
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N
Procedure that is 
repeated N times

D
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zn

N

K

Each one of the K 
classes has an 
expected distribution 
over the measured 
quantities

D
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zn

N

K

π

Multinomial 
parameters are part 
of the PDF.  
Sampled from  
Dirichlet distribution

D
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zn

N

K

π

Hyperparameters to 
define how to sample 
parameters

D
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zn

N

K

π Mixture Model

● Model data as being 
sampled from a PDF

● Plug our prior knowledge
● Infer the parameters 

conditioned in the 
observed data

p(θ|X) = p(X|θ) p(θ) / p(x)

● Infer the latent variables

D
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Bayesian Inference

zn

N

K

π ● No hard cuts

● Soft assignments

● No signal/control 
regions

● K classes & 
D observables

● Unfolding of data 
internal structure

● Controlled injection 
of prior knowledge

D
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1D Gaussian Mixture

Graphical Model

zn ~Bernoulliπ ~ Dirichlet(α)

μ2μ1

σ1 σ2

hn ~ N(μ,σ)

N

parameters

hyperparameters

Latent
variable

X : { hn }

θ :  μ1,2 , σ1,2 , π , { zn } 

P(xn|θ) = π N(hn;μ1,σ1) + (1-π) N(hn;μ2,

σ2)

P(X|θ) = prod( P(xn|θ) )

Likelihood



Gaussian Mixture
@lunch time!

zn ~Bernoulliπ ~ Dirichlet(α)

μ2μ1

σ1 σ2

hn ~ N(μ,σ)

N

1D Gaussian Mixture
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Final remarks @ Lecture 1
● Bayes equation very insightful !

● Model data as being sampled from a PDF

● Graphical Models to create PDFs

● Bayesian: learn PDF from data as it comes out

● Many tools and art-et-metier to learn ! 



Final remarks @ Lecture 1

- Propose model
- Infer parameters' posterior from observed data

Simple game

iArxiv.org model 
(LDA Model)
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OBRIGADO!!


