Bayesian Machine Learning for Scientific Research

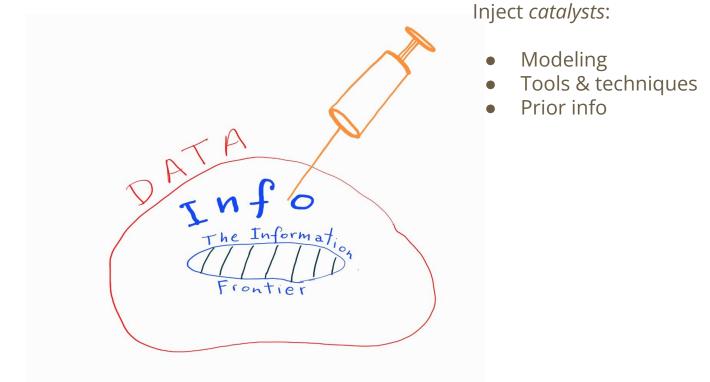
Maximizing information from data

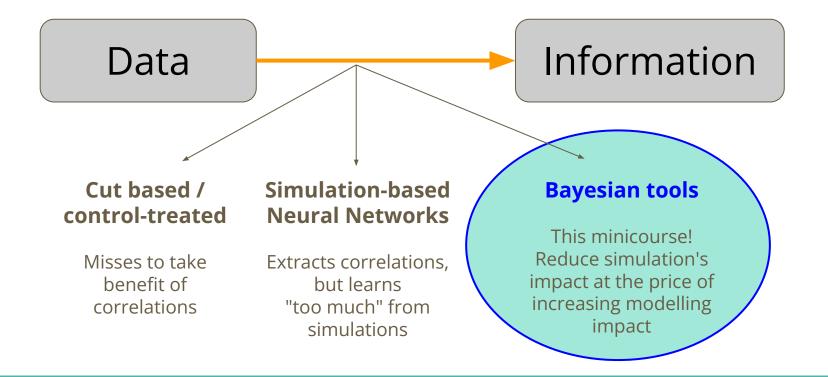
Ezequiel Alvarez sequi@unsam.edu.ar ICTP-SAIFR October 2024

Bayesian: assume data being sampled from a PDF, infer its parameters and learn the internal structure of the data

> To learn the PDF of the data and then being able to assess, predict , generate, etc.

> > More scientific





Bayes Theorem:

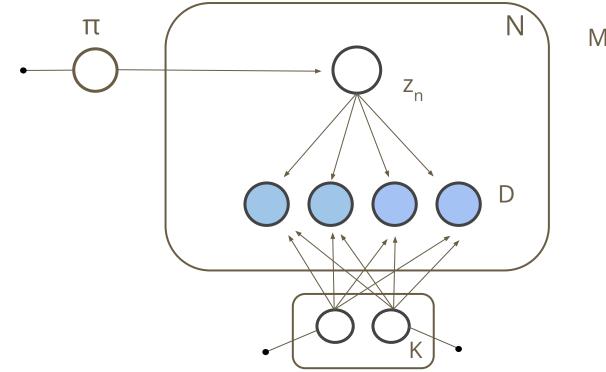
 $p(\theta \mid X) = \underline{p(X \mid \theta) * p(\theta)}$ p(x)

Our utility: X = data, θ=parameters

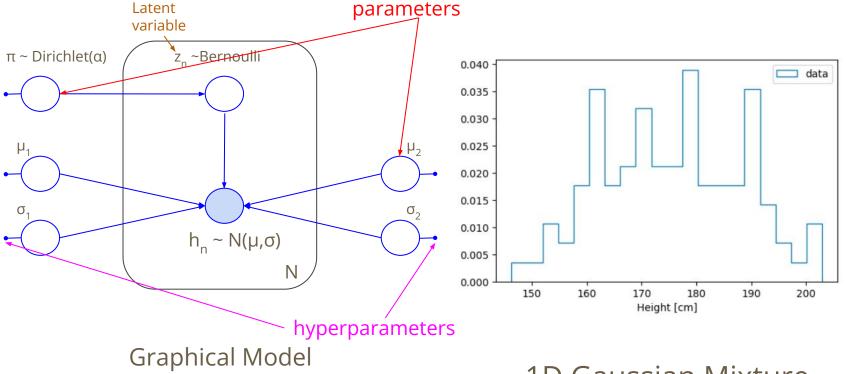
Model data as being sampled from a clever PDF with parameters θ

Infer θ once you see the data X

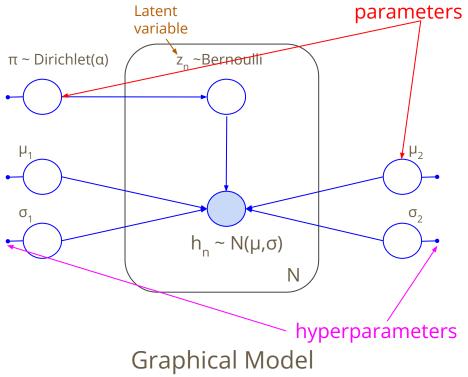
Connect θ to physical parameters of interest



Mixture Model



1D Gaussian Mixture



X: { h_n }
$$\theta: \mu_{1,2}, \sigma_{1,2}, \pi, \{z_n\}$$

$$P(x_{n} | \theta) = \pi N(h_{n}; \mu_{1}, \sigma_{1}) + (1-\pi) N(h_{n}; \mu_{2}, \sigma_{2})$$

Bayesian Machine Learning: *The Tool* Lecture 2

Art et métiers in proposing models

- Analytic Bayesian Inference: The box factory
- Linear Regression: River contamination
- Anomalies in collective motion: Clinical practices
- Mixture of Bernoulli: Unsupervised Learning handwritten

Connection to scientific research

Simple explicit Bayesian problem

The Box Factory

Box OK: *p* Box wrong: *1-p*

Box OK: p Box wrong: 1-p

$$X = k, n$$

$$\Theta = p$$

Box OK: *p* Box wrong: *1-p*

$$X = k, n$$

 $\Theta = p$

$$p(X| heta)=rac{n!}{k!\,(n-k)!}p^k\,(1-p)^{n-k}$$

Box OK: p Box wrong: 1-p

$$X = k, n$$

$$\Theta = p$$

$$p(X| heta) = rac{n!}{k! \, (n-k)!} p^k (1-p)^{n-k}$$
 $p(heta|X) = rac{p(X| heta) \, p_{prior}(heta)}{p(X)}$

Box OK: p Box wrong: 1-p

$$X = k, n$$

 $\Theta = p$

$$p(X| heta) = rac{n!}{k! (n-k)!} p^k (1-p)^{n-k}$$
 $p(heta|X) = rac{p(X| heta) p_{prior}(heta)}{\int p(X| heta) p_{prior}(heta) d heta}$

Box OK: p Box wrong: 1-p

Experiment: k boxes ok out of n

$$X = k, n$$

 $\Theta = p$

$$p(X|\theta) = \frac{n!}{k! (n-k)!} p^k (1-p)^{n-k}$$

$$p(\theta|X) = \frac{p(X|\theta) p_{prior}(\theta)}{\int p(X|\theta) p_{prior}(\theta) d\theta} = 1$$

(new factory!)

Box OK: p Box wrong: 1-p

$$X = k, n$$

 $\Theta = p$

$$p(X| heta) = rac{n!}{k! (n-k)!} p^k (1-p)^{n-k}$$
 $p(heta|X) = rac{p(X| heta) p_{prior}(heta)}{\int p(X| heta) p_{prior}(heta) d heta} = 1$
 $p(heta|X) = rac{p^k (1-p)^{n-k}}{\int_0^1 p^k (1-p)^{n-k} dp}$

Box OK: p Box wrong: 1-p

$$X = k, n$$

 $\Theta = p$

$$p(X|\theta) = \frac{n!}{k! (n-k)!} p^k (1-p)^{n-k}$$

$$p(\theta|X) = \frac{p(X|\theta) p_{prior}(\theta)}{\int p(X|\theta) p_{prior}(\theta) d\theta}$$

$$= 1$$

$$p(\theta|X) = \frac{1}{B(n,k)} p^k (1-p)^{n-k}$$

Box OK: *p* Box wrong: *1-p*

$$X = k, n$$

 $\Theta = p$

$$p(\theta|X) = \frac{p(X|\theta) p_{prior}(\theta)}{\int p(X|\theta) p_{prior}(\theta) d\theta}$$

Today's posterior is
tomorrow's prior!
$$p(\theta|X) = \frac{1}{B(n,k)} p^k (1-p)^{n-k}$$

Box OK: *p* Box wrong: *1-p*

$$p(\theta|X) = \frac{p(X|\theta) p_{prior}(\theta)}{\int p(X|\theta) p_{prior}(\theta) d\theta}$$

Today's posterior is
tomorrow's prior!
$$p(\theta|X) = \frac{1}{B(n,k)} p^k (1-p)^{n-k}$$

Box OK: *p* Box wrong: *1-p*

$$p(\theta|X) \propto \frac{p^{k'} (1-p)^{n'-k'} p^k (1-p)^{n-k}}{\int_0^1 p^{k'} (1-p)^{n'-k'} p^k (1-p)^{n-k} dp}$$

Today's posterior is
tomorrow's prior!
$$p(\theta|X) = \frac{1}{B(n,k)} p^k (1-p)^{n-k}$$

Box OK: *p* Box wrong: *1-p*

$$p(\theta|X) \propto \frac{p^{k'+k} (1-p)^{n'+n-k'-k}}{\int_0^1 p^{k'+k} (1-p)^{n'+n-k'-k} dp}$$

Today's posterior is
tomorrow's prior!
$$p(\theta|X) = \frac{1}{B(n,k)} p^k (1-p)^{n-k}$$

This only occurs in very few cases known as Conjugate Posterior

Box OK: p Box wrong: 1-p

$$p(\theta|X) \propto \frac{p^{k'+k} (1-p)^{n'+n-k'-k}}{\int_0^1 p^{k'+k} (1-p)^{n'+n-k'-k} dp}$$

Today's posterior is
tomorrow's prior!
$$p(\theta|X) = \frac{1}{B(n,k)} p^k (1-p)^{n-k}$$

Box OK: $p(heta|X) = rac{1}{B(n'+n,k'+k)} \, p^{k'+k} (1-p)^{n'+n-k'-k}$ 1-p Box wrong: Tomorrow: k' boxes ok out of n' Today's posterior is X = k', n' tomorrow's prior! $\Theta = \rho$ $p(heta|X) = rac{1}{B(n,k)}\,p^k\,(1-p)^{n-k}$

Box OK: *p* Box wrong: *1-p*

$$p(heta|X) = rac{1}{B(n'+n,k'+k)}\,p^{k'+k}(1-p)^{n'+n-k'-k}$$

- We have updated posterior with data
- Posterior conjugate \rightarrow analytic!

Box OK: *p* Box wrong: *1-p*

$$p(heta|X) = rac{1}{B(n'+n,k'+k)} \, p^{k'+k} (1-p)^{n'+n-k'-k}$$

- We have updated posterior with data
- Posterior conjugate \rightarrow analytic!
- Observe how data can erase priors!
 (n', k' >> n, k)

Box OK: p Box wrong: 1-p

Tomorrow: k' boxes ok out of n'

$$p(heta|X) = rac{1}{B(n'+n,k'+k)}\,p^{k'+k}(1-p)^{n'+n-k'-k}$$

- We have updated posterior with data

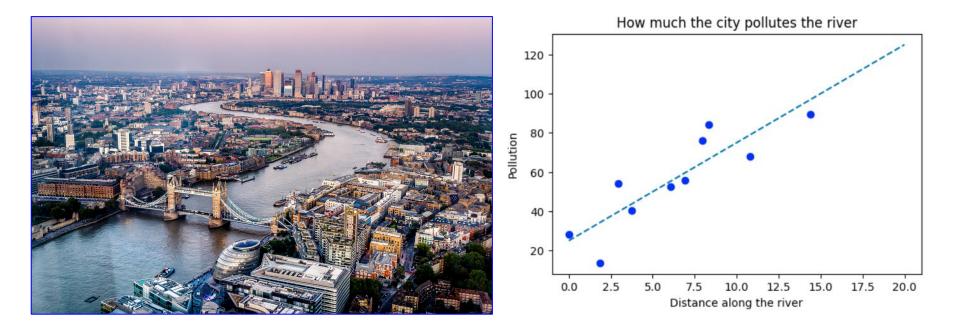
- Posterior conjugate \rightarrow analytic!
 - Observe how data can erase priors!

(n', k' >> n, k)

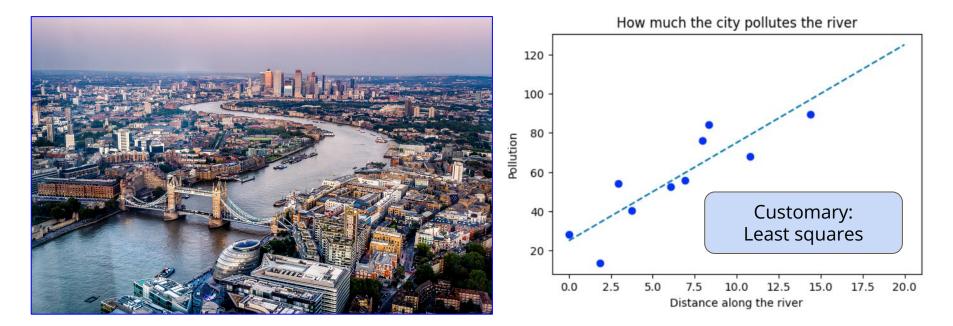
From now on and most of the times the update will be numerical (Stan, PYMC, etc)

A Hello World example!

How much pollution comes from the city?



How much pollution comes from the city?

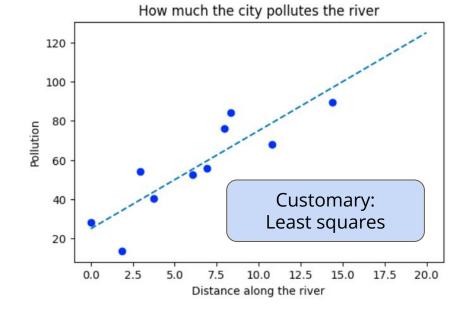


How much pollution comes from the city?

Bayesian

Model that *y* is sampled from a Normal around a (unknown) straight line:

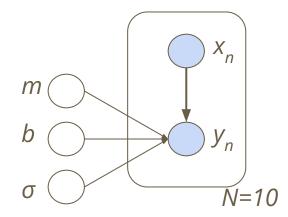
 $y \sim normal(m * x + b, \sigma)$

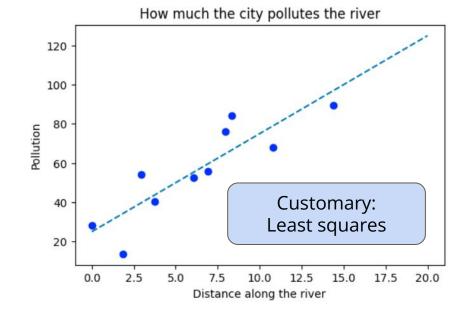


Bayesian

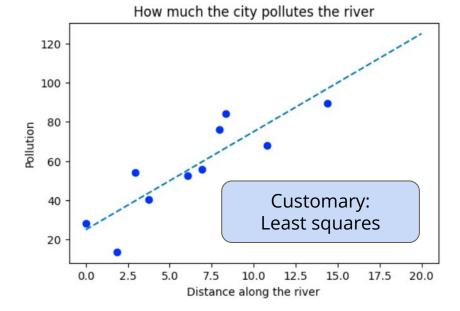
Model that *y* is sampled from a Normal around a (unknown) straight line:

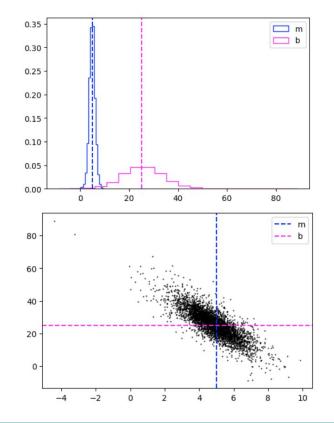
 $y \sim normal(m * x + b, \sigma)$

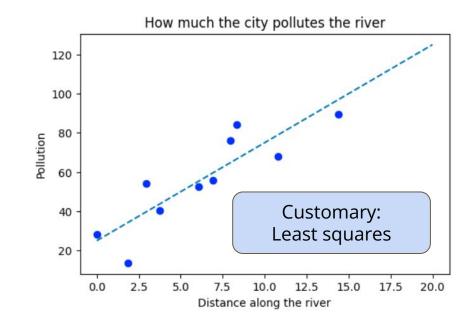




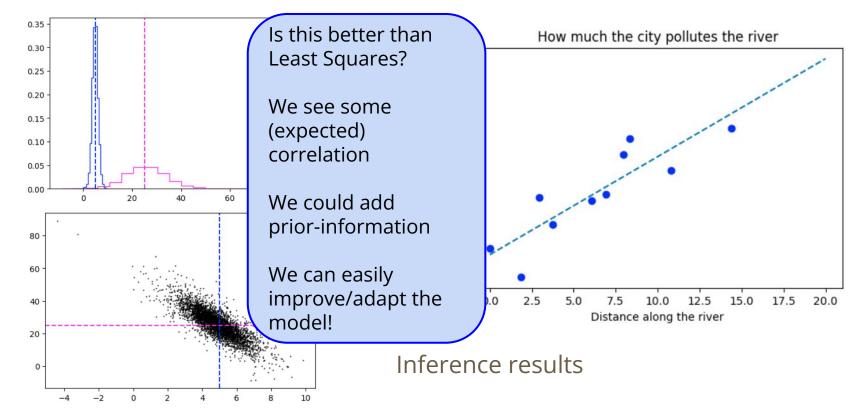
```
contamination model="""
data {
int <lower=0> N;
 vector[N] x;
 vector[N] y;
parameters {
  real m;
  real b;
  real<lower=0> sigma;
model {
 //b ~ normal(10,10);
  y ~ normal(m * x + b, sigma);
.....
```

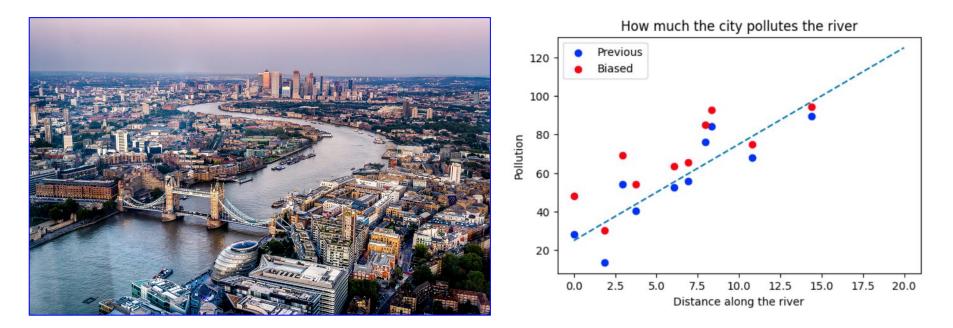






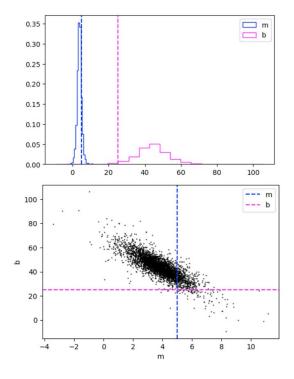
Inference results

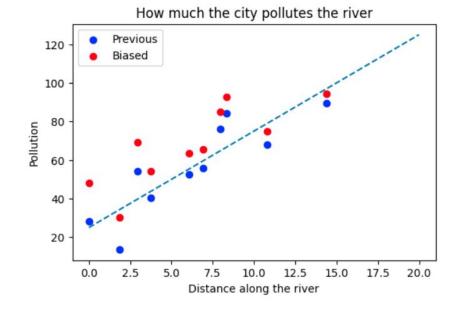




Expect more pollution from downtown

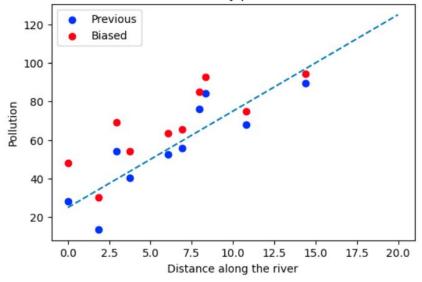
Wrong: Biased data with unbiased model

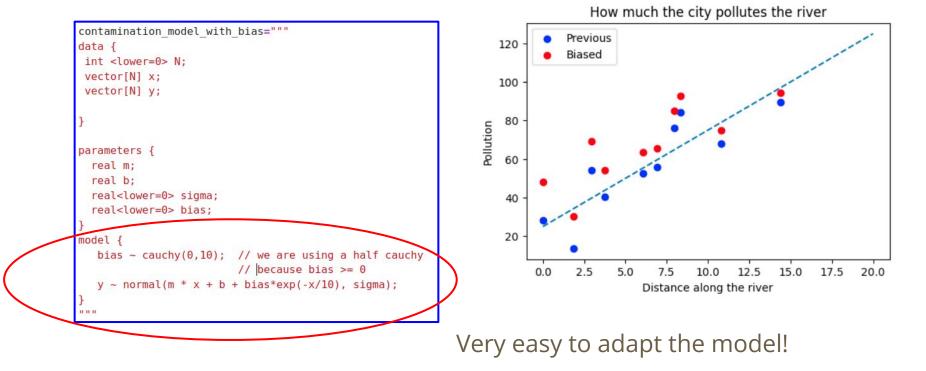


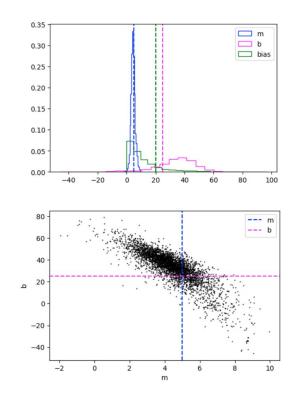


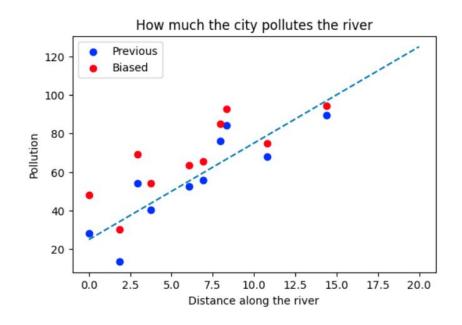
```
contamination model with bias="""
data {
int <lower=0> N;
vector[N] x;
vector[N] y;
parameters {
  real m:
  real b:
  real<lower=0> sigma;
  real<lower=0> bias;
model {
   bias ~ cauchy(0,10); // we are using a half cauchy
                         // because bias >= 0
   y \sim normal(m * x + b + bias*exp(-x/10), sigma);
```

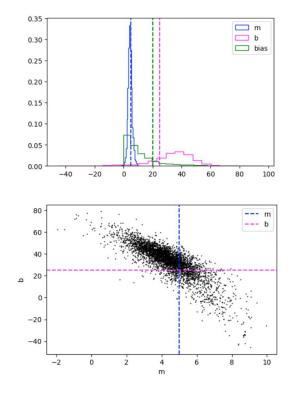
How much the city pollutes the river

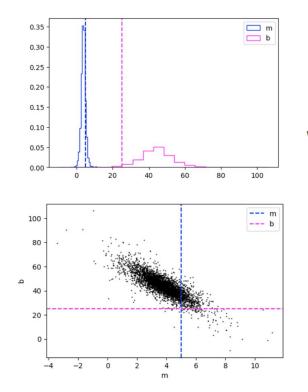












Wrong model!

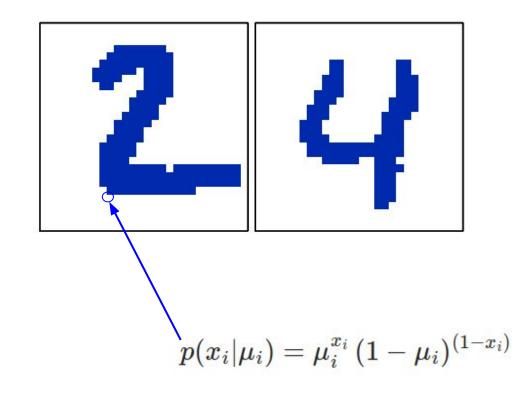
Finding anomalies in *collective motion*

/ **33**33333333333333333 **モフクフフ**フ ゼ**イク** り 7 **フ テ** ク 7 7

33333333333333333333 n 1 **7 7** 7 7 7 F \boldsymbol{q}

Model:

In each class (number), each pixel sampled from a to-be-inferred Bernoulli.



Model:

In each class (number), each pixel sampled from a to-be-inferred Bernoulli.

 $X_i = 0 \text{ or } 1$

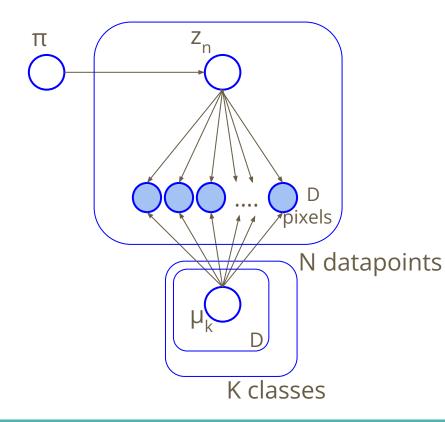


Model:

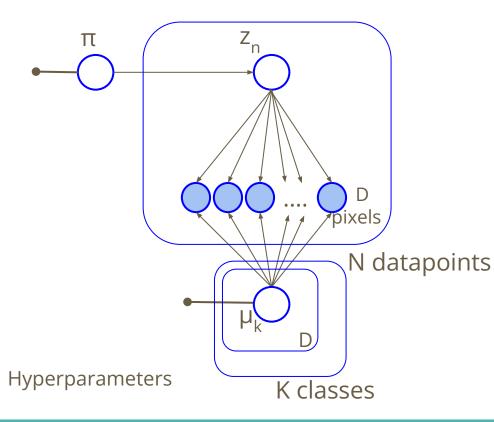
In each class (number), each pixel sampled from a to-be-inferred Bernoulli.

Model:

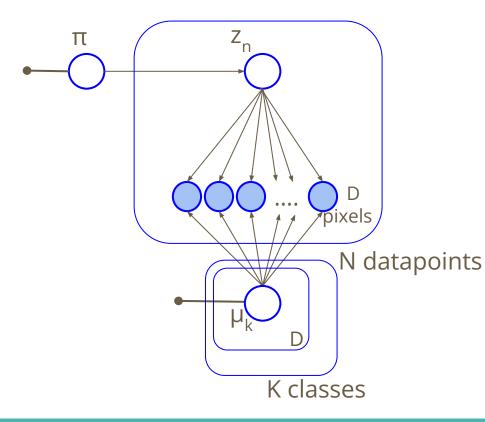
Conditionally independent



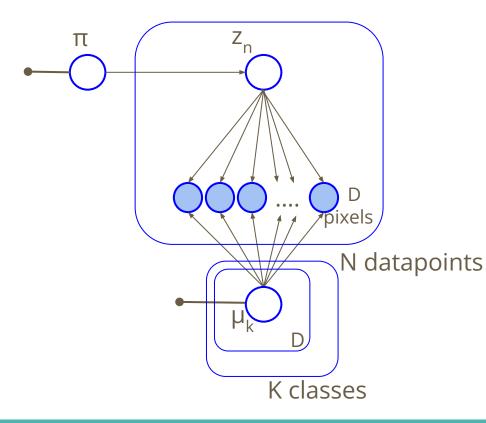
S б 8 8



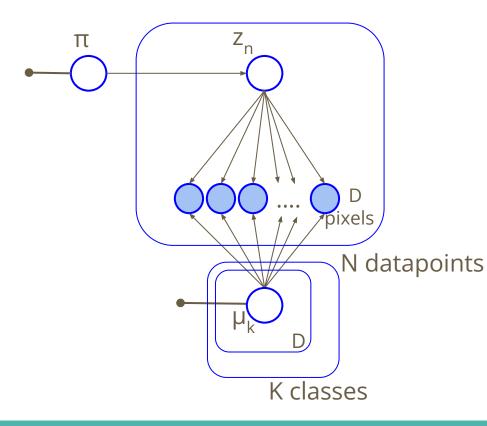
.3 .5 8 8



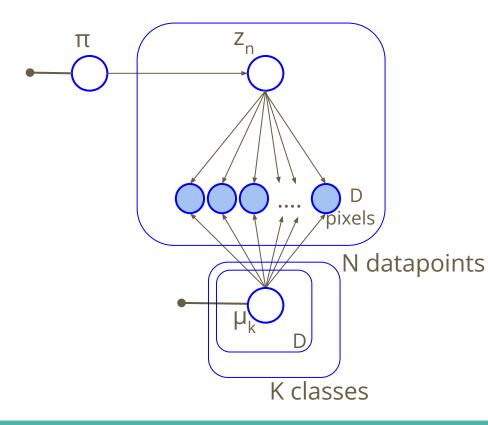
 Conditionally Independent (model is wrong, but works!)



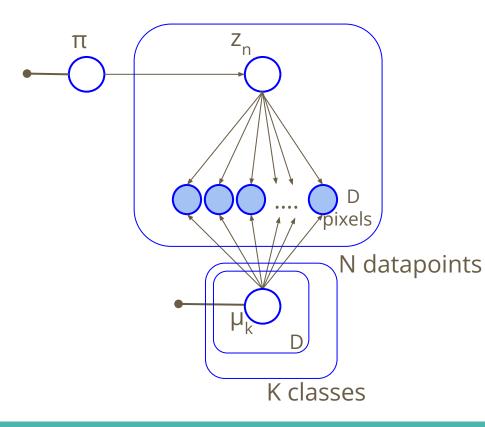
- Conditionally Independent (model is wrong, but works!)
- 2^{D} for $\sim D * K$ unknowns



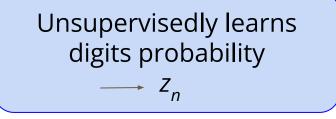
- Conditionally Independent (model is wrong, but works!)
- 2^{D} for $\sim D^{*}K$ unknowns
- Dirichlet for $\pi,$ Uniform for μ

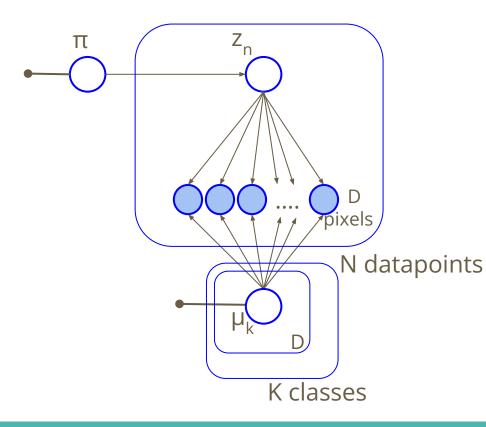


- Conditionally Independent (model is wrong, but works!)
- 2^{D} for $\sim D^{*}K$ unknowns
- Dirichlet for $\pi,$ Uniform for μ
- Learns with N digits



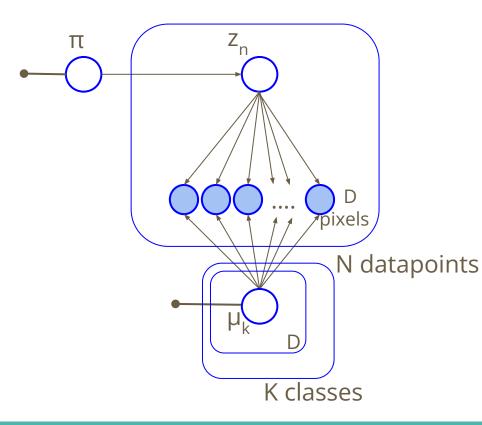
- Conditionally Independent (model is wrong, but works!)
- 2^{D} for $\sim D^{*}K$ unknowns
- Dirichlet for π , Uniform for μ
- Learns with N digits



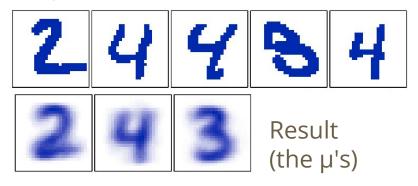


- Conditionally Independent (model is wrong, but works!)
- 2^{D} for $\sim D * K$ unknowns
- Dirichlet for π , Uniform for μ
- Learns with N digits

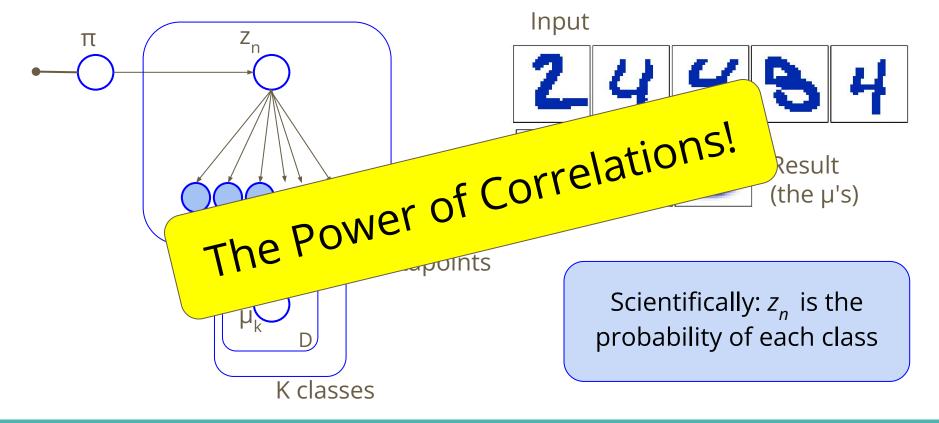
Scientifically: z_n is the probability of each class



Input

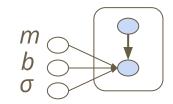


Scientifically: z_n is the probability of each class

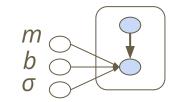


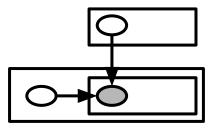
$$p(heta|X) = rac{1}{B(n'+n,k'+k)}\,p^{k'+k}(1-p)^{n'+n-k'-k}$$

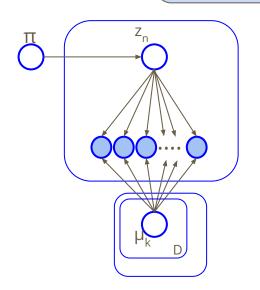
$$p(heta|X) = rac{1}{B(n'+n,k'+k)}\,p^{k'+k}(1-p)^{n'+n-k'-k}$$

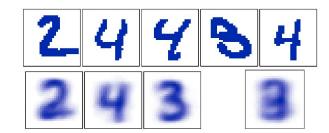


$$p(heta|X) = rac{1}{B(n'+n,k'+k)}\,p^{k'+k}(1-p)^{n'+n-k'-k}$$

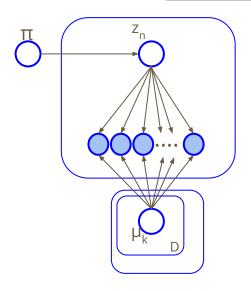








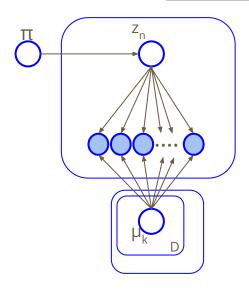
We met the tool!



Power of Correlation Power of Computing Power of Modeling Power of Bayes



We met the tool!



Power of Correlation Power of Computing Power of Modeling Power of Bayes

Bayesian Machine Learning!

