Bayesian Machine Learning for Scientific Research

Maximizing information from data

Ezequiel Alvarez sequi@unsam.edu.ar ICTP-SAIFR October 2024

Previous lectures

Lecture 1

Bayesian: assume data being sampled from a PDF, infer its parameters and learn the internal structure of the data

> To learn the PDF of the data and then being able to assess, predict , generate, etc.

> > More scientific

Bayes Theorem:

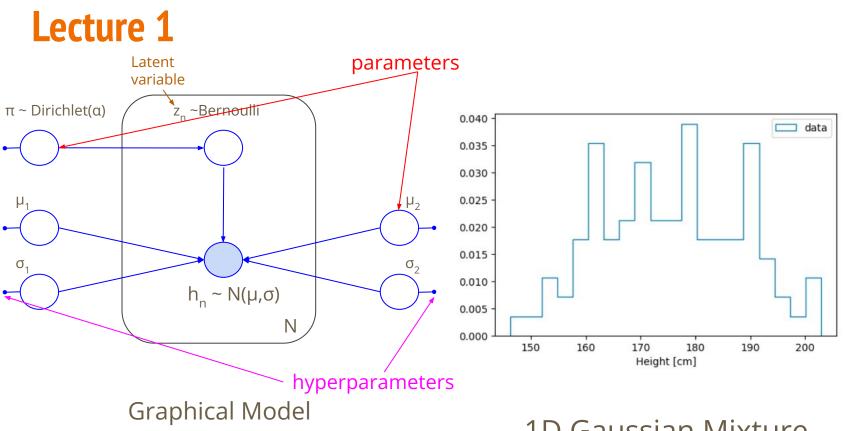
 $p(\theta \mid X) = \underline{p(X \mid \theta) * p(\theta)}$ p(x)

Our utility: X = data, θ=parameters

Model data as being sampled from a clever PDF with parameters θ

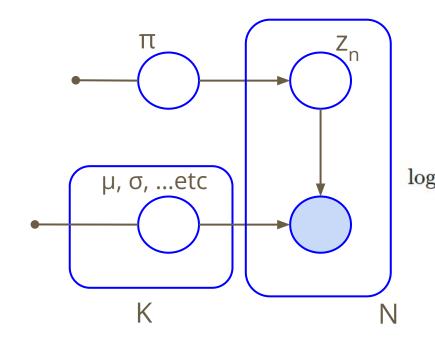
Infer θ once you see the data X

Connect θ to physical parameters of interest



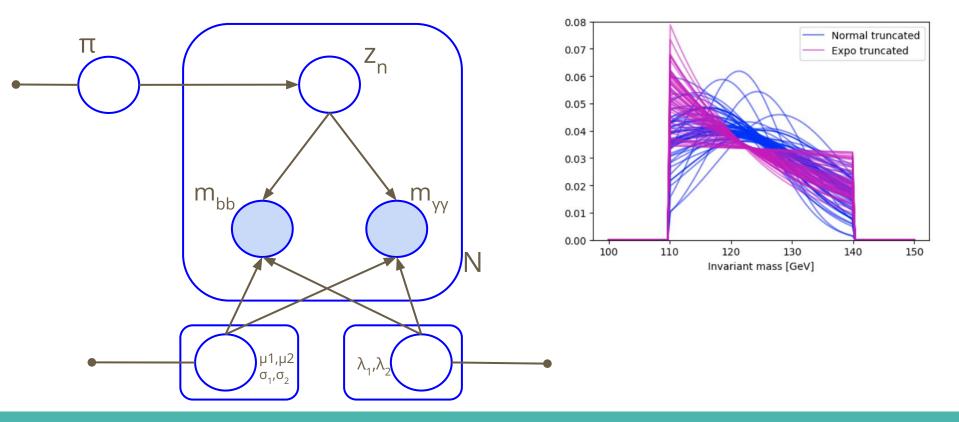
1D Gaussian Mixture

Lecture 3: Mixture Models

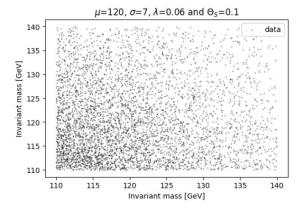


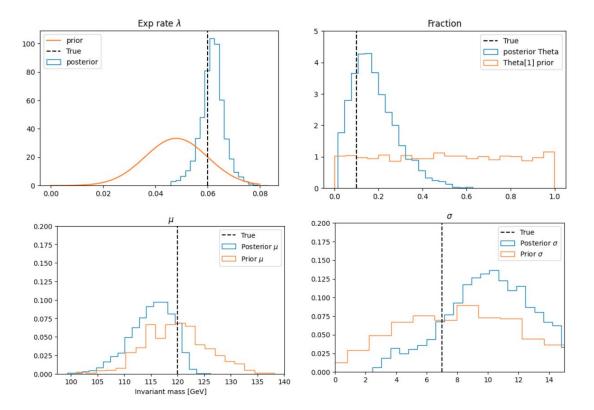
$$p(x_n|\Theta) = \sum_{k=1}^K \pi_k \, p(x_n| heta_k)$$
 $ext{g} p(X|\Theta) = \sum_{n=1}^N \log(\sum_{k=1}^K \pi_k \, p(x| heta_k) \,)$

Lecture 3: 2D Mixture Model, hh \rightarrow **bbyy**

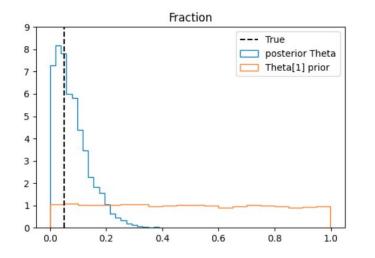


Lecture 3: The impossible....@10%





Assessment in Bayesian ML

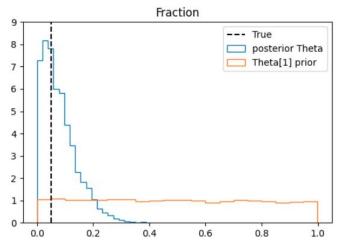


Once you have a result from real data, how can you assess if...

• The sampling is unbiased

• The model is (fairly) correct

Assessment in Bayesian ML



Once you have a result from real data, you want to test that...

• The sampling is unbiased

Sampling diagnostics

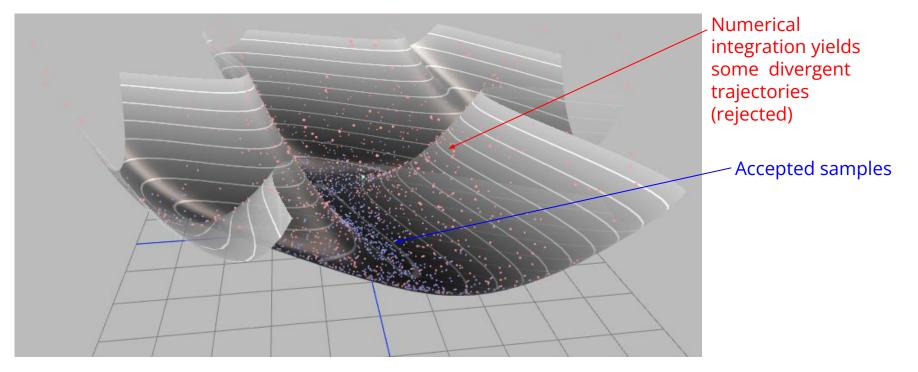
• The model works correctly

Fake data to test it

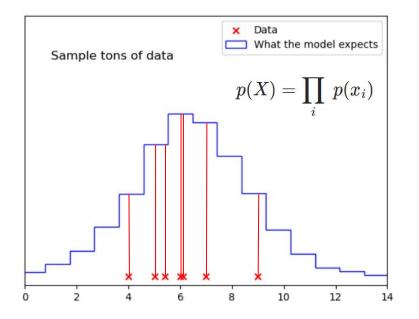
• The model is (fairly) correct for the data

Posterior Predictive Check

MCMC Sampling with Hamiltonian MC



What is good and what is bad ?



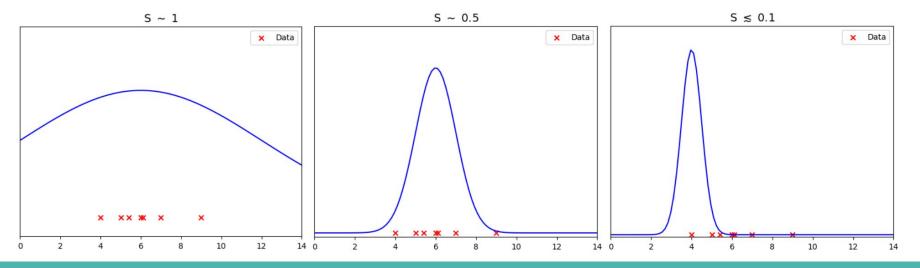
 $p = 10^{-6} \dots and now?$

- What does it mean ?
- What do we compare it to?
- Generate replicas of data X^{Rep}
- Compute their probability
- Compute

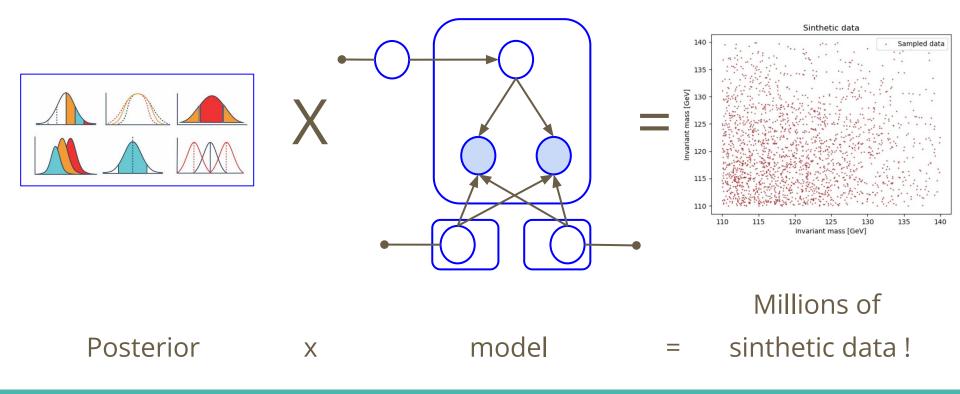
 $p(p(X^{rep}) < p(X))$

What is good and what is bad?

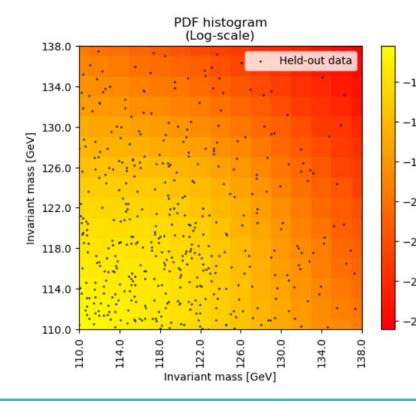
- S ~ 1: bad model
- S ~ 0.5: good model
- $S \lesssim 0.1$: bad model



Posterior Predictive Check: $pp \rightarrow bb\gamma\gamma$



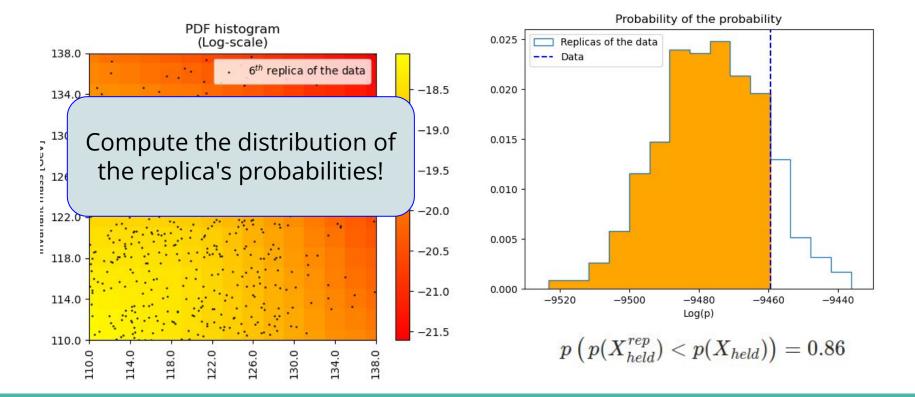
PDF of your model given the data !

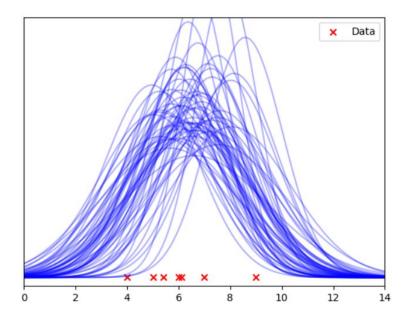


$$p(x_{n}|X) = \int p(x_{n}|z_{i}) p(z_{i}|X) dz_{i}$$

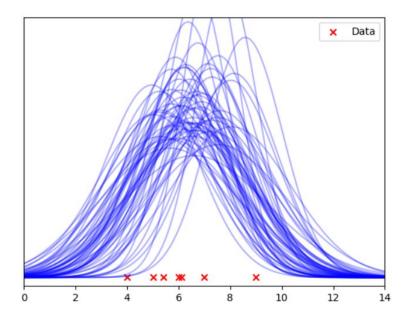
$$p(x_{n}|z_{i}) p(z_{i}|X) dz_{i}$$

PDF of your model given the data !



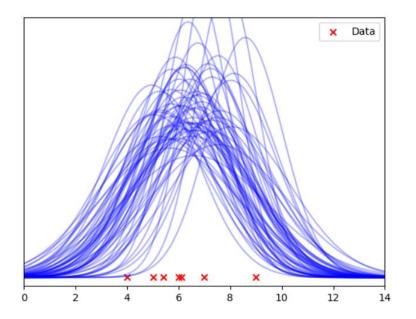


Predetermined shape: → then fewer parameters!



Predetermined shape: → then fewer parameters!

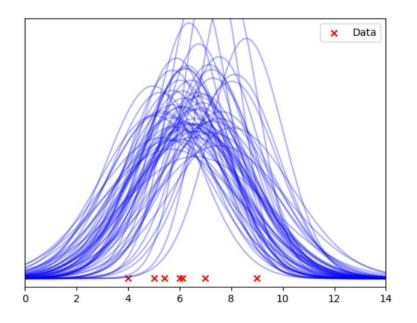
N(μ, σ), β(a,b), γ(a,b), exp(λ), etc



Predetermined shape: → then fewer parameters!

N(μ, σ), β (a,b), γ (a,b), exp(λ), etc

Real life is more sophisticated!



Predetermined shape: → then fewer parameters!

N(μ, σ), β (a,b), γ (a,b), exp(λ), etc

Real life is more sophisticated!

- Smoothness
- Unimodal
- Decreasing/increasing
- etc

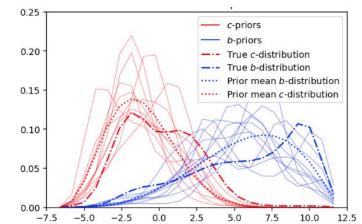
Can we sample arbitrary curves whose only constraints are e.g.

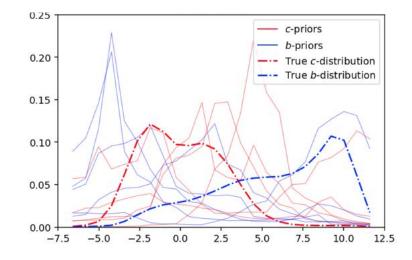
Smoothness, unimodality, decreasing, etc....?

Can we sample arbitrary curves whose only constraints are e.g.

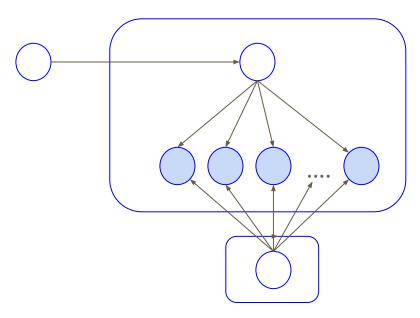
Smoothness, unimodality, decreasing, etc....?

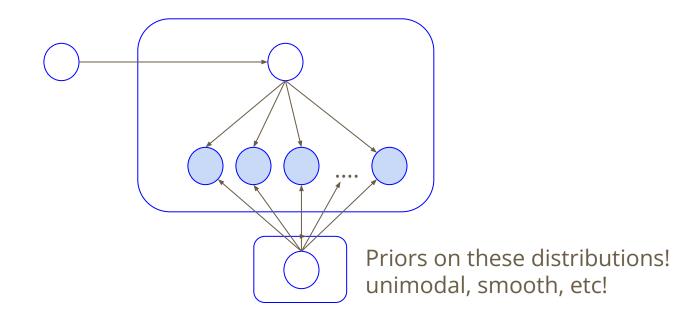
Smooth 0.10around 0.05some prior 0.00

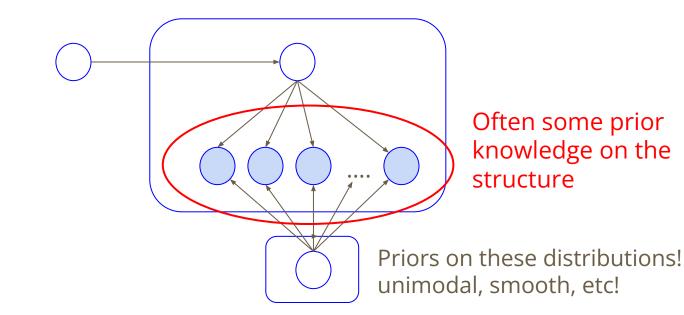


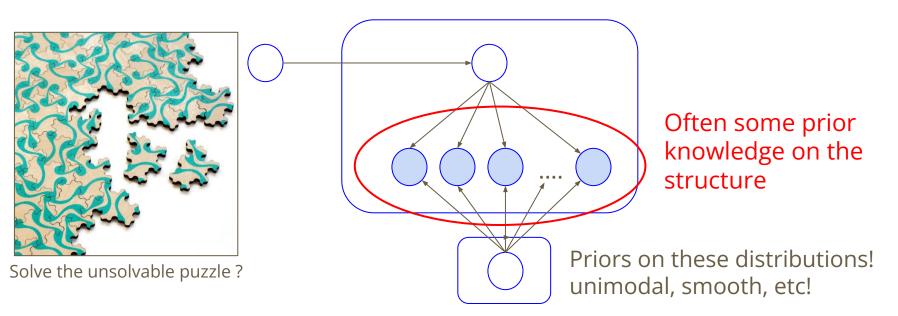


Smooth and unimodal









Mixture model for Arbitrary, Smooth Unimodal distributions

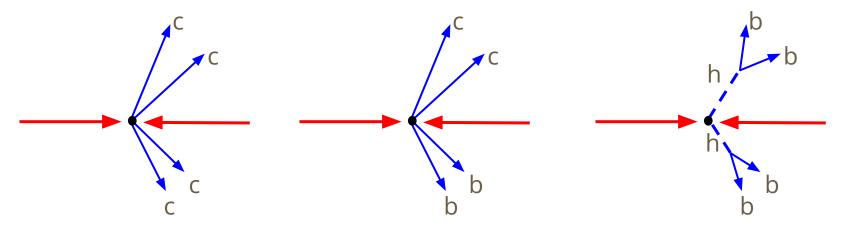
Prior knowledge: events are either cccc, ccbb or bbbb

Prior knowledge: events are either cccc, ccbb or bbbb

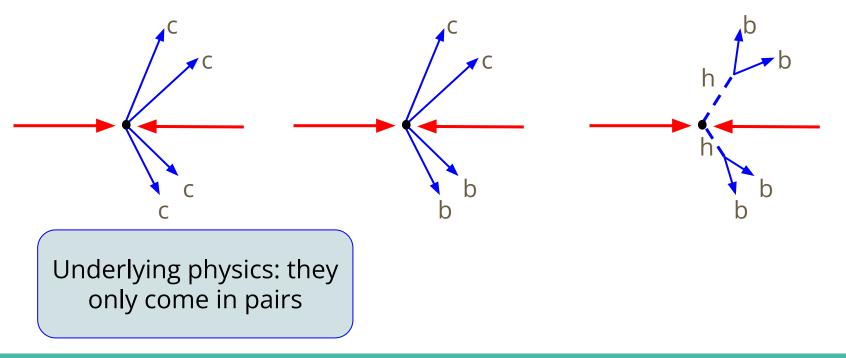
backgrounds

signal

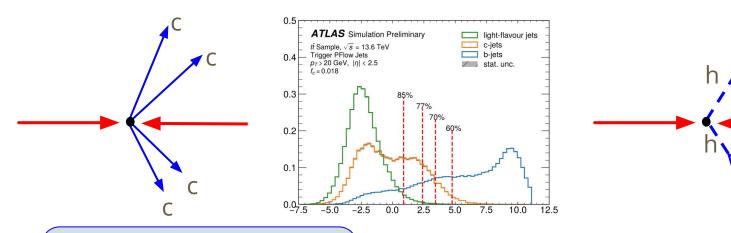
Prior knowledge: events are either cccc, ccbb or bbbb



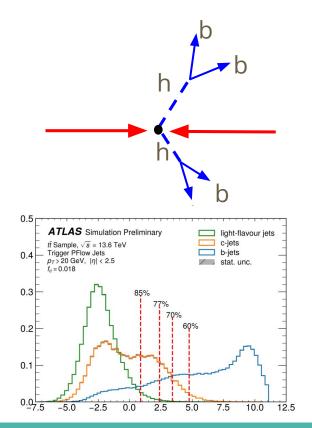
Prior knowledge: events are either cccc, ccbb or bbbb



Prior knowledge: events are either cccc, ccbb or bbbb



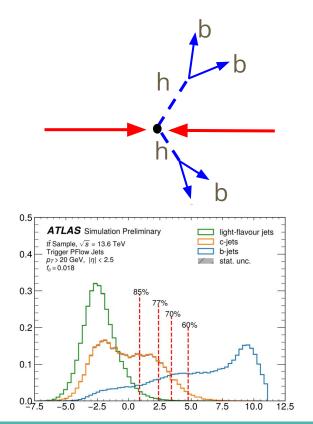
Underlying physics: they only come in pairs



The data: N tuples of 4 numbers

X = [[3,7,2,12], [15,6,18,20].....[18,17,20,15]]

Case: pp→hh→bbbb (LHC physics)



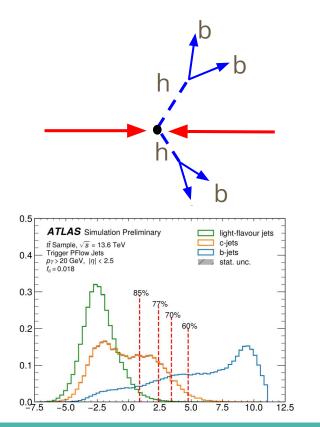
The data: N tuples of 4 numbers

 $\mathsf{X} = [\ [3,7,2,12],\ [15,6,18,20].....[18,17,20,15]]$

The problem is to Infer

- The shape of each individual component (c & b)
- The mixture fractions of each class cccc, ccbb and bbbb

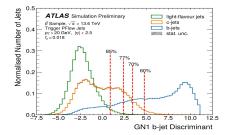
Case: pp→hh→bbbb (LHC physics)



Explore 2 solutions:

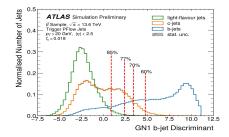
1) Gaussian processes

2) Unimodal distributions



$$f(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^k * det(\boldsymbol{\Sigma})}} * e^{-\frac{1}{2}*((\mathbf{x}-\boldsymbol{\mu})^T \cdot inv(\boldsymbol{\Sigma}) \cdot (\mathbf{x}-\boldsymbol{\mu}))}$$

We bin the score and **x** contains the distribution values in each bin



We bin the score and **x** contains the distribution values

in each bin

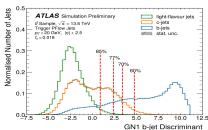
$$f(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^k * det(\boldsymbol{\Sigma})}} * e^{-\frac{1}{2}*((\mathbf{x}-\boldsymbol{\mu})^T \cdot inv(\boldsymbol{\Sigma}) \cdot (\mathbf{x}-\boldsymbol{\mu}))}$$
Each bin is sampled
around some
expected $\boldsymbol{\mu}$ Define uncertainty and how
related are neighbouring bins:
Continuity!

$$\boldsymbol{\Sigma}^{-1} = \begin{pmatrix} 2 & 1 & 0.5 & 0 & \dots \\ 1 & 2 & 1 & 0.5 & 0 & \dots \\ 0.5 & 1 & 2 & 1 & 0.5 & 0 & \dots \\ 0 & 0.5 & 1 & 2 & 1 & 0.5 & 0 & \dots \end{pmatrix}$$

••••

....

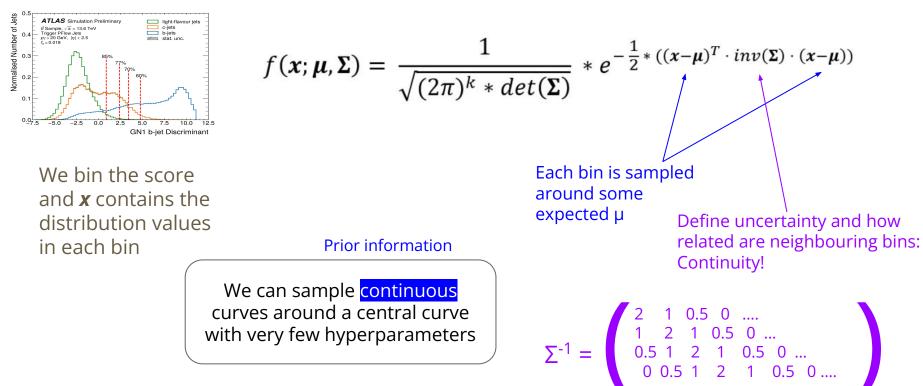
....



We bin the score

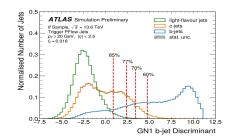
in each bin

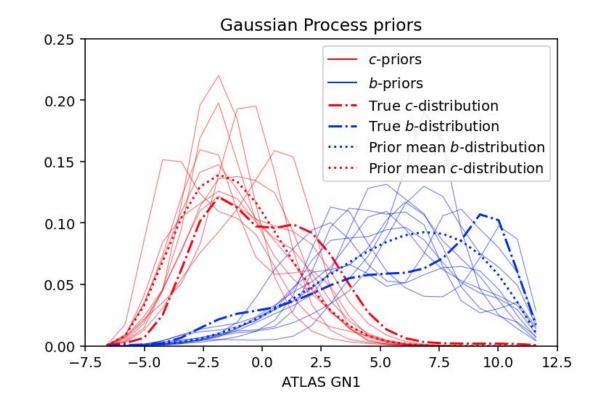
$$f(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^k * det(\boldsymbol{\Sigma})}} * e^{-\frac{1}{2}*((\boldsymbol{x}-\boldsymbol{\mu})^T \cdot inv(\boldsymbol{\Sigma}) \cdot (\boldsymbol{x}-\boldsymbol{\mu}))}$$
We bin the score
and \boldsymbol{x} contains the
distribution values
in each bin
We can sample continuous
curves around a central curve
with very few hyperparameters
$$\Sigma^{-1} = \begin{pmatrix} 2 & 1 & 0.5 & 0 & ... \\ 1 & 2 & 1 & 0.5 & 0 & ... \\ 0.5 & 1 & 2 & 1 & 0.5 & 0 & ... \\ 0 & 0.5 & 1 & 2 & 1 & 0.5 & 0 & ... \\ 0 & 0.5 & 1 & 2 & 1 & 0.5 & 0 & ... \\ 0 & 0.5 & 1 & 2 & 1 & 0.5 & 0 & ... \\ 0 & 0.5 & 1 & 2 & 1 & 0.5 & 0 & ... \\ 0 & 0.5 & 1 & 2 & 1 & 0.5 & 0 & ... \\ 0 & 0.5 & 1 & 2 & 1 & 0.5 & 0 & ... \\ 0 & 0.5 & 1 & 2 & 1 & 0.5 & 0 & ... \\ 0 & 0.5 & 1 & 2 & 1 & 0.5 & 0 & ... \\ 0 & 0 & 0 & 0 & 0 & 0 & ... \\ 0 & 0 & 0 & 0 & 0 & ... \\ 0 & 0 & 0 & 0 & 0 & ... \\ 0 & 0 & 0 & 0 & 0 & ... \\ 0 & 0 & 0 & 0 & ... \\ 0 & 0 & 0 & 0 & ... \\ 0 & 0 & 0 & 0 & ... \\ 0 & 0 & 0 & 0 & ... \\ 0 & 0 & 0 & 0 & ... \\ 0 & 0 & 0 & 0 & ... \\ 0 & 0 & 0 & 0 & ... \\ 0 & 0 & 0 & 0 & ... \\ 0 & 0$$



....

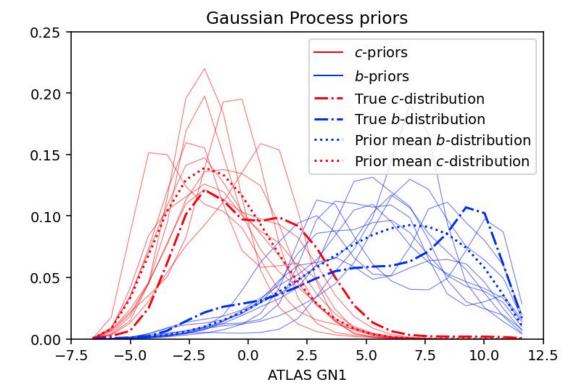
.....

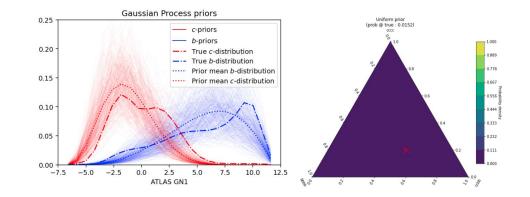




The game:

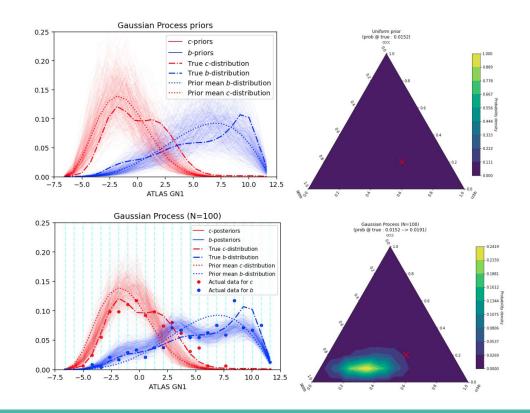
- Starts with biased prior
- The data will shift the posterior to the most likely distribution, which should be the true
- Leverage:
 - Multidimensionality
 - Continuity
 - bbbb, ccbb, cccc





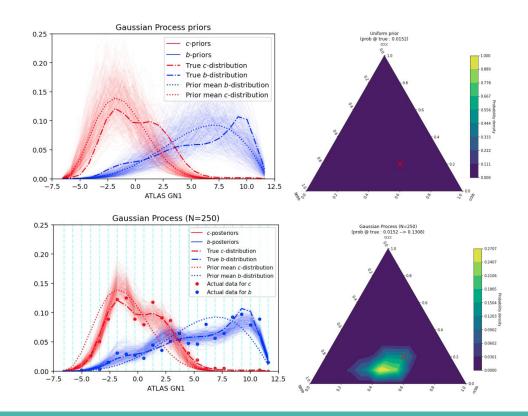
This is how we start

After seeing 100 events



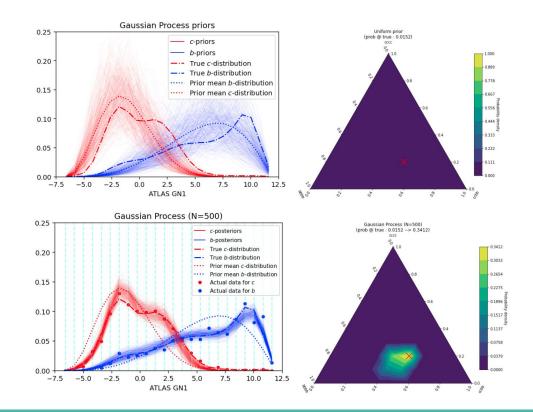
This is how we start

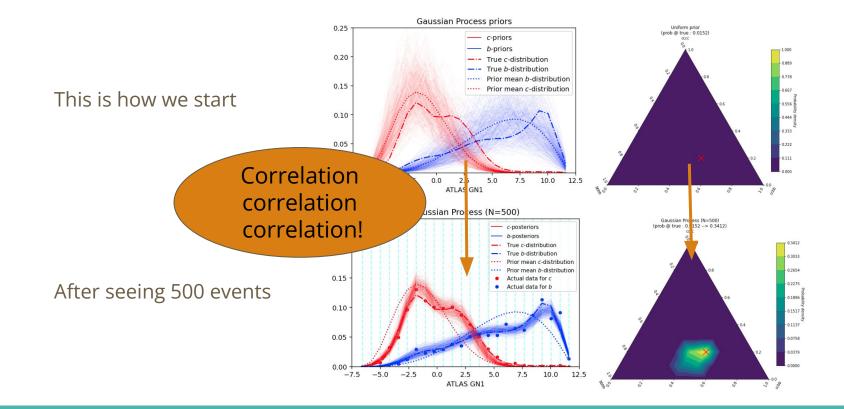
After seeing 250 events

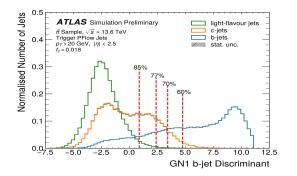


This is how we start

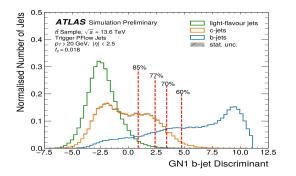
After seeing 500 events







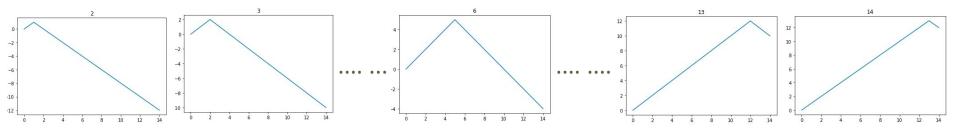
How to sample unimodal arbitrary continuous curves?



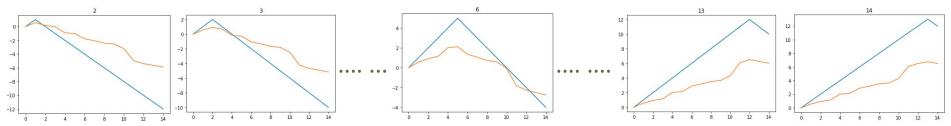
Prior information!

How to sample unimodal arbitrary continuous curves?

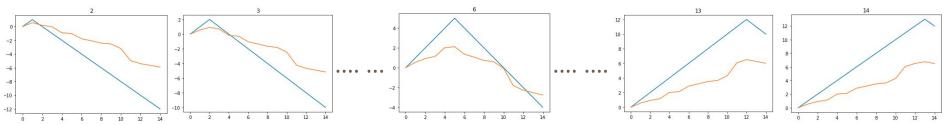
Construct strict linear unimodal, one for each bin



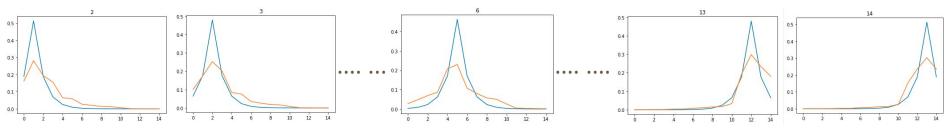
Allow for randomness with a half normal |N(0,0.5)| at each step



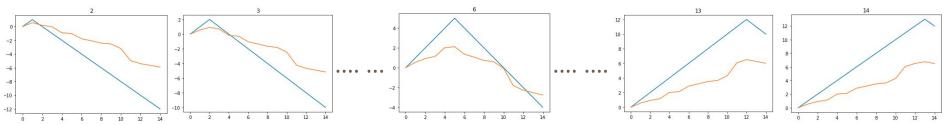
Allow for randomness with a half normal |N(0,0.5)| at each step



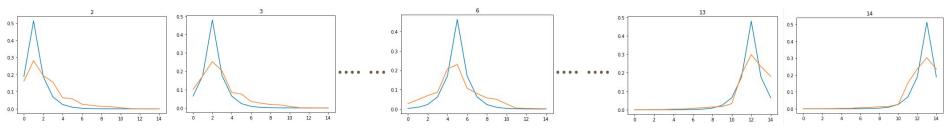
Apply *softmax()* to make them integrate to unity

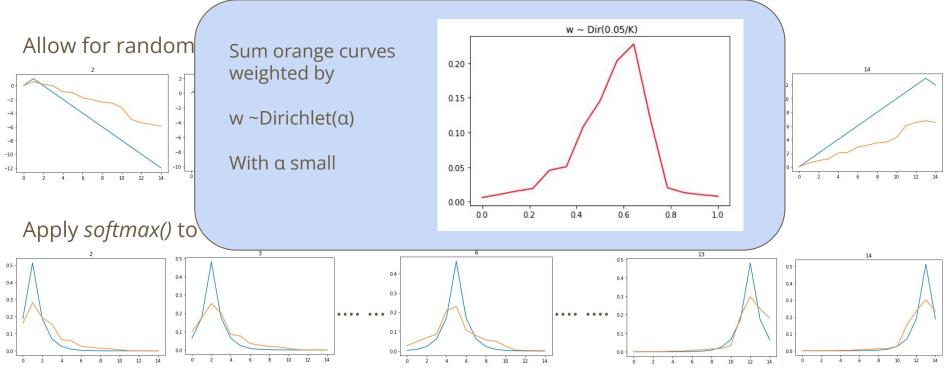


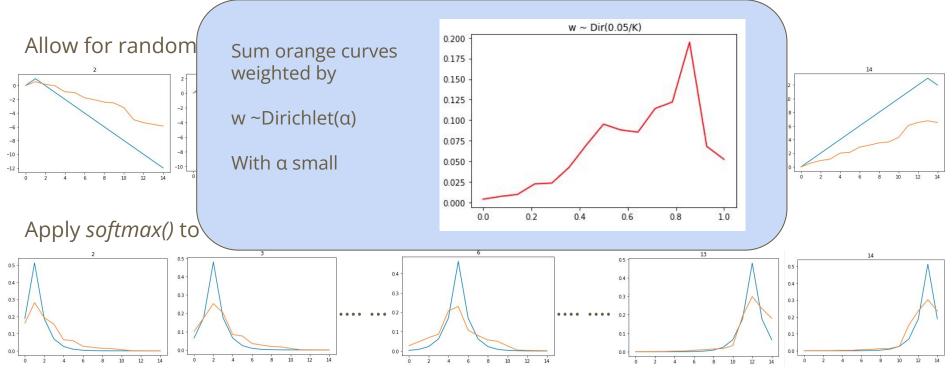
Allow for randomness with a half normal |N(0,0.5)| at each step

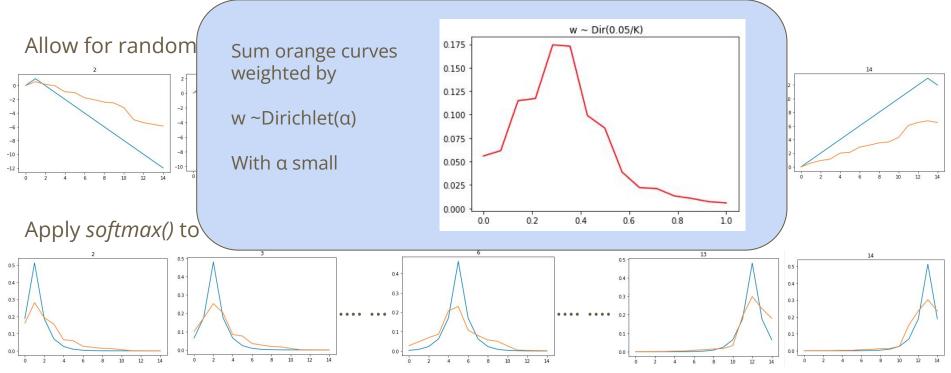


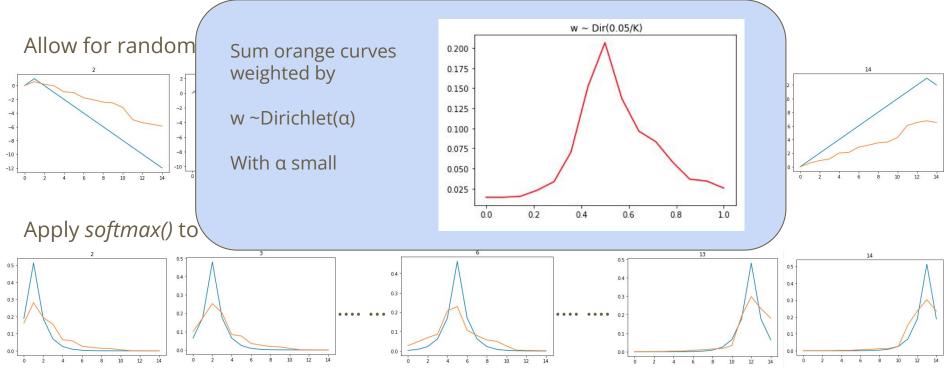
Apply *softmax()* to make them integrate to unity

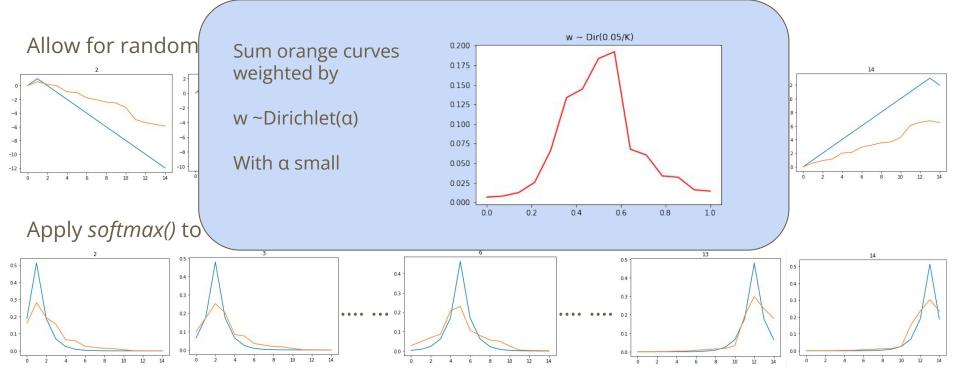


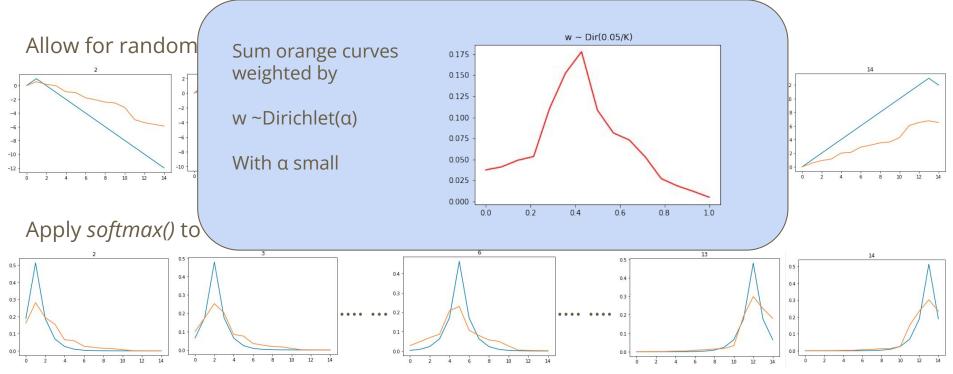


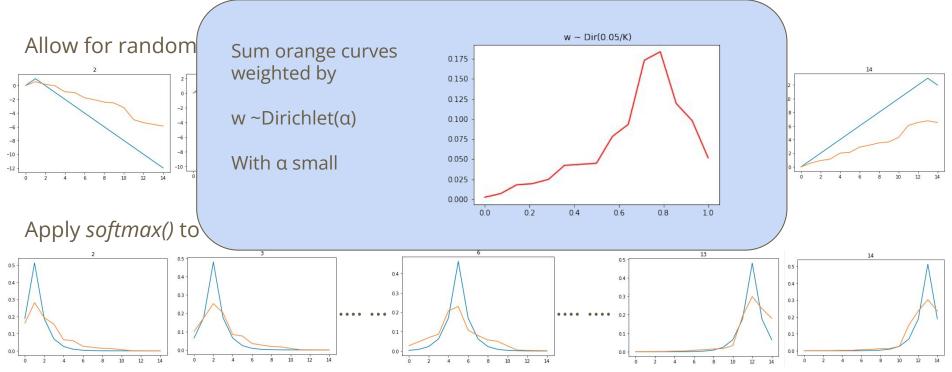


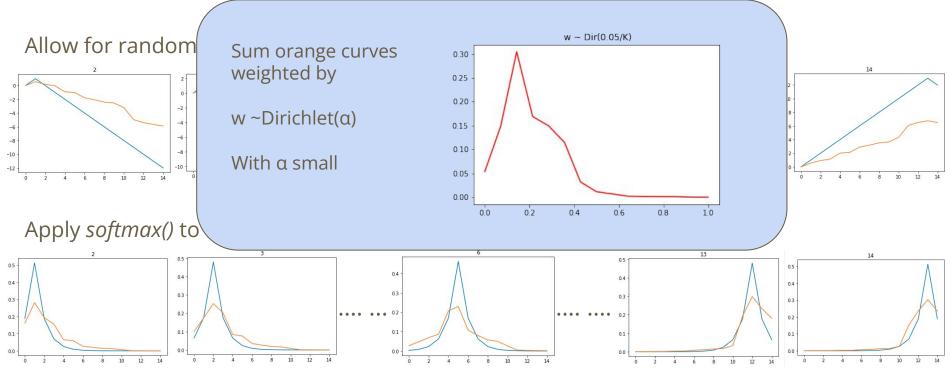


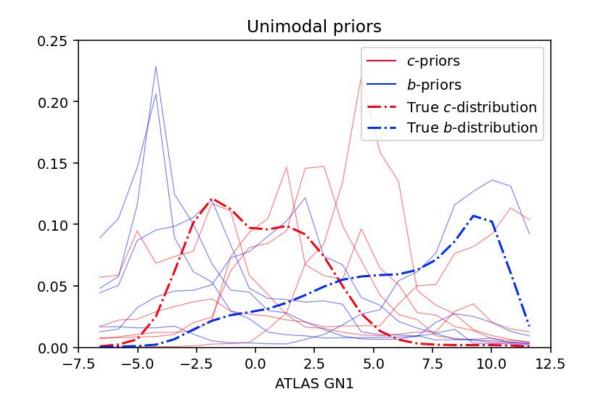


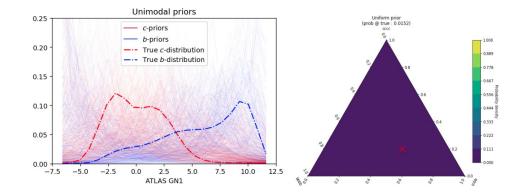


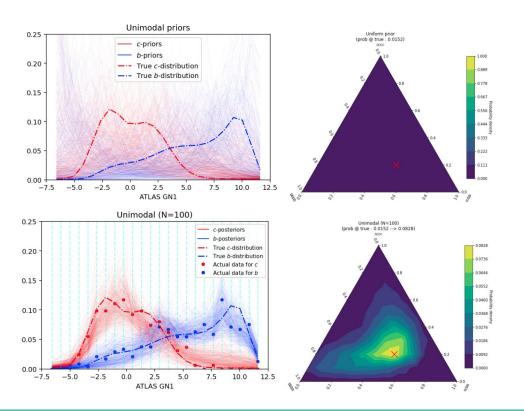


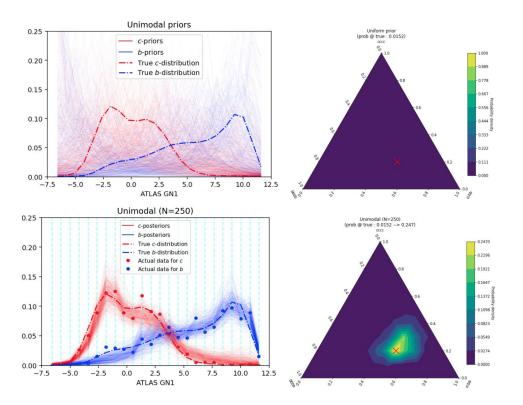






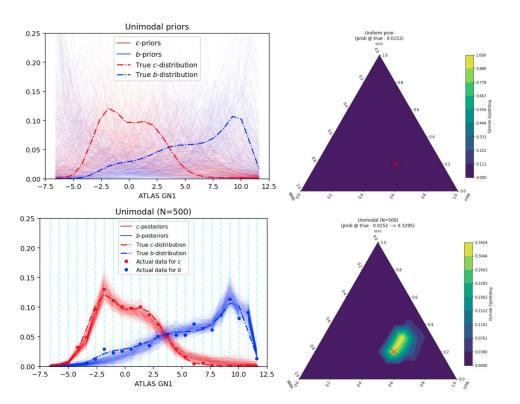


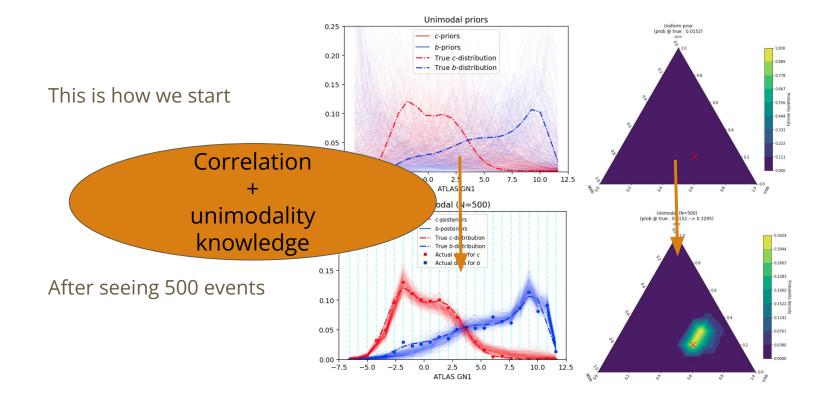




This is how we start

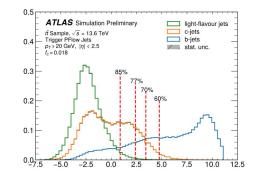
After seeing 500 events





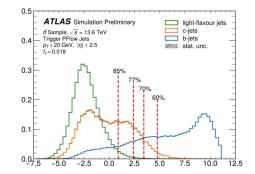
Summarizing

• Multidimensional Mixture of arbitrary continuous unimodal distributions



Summarizing

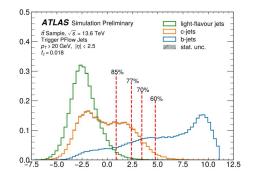
• Multidimensional Mixture of arbitrary continuous unimodal distributions



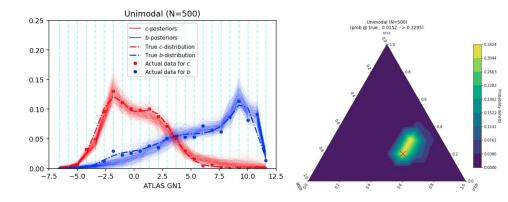
 Leverage on multidimensionality, continuity, unimodality and prior knowledge on allowed classes

Summarizing

• Multidimensional Mixture of arbitrary continuous unimodal distributions

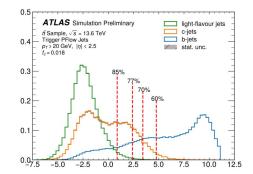


- Leverage on multidimensionality, continuity, unimodality and prior knowledge on allowed classes
- Infer everything through structured priors!

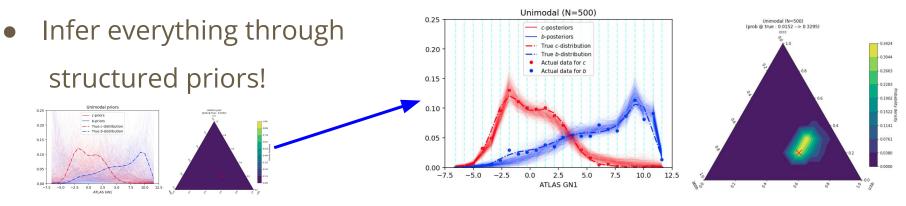


Summarizing

• Multidimensional Mixture of arbitrary continuous unimodal distributions



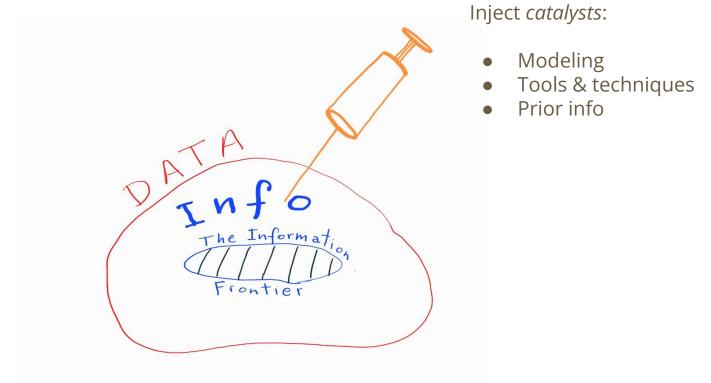
 Leverage on multidimensionality, continuity, unimodality and prior knowledge on allowed classes



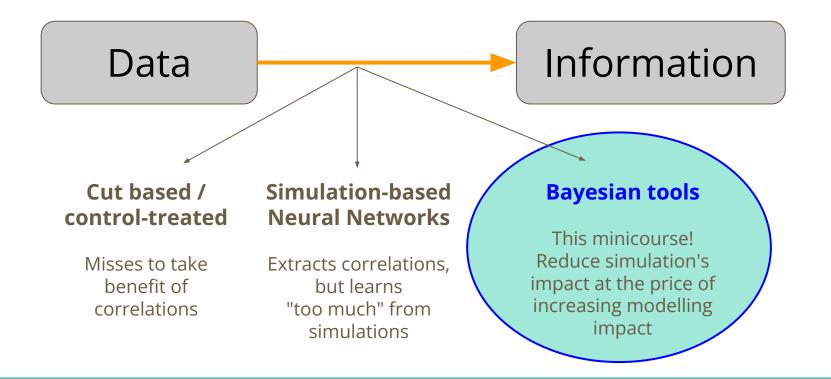
Learning Summary

Lecture 1 Intro to Bayesian ML

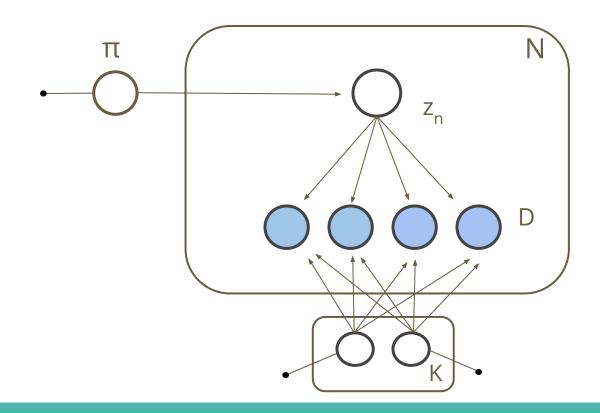
The Information Frontier



Typical problem in science



Bayesian Inference



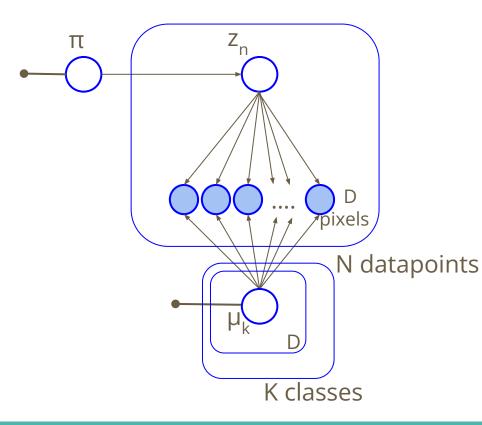
- No hard cuts
- Soft assignments
- No signal/control regions
- K classes &
 D observables
- Deployment of data internal structure
- Controlled injection of prior knowledge

Lecture 2 Meet the tool

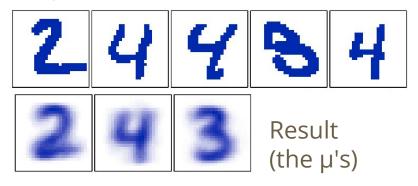
The box factory

Box OK: $p(heta|X) = rac{1}{B(n'+n,k'+k)} \, p^{k'+k} (1-p)^{n'+n-k'-k}$ 1-p Box wrong: Tomorrow: k' boxes ok out of n' Today's posterior is X = k', n' tomorrow's prior! $\Theta = \rho$ $p(heta|X) = rac{1}{B(n,k)}\,p^k\,(1-p)^{n-k}$

Mixture of Bernoulli



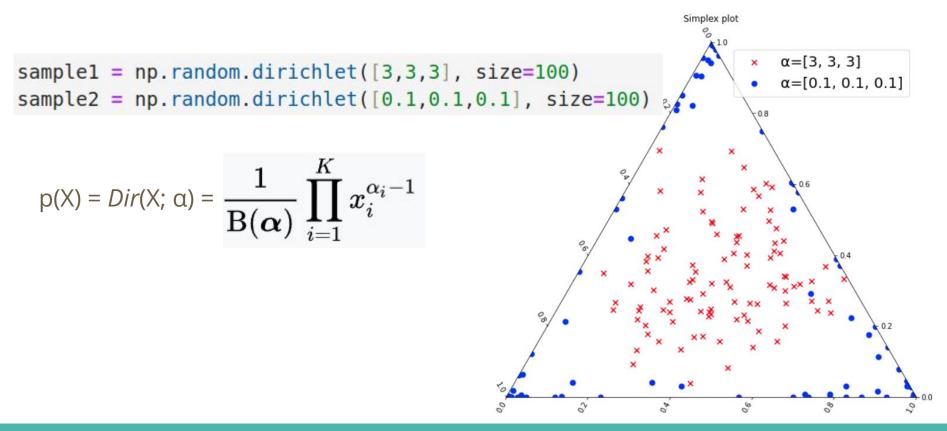
Input



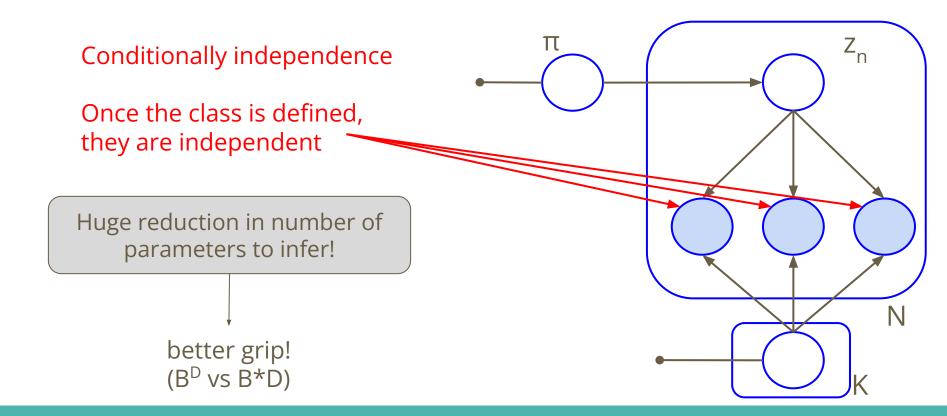
Scientifically: z_n is the probability of each class

Lecture 3 Mixture Models

Dirichlet Distribution

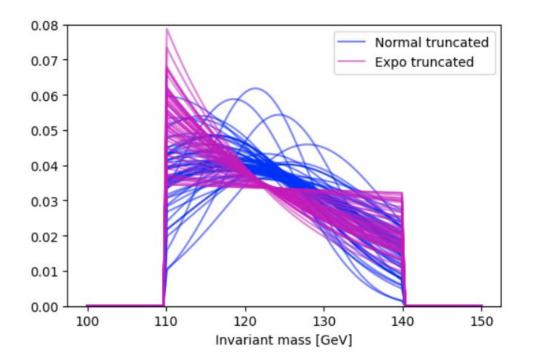


Mixture Models: where is the hack?



2D Mixture Model: $hh \rightarrow bb\gamma\gamma$

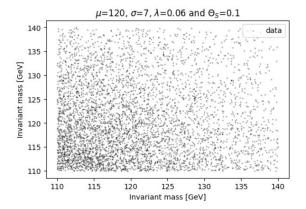
Truncated distributions!

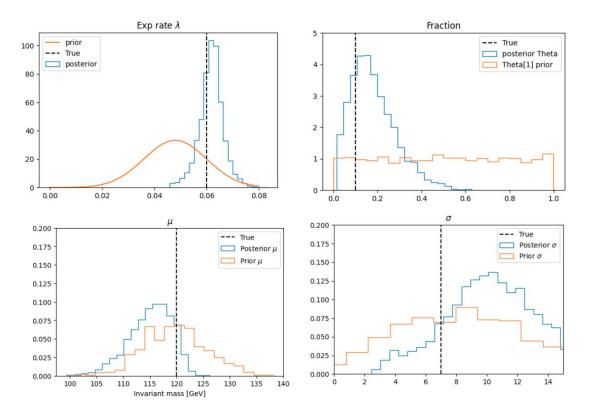


Hey.... but they are quite different!

Difficult to disentangle this mixture if parameters are unknown!

The impossible....@10%





Lecture 4 Diagnoses and assessment

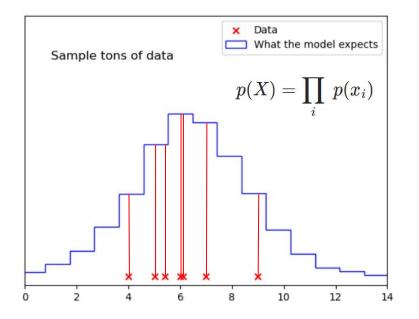
MCMC Sampling with Hamiltonian MC

unnormalized pdf $p(\mathbf{x}) = p(x_1, x_2)$ Energy $U(\mathbf{x}) = U(x_1, x_2)$

$$egin{array}{rcl} H(
ho, heta)&=&-\log p(
ho, heta)\ &=&-\log p(
ho| heta)-\log p(heta)\ &=&T(
ho| heta)+V(heta), \end{array}$$

Simulate trajectory of fictitious particle

What is good and what is bad ?



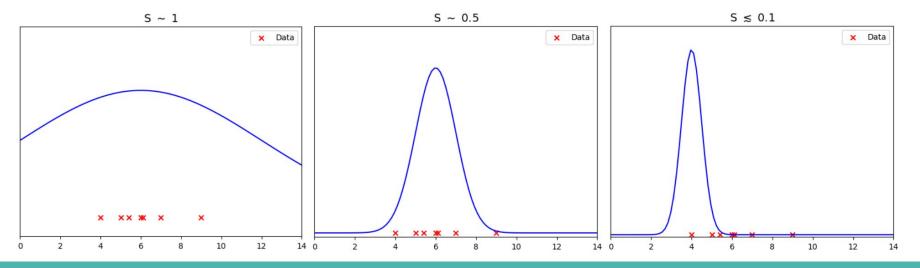
 $p = 10^{-6} \dots and now?$

- What does it mean ?
- What do we compare it to?
- Generate replicas of data X^{Rep}
- Compute their probability
- Compute

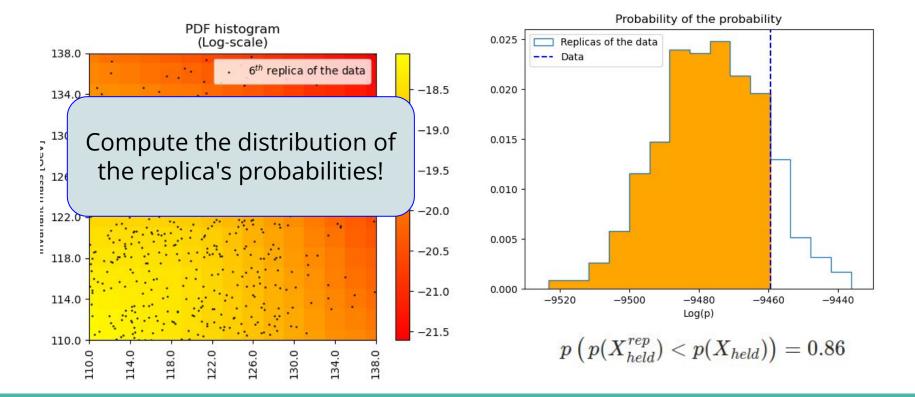
 $p(p(X^{rep}) < p(X))$

What is good and what is bad?

- S ~ 1: bad model
- S ~ 0.5: good model
- $S \lesssim 0.1$: bad model



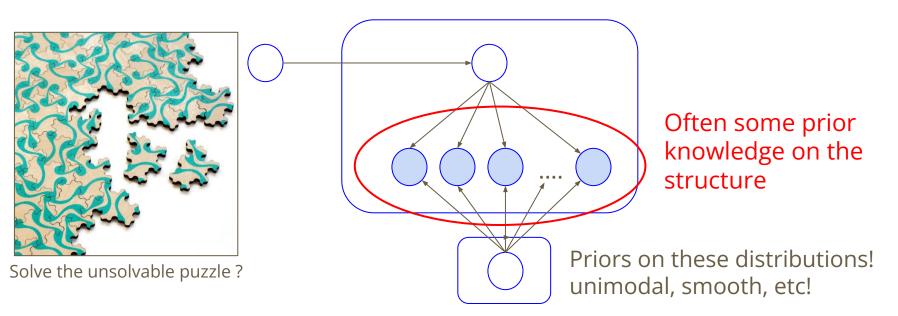
PDF of your model given the data !



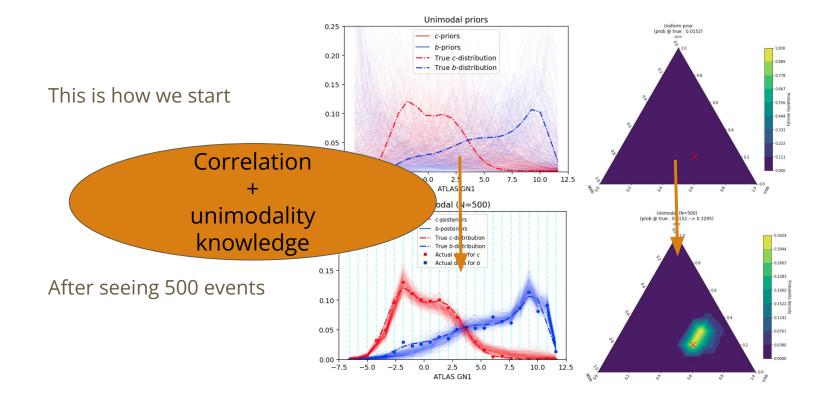
Lecture 5 Inferring non-parametric distributions

Inferring non-parametric distributions

Usually multi-dimension required (otherwise ambiguities)



Unimodal model: Results



Lecture 6+ Open questions

Open questions

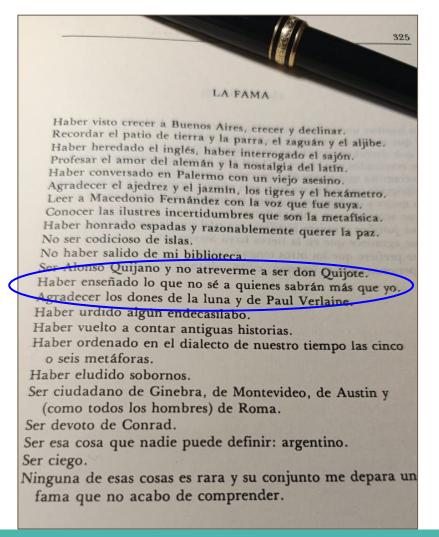
. . . .

- Correlated observables
- A Universe beyond Mixture Models

Disclaimer

I'm not a statistician...I'm learning!

J.L.Borges: La fama (1981)



Thank you very much!

Thanks to

- Organizing committee
- Nathan Berkovits
- Rogério Rosenfeld
- Great staff
- Fantastic audience!!!

sequi@unsam.edu.ar