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Previous lectures



Lecture 1 Bayesian: assume data being 
sampled from a PDF, infer its 

parameters and learn the internal 
structure of the data

To learn the PDF of the data and 

then being able to assess, 

predict , generate, etc.

More scientific



Lecture 1
Bayes Theorem:

p(θ|X) = p(X|θ) * p(θ)
                                        p(x)

Our utility: X = data, θ=parameters

Model data as being 
sampled from a 
clever PDF with 
parameters θ

Infer θ once you 
see the data X

Connect θ to physical 
parameters of 

interest



Lecture 1

Graphical Model
1D Gaussian Mixture

zn ~Bernoulliπ ~ Dirichlet(α)

μ2μ1

σ1 σ2

hn ~ N(μ,σ)

N

parameters

hyperparameters

Latent
variable



Lecture 3: Mixture Models

N

zn
π

K

μ, σ, …etc



Lecture 3: 2D Mixture Model, hh → bbγγ

N

zn
π

μ1,μ2
σ1,σ2 

λ1,λ2 

mbb                            mγγ 



Lecture 3: The impossible…. @10%



Assessment in Bayesian ML

Once you have a result from real 
data, how can you assess if…

● The sampling is unbiased

● The model is (fairly) correct



Assessment in Bayesian ML
Once you have a result from real data, you 
want to test that…

● The sampling is unbiased

Sampling diagnostics

● The model works correctly

Fake data to test it

● The model is (fairly) correct for the data

Posterior Predictive Check



Numerical 
integration yields 
some  divergent 
trajectories 
(rejected)

Accepted samples

MCMC Sampling with Hamiltonian MC



What is good and what is bad ?

p  = 10-6 … and now?

- What does it mean ?
- What do we compare it to ?

- Generate replicas of data XRep

- Compute their probability
- Compute

               p( p(Xrep)  < p(X) )



What is good and what is bad ?

Score = p( p(Xrep)  < p(X) )
● S ~ 1 :   bad model

● S ~ 0.5: good model

● S ≾ 0.1: bad model



Posterior Predictive Check: pp → bbγγ

    Posterior               x                      model                 =       sinthetic data !

X                   =

      Millions of



PDF of your model given the data !

Log-scale!

Simply add the value of 
each bin for each 

held-out datapoint!



PDF of your model given the data !

Compute the distribution of 
the replica's probabilities!



Inferring non-parametric distributions
Lecture 5
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→ then fewer parameters!



Inferring non-parametric distributions

Predetermined shape:
→ then fewer parameters!

N(μ, σ), β(a,b), γ(a,b), exp(λ), etc



Inferring non-parametric distributions

Predetermined shape:
→ then fewer parameters!

N(μ, σ), β(a,b), γ(a,b), exp(λ), etc

Real life is more sophisticated!



Inferring non-parametric distributions

Predetermined shape:
→ then fewer parameters!

N(μ, σ), β(a,b), γ(a,b), exp(λ), etc

Real life is more sophisticated!
- Smoothness
- Unimodal
- Decreasing/increasing
- etc



Inferring non-parametric distributions

Can we sample arbitrary curves 
whose only constraints are e.g.

Smoothness, unimodality, decreasing, 
etc….?



Inferring non-parametric distributions

Can we sample arbitrary curves 
whose only constraints are e.g.

Smoothness, unimodality, decreasing, 
etc….?

Smooth 
around 
some prior

Smooth and 
unimodal
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Usually multi-dimension required 
(otherwise ambiguities) 
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Inferring non-parametric distributions

Usually multi-dimension required 
(otherwise ambiguities) 

….

Priors on these distributions!  
unimodal, smooth, etc!

Often some prior 
knowledge on the 
structure 

Solve the unsolvable puzzle ?



Mixture model for
 Arbitrary, Smooth Unimodal distributions
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Case: pp→hh→bbbb  (LHC physics) 

Prior knowledge: events are either cccc, ccbb or bbbb
backgrounds signal
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Case: pp→hh→bbbb  (LHC physics) 
b

b

b
b
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The data: N tuples of 4 numbers

X = [ [3,7,2,12], [15,6,18,20].....[18,17,20,15]]



Case: pp→hh→bbbb  (LHC physics) 
b

b

b
b

h

h

The data: N tuples of 4 numbers

X = [ [3,7,2,12], [15,6,18,20].....[18,17,20,15]]

The problem is to Infer

- The shape of each individual 
component (c & b)

- The mixture fractions of each class 
                     cccc, ccbb and bbbb



Case: pp→hh→bbbb  (LHC physics) 
b

b

b
b

h

h

Explore 2 solutions:

1) Gaussian processes

2) Unimodal distributions



Gaussian Processes

We bin the score 
and x contains the 
distribution values 
in each bin



Gaussian Processes

We bin the score 
and x contains the 
distribution values 
in each bin

Each bin is sampled 
around some 
expected μ Define uncertainty and how 

related are neighbouring bins: 
Continuity!
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Gaussian Processes

We bin the score 
and x contains the 
distribution values 
in each bin

Each bin is sampled 
around some 
expected μ Define uncertainty and how 

related are neighbouring bins: 
Continuity!

2     1   0.5   0   ….
1     2    1   0.5   0  …
0.5  1    2    1    0.5   0  …
  0  0.5  1    2     1    0.5   0 ….  
….  …….           …..      …..

         (        )  Σ-1 = 

We can sample continuous 
curves around a central curve 

with very few hyperparameters

Prior information



Gaussian Processes



Gaussian Processes
The game:

● Starts with biased prior

● The data will shift the 
posterior to the most likely 
distribution, which should 
be the true

● Leverage:
○ Multidimensionality
○ Continuity
○ bbbb, ccbb, cccc



Gaussian Processes: Results

This is how we start
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Gaussian Processes: Results

This is how we start

After seeing 500 events

Correlation
correlation

 correlation!



Unimodal model
How to sample unimodal arbitrary continuous  curves ?



Unimodal model
How to sample unimodal arbitrary continuous  curves ?

Prior information!



Unimodal model

…. ...                           …. ….

Construct strict linear unimodal, one for each bin
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Unimodal model
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Unimodal model: Results

This is how we start

After seeing 500 events

Correlation
+

unimodality 
knowledge
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Summarizing

● Multidimensional Mixture of arbitrary 

continuous unimodal distributions

● Leverage on multidimensionality, continuity, unimodality and prior 

knowledge on allowed classes

● Infer everything through

 structured priors!



Learning Summary



Lecture 1
Intro to Bayesian ML



The Information Frontier
Inject catalysts:

● Modeling
● Tools & techniques
● Prior info



Typical problem in science

Data Information

Cut based / 
control-treated

Misses to take 
benefit of 

correlations

Simulation-based
Neural Networks

Extracts correlations, 
but learns 

"too much" from 
simulations

Bayesian tools

This minicourse!
Reduce simulation's 

impact at the price of 
increasing modelling 

impact



Bayesian Inference

zn

N

K

π ● No hard cuts

● Soft assignments

● No signal/control 
regions

● K classes & 
D observables

● Deployment of data 
internal structure

● Controlled injection 
of prior knowledge

D



Lecture 2
Meet the tool



The box factory

Box OK:            p
Box wrong:     1-p

Tomorrow: k' boxes ok out of n'

    X = k', n'
Θ = p

Today's posterior is 
tomorrow's prior!



Mixture of Bernoulli

….

π zn

N datapoints

     D
pixels

Scientifically: zn  is the 
probability of each class

μk

K classes 

D

Input

Result
(the μ's)



Lecture 3
Mixture Models



Dirichlet Distribution

p(X) = Dir(X; α) =



Mixture Models: where is the hack ?

N

zn
π

K

Conditionally independence

Once the class is defined, 
they are independent

Huge reduction in number of 
parameters to infer!

better grip!
(BD vs B*D)



2D Mixture Model: hh → bbγγ

Truncated
distributions!

Hey…. but they 
are quite 
different!

Difficult to 
disentangle 

this mixture if 
parameters 

are unknown!



The impossible…. @10%



Lecture 4
Diagnoses and assessment



MCMC Sampling with Hamiltonian MC

Simulate trajectory 
of fictitious particle



What is good and what is bad ?

p  = 10-6 … and now?

- What does it mean ?
- What do we compare it to ?

- Generate replicas of data XRep

- Compute their probability
- Compute

               p( p(Xrep)  < p(X) )



What is good and what is bad ?

Score = p( p(Xrep)  < p(X) )
● S ~ 1 :   bad model

● S ~ 0.5: good model

● S ≾ 0.1: bad model



PDF of your model given the data !

Compute the distribution of 
the replica's probabilities!



Lecture 5
Inferring non-parametric distributions



Inferring non-parametric distributions

Usually multi-dimension required 
(otherwise ambiguities) 

….

Priors on these distributions!  
unimodal, smooth, etc!

Often some prior 
knowledge on the 
structure 

Solve the unsolvable puzzle ?



Unimodal model: Results

This is how we start

After seeing 500 events

Correlation
+

unimodality 
knowledge



Lecture 6+
Open questions



Open questions

● Correlated observables

● A Universe beyond Mixture Models

● ….



Disclaimer
I'm not a statistician…I'm learning!

J.L.Borges: La fama (1981)



Thanks to

● Organizing committee
● Nathan Berkovits
● Rogério Rosenfeld
● Great staff
● Fantastic audience!!!

Thank you very much!

sequi@unsam.edu.ar


