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Outline of Lectures

● Dynamics in Closed Many-Body Systems:

. thermalization / many-body localisation

● Open Systems: GKSL (Gorini-Kossakowski-Sudarshan-Lindblad) 
Master equation - “Lindbladian”

● Examples (synthetic open quantum systems)

. boundary time-crystals

. dark states (dissipative state engineering)

● Applications: 
. quantum metrology
. (topological) quantum computation
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- Dramatic experimental progress of the last few years:
  

- realization of quantum many-body systems well isolated from the environment
- high tunability, 
- long coherence times,
- ability to prepare highly non-equilibrium states
- probe quantum dynamics and thermalization in closed systems

* Many questions arise in this context:

. what are the possible regimes of quantum-coherent many-body dynamics?

. how thermalization emerges in an an unitary dynamics?

. could we fail thermalization? Thus evading the conventional classical fate even at 
long times… if so, what would be the conditions?

. can quantum effects survive at long times in many-body systems?
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- What do we mean by thermalization? 

. conventional statistical mechanics:
- system coupled to a reservoir (or bath), 
- exchange energy/particles/information… ergodic dynamics.

. here, we have a closed quantum system undergoing unitary time evolution;

 . there is no external reservoir, but… 
          may system as a whole acts as a thermal reservoir for its own subsystems? 

. if so... stationary states would be described by quantum statistical mechanics

Introduction

System

Bath

A

System B
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Introduction
- Example: 1d spin chain within a quantum quench dynamics:

- Interacting particles are initially prepared in a state with non-uniform density.

- at sufficiently long times, local observables appear thermal:

. information encoded in the initial state is effectively erased - transferred to highly 
non-local inaccessible correlations;

. in fact, all local physical observables determined by few global conserved 
quantities, total energy, particle number etc.
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Introduction
- what if we avoid it?

. quantum information encoded in the initial state can persist and govern the dynamics 
at long times as well as the steady state.

- ergodicity-breaking systems: new forms of stable quantum phases and phase transitions 
that are unique to the non-equilibrium settings.

- Different instances where it occurs:

. (main focus) Anderson localisation / Many-body localisation;

. (but also) Time Crystals / Many-body scars / Stark localisation / ... 
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- review on eigenstate thermalization hypothesis (ETH):
. microscopic mechanism of thermalization in isolated quantum systems.

- classically, statistical mechanics based on ergodicity hypothesis:

. over a long period of time, all microstates are accessed with equal probability 
(explore all configurations allowed by global conservation laws)

- direct translation classical → quantum is problematic! 

. quantum mechanics operates in Hilbert space, one cannot track a trajectory in the 
phase space (e.g. (q,p))

Thermalization in quantum systems
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Thermalization in quantum systems
- Specifically, consider an isolated generic initial state expanded over its eigenstates:

 over dynamics,

. unlike classical systems, which explore different states in phase space.

- Thus, we need to modify the notion of ergodicity in the quantum case!

. How do we do it?

aquire local 
phases

probabilities for eigenstates

. set by the choice of the initial state 

. does not change over time.
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Thermalization in quantum systems
Let us first see how are the system observables at long times...

. inifinite-time average of a physical observable,

diagonal terms
~ 0 

oscillations at different frequencies
vanishing average

i.e., 

as expected, depends on initial state. 
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Thermalization in quantum systems
- Is ETH really satisfied? 

- tested extensively in numerical simulations of small quantum systems (seems ok...) 
lattice systems: spins, bosons, fermions...

 
* it is not clear if ETH is a necessary condition for thermalization. 

- Consequences:

. all eigenstates       obey ETH →  have thermal observables;

.    are thermal (system can act as its “own bath”) → extensive entropy



  

Thermalization in quantum systems
- Ising model:

...



  

Thermalization in quantum systems
- Ising model:

...
“quench”

(non eigenstate)
time
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- Ising model:

...

PRL 111, 127205 (2013)

...

time

“quench”
(non eigenstate)
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Localisation

- What are the possible routes of escaping thermalization?

. a possibility is looking for system with absence of transport (energy, spin excitations,
…)

. disordered systems / Anderson localisation are natural starting points



  

Localisation
In fact, Anderson himself pointed out this possibility in 1957, stating that a localized 
system provides:
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- A simple model with AL: 1d tight-binding fermions in a disordered potential

on-site disordered 
potential
(random/

quasiperiodic/...)

- “classical” perspective:

. if kinetic energy is larger than potential barrier, J>W: particle escaper and spreads 
balistically

. otherwise, J<W: particle is trapped, and therefore localised in the potential.
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- A simple model with AL: 1d tight-binding fermions in a disordered potential

on-site disordered 
potential
(random/

quasiperiodic/...)

- quantum mechanics modifies the picture fundamentally: “particle/wave/interference”

. waves can: 
. tunnel through potential hills higher than the kinetic energy
. reflect even by small potential fluctuations. 

. wavepacket will split on each potential
(no matter J,W)

. since potential is disordered, waves interfere off-resonantly (descrtuctively) 
and wavepacket does not spread along the chain (localised)
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- stronger disorder, higher localisation 

- dynamics is frozen…

. full spectrum is localised

”initial localised wavepackets overlap 
with close localised eigenstates”

- low-density BEC (1,7x10⁴ atoms) in a 
disordered optical trap;

Nature 453, 891–894 (2008)
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MBL (local memory)
- numerical and experimental evidences that disordered lattice models can support an MBL 
phase;

- Ultracold fermionic atoms in a one-dimensional optical lattice (Science 349, 842 (2015)):

(Imbalance)

*critical coupling till 
recover ergodicity

(new phases transition?)

(in the middle of spectrum/
high energy)

. frozen spin transport 
(local memory of initial state)
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- not ballistic, much slower (log in time) 

 

- saturation at an exponentially long time,

MBL (correlation spreading)
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MBL (correlation spreading)

- MBL defining features: 
. absence of transport 
. logaritmic growth of entanglement

- entanglement experimentally? It is lacking due to its high complexity...

. reduced state of a macroscopic bipartition, too demanding…

. entanglement witnesses, Fisher Information, ...

- alternative approach 

. local correlation spreading ↔  global behavior:

. Monogamy of Entanglement (PRB 94, 214206 (2016))

. experimentally feasible (local observables)
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MBL (correlation spreading)
. Monogamy of entanglement (PRB 94, 214206 (2016)):

A

C

B

- if A,B are maximally correlated (                   ), they cannot be correlated to C … quantum 
correlations are not shared by the parts.

- purely quantum feature: classically if A,B are max. correlated, we can make a copy 
of B→B’=C, which will also be max. correlated to A.

A

B copy/
clonning

B’=C
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MBL (phenomenological model)
. An intuitive picture on the MBL based on “l (local)-bit” excitations:

 

.            eigenstates determined by local operators:

.                                 non-interacting ~ AL (Jordan-Wigner): exponentially localised 
eigenstates,

.      MBL – exponentially localised interacting eigenstates,

“localised around 
i’th site”
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Conclusion

- We reviewed a few main concepts on thermalization and the lack of it – AL/MBL.

. Theoretical and experimental studies in MBL revealed a new class of quantum dynamics:

. lack of transport/memory; . slow correlation spreading; . L-bit phenomenolgy

. Although significant progress, there still remain many open issues:

. conjectures on thermalization – ETH – necessary?

. other forms of localisation, disorder-free, scars, …?

. different contexts – Floquet?



  

Thanks for your attention!

UFF,Niterói,Brazil

If you are interested…
contact: fernandoiemini@id.uff.br
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