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Outline of Lectures

Dynamics in Closed Many-Body Systems:

. thermalization / many-body localisation

Open Systems: GKSL (Gorini-Kossakowski-Sudarshan-Lindblad)
Master equation - “Lindbladian”

Examples (synthetic open quantum systems)

. boundary time-crystals
. dark states (dissipative state engineering)

Applications:
. quantum metrology
. (topological) quantum computation
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- Dramatic experimental progress of the last few years:
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Introduction

- Dramatic experimental progress of the last few years:

- realization of quantum many-body systems well isolated from the environment
- high tunability,

- long coherence times,

- ability to prepare highly non-equilibrium states

- probe quantum dynamics and thermalization in closed systems
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- Dramatic experimental progress of the last few years:

- realization of quantum many-body systems well isolated from the environment
- high tunability,

- long coherence times,

- ability to prepare highly non-equilibrium states

- probe quantum dynamics and thermalization in closed systems

* Many questions arise in this context:
. what are the possible regimes of quantum-coherent many-body dynamics?
. how thermalization emerges in an an unitary dynamics?

. could we fail thermalization? Thus evading the conventional classical fate even at
long times... if so, what would be the conditions?

. can quantum effects survive at long times in many-body systems?
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Introduction

- What do we mean by thermalization?

. conventional statistical mechanics:
- system coupled to a reservoir (or bath),
- exchange energy/particles/information... ergodic dynamics.

. here, we have a closed quantum system undergoing unitary time evolution;

. there is no external reservoir, but...
may system as a whole acts as a thermal reservoir for its own subsystems?

. if so... stationary states would be described by quantum statistical mechanics
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- Example: 1d spin chain within a quantum quench dynamics:
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- Interacting particles are initially prepared in a state with non-uniform density.

- at sufficiently long times, local observables appear thermal:

. information encoded in the initial state is effectively erased - transferred to highly
non-local inaccessible correlations;

. in fact, all local physical observables determined by few global conserved
quantities, total energy, particle number etc.
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Introduction
- what if we avoid it?

. quantum information encoded in the initial state can persist and govern the dynamics
at long times as well as the steady state.
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- ergodicity-breaking systems: new forms of stable quantum phases and phase transitions
that are unique to the non-equilibrium settings.

- Different instances where it occurs:

. (main focus) Anderson localisation / Many-body localisation;
. (but also) Time Crystals / Many-body scars / Stark localisation / ...
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Thermalization in quantum systems

- review on eigenstate thermalization hypothesis (ETH):
. microscopic mechanism of thermalization in isolated quantum systems.

- classically, statistical mechanics based on ergodicity hypothesis:

. over a long period of time, all microstates are accessed with equal probability
(explore all configurations allowed by global conservation laws)

b

- direct translation classical — quantum is problematic!

. quantum mechanics operates in Hilbert space, one cannot track a trajectory in the
phase space (e.g. (q,p))
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Thermalization in quantum systems
- Specifically, consider an isolated generic initial state expanded over its eigenstates:
4(0)) = > Aal)
over dynamics, “
p(t) = e (0)) = ) Aae”F"a)
(87

J aquire local
phases

probabilities for eigenstates
2
Po = |Aa|

. set by the choice of the initial state
. does not change over time.

. unlike classical systems, which explore different states in phase space.
- Thus, we need to modify the notion of ergodicity in the quantum case!

. How do we do it?
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Thermalization in quantum systems
Let us first see how are the system observables at long times...

. inifinite-time average of a physical observable,

O) = lim — / (1) Ol (£))d

T—oco T

1

[T T
— : - 2 5 * 2 1(Eq—Eg)t
7}1_r>noo T /0 za: |Ax|”(a|Ola)dt + /0 az% A7 Ag(a|O|B)e dt+

~ 0
diagonal terms oscillations at different frequencies
vanishing average

l.e.,

(O)oo = 3, Pala|Ol)

as expected, depends on initial state.
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*physical initial states have support in narrow energy window:

(E) A A
e.g. product states ?P (O)oo = 2. Pala|O]a) = One(E)

low-entangled/fast prep.
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Thermalization in quantum systems
- Is ETH really satisfied?

- tested extensively in numerical simulations of small quantum systems (seems ok...)
lattice systems: spins, bosons, fermions...

* it is not clear if ETH is a necessary condition for thermalization.

- Consequences:
. all eigenstates \Oé>obey ETH - have thermal observables;

. pa are thermal (system can act as its “own bath”) — extensive entropy

1.e,
- volume law-entanglement (S ~ vol(A)) between A/B,

Sa=—Tr(palog(pa))

- correlations must spread “fast” in thermalizing systems



Thermalization in quantum systems

- Ising model:
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- Ising model:

Thermalization in quantum systems
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Thermalization in quantum systems

- Ising model:

L—1 L
2 o E : AZAZ E : AT Az
H— J0i0i+1+ gO'i —|_h0-7,
=1

1=1

(0)) =1L 1)

J | |
TR j ! "_R ‘ “quench”

(non eigenstate)

SA(#) =X Lln?2
PRL 111, 127205 (2013)
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[.ocalisation

- What are the possible routes of escaping thermalization?

. a possibility is looking for system with absence of transport (energy, spin excitations,

)

. disordered systems / Anderson localisation are natural starting points
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In fact, Anderson himself pointed out this possibility in 1957, stating that a localized
system provides:

PHYSICAL REVIEW VOLUME 109, NUMBER 5 MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low

enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

I. INTRODUCTION

NUMBER of physical phenomena seem to involve

quantum-mechanical motion, without any par-
ticular thermal activation, among sites at which the
mobile entities (spins or electrons, for example) may be
localized. The clearest case is that of spin diffusion!?;
another might be the so-called impurity band conduc-
tion at low concentrations of impurities. In such
situations we suspect that transport occurs not by
motion of free carriers (or spin waves), scattered as
they move through a medium, but in some sense by
quantum-mechanical jumps of the mobile entities from
site to site. A second common feature of these phe-

nomena is randomness: random spacings of impurities,

random interactions with the “atmosphere” of other
impurities, random arrangements of electronic or
nuclear spins, etc.

Our eventual purpose in this work will be to lay the
fonndatinn far a cmantiim-mechanical thearv af trana.

reasonably well, and to prove a theorem about the
model. The theorem is that at sufficiently low densities,
transport does not take place ; the exact wave functions
are localized in a small region of space. We also obtain
a fairly good estimate of the critical density at which the
theorem fails. An additional criterion is that the forces
be of sufficiently short range—actually, falling off as
r — o faster than 1/7*—and we derive a rough estimate
of the rate of transport in the V «1/7® case.

Such a theorem is of interest for a number of reasons:
first, because it may apply directly to spin diffusion
among donor electrons in Si, a situation in which Feher?
has shown experimentally that spin diffusion is neg-
ligible; second, and probably more important, as an
example of a real physical system with an infinite
number of degrees of freedom, having no obvious
oversimplification, in which the approach to equilibrium
is simply impossible; and third, as the irreducible
minimum from which a theory of this kind of transport,
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X L—-1 T L T on-site disordered
=0 3 e+ WY el
; i=1 =1 (.ran .orr?/
{éi, éz} — fermions quasiperiodic/...)
J
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- “classical” perspective:

. if kinetic energy is larger than potential barrier, J>W: particle escaper and spreads
balistically

. otherwise, J<W: particle is trapped, and therefore localised in the potential.
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- A simple model with AL: 1d tight-binding fermions in a disordered potential

X L—-1 T L T on-site disordered
=0 3 e+ WY el
; i=1 =1 (.ran .orr?/
{éi, éz} — fermions quasiperiodic/...)
J
r "

~ W

v
- quantum mechanics modifies the picture fundamentally: “particle/wave/interference”

. ' waves can:
. tunnel through potential hills higher than the kinetic energy
. reflect even by small potential fluctuations.

1 t !
. wavepacket will split on each potential 1 .
(no matter J,W) -l

21 ) ZN <

. since potential is disordered, waves interfere off-resonantly (descrtuctively)
and wavepacket does not spread along the chain (localised)
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- on more formal grounds, look for eigenstate solutions for single fermion wavefunctions:

ng ' AT|vac

solving H|p) = Elgp) —  he(j) + J(0(j — 1) + (j + 1)) = Ep(j)
- Or in matrix form,

hy J .. 0 0 1 1
TR T I (R T (e B

0O 0 .. hp1 J o(L —1) o(L —1)

Lo 0 . T m )\ e@m ) \ e )

W =0:0g(j) ~ %L (Bloch states) with energy E(k) = 2J cos(k)

[J—c]

W #£0:pp(j) ~e "7, (exponentially localised wavefunctions)
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L = 5000
- stronger disorder, higher localisation

0.6 .
-1W = 0.0001
- = 0.001 o
W =0.01 - dynamics is frozen...
0.4} W—01 |
= W =1
TS . .
5 . full spectrum is localised
0.2t
N NS ”initial localised wavepackets overlap
=" with close localised eigenstates”

0 L f
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d

- low-density BEC (1,7x104 atoms) in a
1,000 disordered optical trap;

100

log(density)

Nature 453, 891-894 (2008)
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- AL does not transport energy, charge... among its non-interacting particles.
However, in realistic systems, interactions between particles are inevitable!

. can localisation survives as a many-body phase of matter?

- Many studies over the 1d chain of spinless fermions + nn interactions (Heisenberg chain):
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Many-body Localisation

- AL does not transport energy, charge... among its non-interacting particles.
However, in realistic systems, interactions between particles are inevitable!

. can localisation survives as a many-body phase of matter?

- Many studies over the 1d chain of spinless fermions + nn interactions (Heisenberg chain):

L
o At A v b At
J J J
A A < > L

+V ) njnjp . .

zz': WD b6 + T2y 55670
j i
Jordan-Wigner
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- Ultracold fermionic atoms in a one-dimensional optical lattice (Science 349, 842 (2015)):
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- MBL defining features:

. absence of transport

. logaritmic growth of entanglement
- entanglement experimentally? 1t is lacking due to its high complexity...

. reduced state of a macroscopic bipartition, too demanding...

. entanglement witnesses, Fisher Information, ...

- alternative approach
. local correlation spreading « global behavior:

. Monogamy of Entanglement (PRB 94, 214206 (2016))

. experimentally feasible (local observables)
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Conclusion

- We reviewed a few main concepts on thermalization and the lack of it — AL/MBL.

. Theoretical and experimental studies in MBL revealed a new class of quantum dynamics:

. lack of transport/memory; . slow correlation spreading; . L-bit phenomenolgy

. Although significant progress, there still remain many open issues:
. conjectures on thermalization — ETH — necessary?
. other forms of localisation, disorder-free, scars, ..."?

. different contexts — Floquet?
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