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- What is a Time Crystal?



  

Time Crystals
- Landau's symmetry breaking is a cornerstone of modern physics:
 

. equilibrium spontaneuos symmetry breaking (SSB) occurs when the ground state or 
low-temperature states of a system fail to be invariant under symmetries of the 
Hamiltonian;
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Crystal lattices
(space translation SB)

- Can time-translational invariance be spontaneously broken?
(F. Wilczek, PRL. 109, 160401 (2012))

. spin-density-waves, superconductors, 
liquid crystals...
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- intense discussion:
T. Li et al, PRL 109, 163001(2012);
P. Bruno, PRL 110, 118901 (2013); 
G. E. Volovik, JETP Lett. 98, 491 
(2013);
  ...

- arguments: rotating particles 
should radiate, incorrect ground 
state ansatz...



  

ring particle model: ground states 
with moving “lumps”

- intense discussion:
T. Li et al, PRL 109, 163001(2012);
P. Bruno, PRL 110, 118901 (2013); 
G. E. Volovik, JETP Lett. 98, 491 
(2013);
  ...

- arguments: rotating particles 
should radiate, incorrect ground 
state ansatz...

- No-go theorem: systems in thermal equilibrium cannot manifest any time-crystalline 
behavior (*short-range Hamiltonians)
 

(H. Watanabe and M. Oshikawa, PRL 114, 251603 (2015))
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trapped ytterbium ions
J. Zhang et al., Nature 543, 217 (2017).
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- MBL (short-range);
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- Stark localisation;
- Long-range spins;
- Clock models (n-tuplings)
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trapped ytterbium ions
J. Zhang et al., Nature 543, 217 (2017).

nitrogen-vacancy defects in 
diamond

S. Choi et al., Nature 543, 221 (2017).

What about continuous time crystals?

(avoid somehow no-go theorem...)
period-doubling dynamics

Discrete Time Crystals:
(variety of platforms)

- MBL (short-range);
- Quantum Scars;
- Stark localisation;
- Long-range spins;
- Clock models (n-tuplings)
- ...



  

- We focus on the dynamics (and possible SSB) of the boundary of the system; 

. equivalently, in open systems (which are the boundary of an environment)

. idea ~ surface critical phenomena: only the surface, representing a (macroscopic) 
portion of the system is ordered.

PRL 121, 035301 (2018)
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- We focus on the dynamics (and possible SSB) of the boundary of the system; 

. equivalently, in open systems (which are the boundary of an environment)

. idea ~ surface critical phenomena: only the surface, representing a (macroscopic) 
portion of the system is ordered.

- automatically out of “no-go theorem” 
. intrinsically out of equilibrium situation;
. while no-go prevents SSB in the whole system, the boundary is just a fraction of it, 

thus do not violate the theorem
PRL 121, 035301 (2018)
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● Specifically, we search: 

. while the environment is trivial;
. boundary feature nontrivial dynamics, breaking time symmetry



  

i.e., macroscopic system, but still small/infinitesimal compared to the global system.

system (boundary) degrees 
of freedom

environment degrees of 
freedom
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● Many-body phases, defined in the macroscopic limit: 
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● Many-body phases, defined in the macroscopic limit: 

system (boundary) degrees 
of freedom

environment degrees of 
freedom

Can Boundary Time Crystals appear in Lindbladian dynamics?

i.e., macroscopic system, but still small/infinitesimal compared to the global system.
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Can Boundary Time Crystals appear in Lindbladian dynamics? Yes!

Phys. Reports 93, 
301-396 (1982).

- ordinary fluorescence: 
. atoms spontaneous decay;
. independently from each other;
. isotropic/constant radiation

What if atoms are placed together?
(~ smaller than the relevant photon's 

wavelength)

~ identical coupling of all the atoms to the electromagnetic field.
 

(field mediates a cooperative coupling among 
the atoms → collective dynamics)

. faster and stronger! 
(burst of radiation)

Superradiance

- Dissipative collective spins… “cooperative interactions”
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atoms and the EM;
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  . high-quality mirrors
    (~ photon’s reflection - enhanced interactions) 

  . tuning resonance 
    cavity photonic modes/atomic transitions
   (EM mediates atom couplings)
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Major difficulty in this cooperative couplings is the requirement of strong coupling between the 
atoms and the EM;

*use cavities … (cavity QED):

  . atoms are trapped in an optical cavity;

  . high-quality mirrors
    (~ photon’s reflection - enhanced interactions) 

  . tuning resonance 
    cavity photonic modes/atomic transitions
   (EM mediates atom couplings)

   . high level of controlability:
. Nobel Prize 2012 (Serge Haroche and David J. Wineland)

for “ground-breaking experimental methods that enable measuring and manipulation 
of individual quantum systems”

. applications in quantum information/computation

. quantum simulation long-range interacting systems / ...
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. A single photon mode coupled to N spin-1/2 atoms:
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Atomic 
ensemble

pump 
laser 
field

. A single photon mode coupled to N spin-1/2 atoms:

atom/cavity field interaction

atom’s energy splitting

photon losses in the cavity

adiabatic elimination 
of cavity

cooperative dissipation 
among spins



  

coherent 
dynamics

effective decay rate

- Dissipative collective spin Lindbladian (open Dicke model, diven Dicke model, ...):



  

coherent 
dynamics

effective decay rate

Prog. Theo. Phys. 64, 307 (1978);
Opt. Commun. 27, 160 (1978);
Phys. Lett. A 72, 200 (1979);
PRA 65, 042107 (2002).

- Dissipative collective spin Lindbladian (open Dicke model, diven Dicke model, ...):

spins aligned along 
the x/y-direction

finite 
magnetization

⟨ Ŝ z ⟩

Steady state properties,



  

- What about dynamics?

Spectral properties:

any difference?



  



  



  

- gapped Lindbladian:
exponential decay towards ss

- no imaginary eigenvalues
no coherent eigenspace oscillations



  



  

- gapless Lindbladian:
slow decay modes diverge for a macroscopic system



  

- gapless Lindbladian:
slow decay modes diverge for a macroscopic system

- imaginary eigenvalues:
coherent oscillations in slow decaying modes



  

initial state: Time Evolution



  

initial state: Time Evolution

- nontrivial dynamics decays for finite system sizes



  

initial state: Time Evolution

- nontrivial dynamics decays for finite system sizes

- time scale diverges in the macroscopic limit

. breaking TTSB and stabilizing a boundary time crystal phase.
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One can understand what happens in the thermodynamic limit by using a semiclassical 
approximation: 

Thermodynamic limit / Mean-field

Heisenberg picture

hierarchy keeps growing ...
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Thermodynamic limit / Mean-field

Close the hierarchy on second cumulant (mean-field):

. macroscopic/normalized observables:

simpler, analytical solutions, stability/Jacobian...



  

Thermodynamic limit / Mean-field

Poincaré section: “phase space”



  

Thermodynamic limit / Mean-field

Poincaré section: “phase space”

robust to perturbations



  

Conclusions
- we discussed about time crystals, intrisically non-equilibrium phases;

- while Discrete TC arise in closed systems, continuous seems to be “more likely” in open 
systems:

. boundary time crystals (macroscopic portion of whole system)

. collective spin models featuring these phases.
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- we discussed about time crystals, intrisically non-equilibrium phases;

- while Discrete TC arise in closed systems, continuous seems to be “more likely” in open 
systems:

. boundary time crystals (macroscopic portion of whole system)

. collective spin models featuring these phases.

- other candidates for BTC’s?

. mostly collective spins at the moment… (few exceptions)

. lattice models, limit-cycles…

XYZ-Heisenberg, quantum-Ising –>  
limit cycles at the mean-field level.

T. E. Lee et al, PRA 84, 031402 (2011);
C.-K. Chan et al, PRA 91, 051601 (2015).
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. collective spin models featuring these phases.

- other candidates for BTC’s?

. mostly collective spins at the moment… (few exceptions)

. lattice models, limit-cycles…

. dissipative topological systems?
edge
mode

s

edge
mode

sS. Diehl et al, Nat. Phys. 7, 971 (2011);
F. Iemini et al, PRB 93, 115113 (2016).
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Conclusions
- we discussed about time crystals, intrisically non-equilibrium phases;

- while Discrete TC arise in closed systems, continuous seems to be “more likely” in open 
systems:

. boundary time crystals (macroscopic portion of whole system)

. collective spin models featuring these phases.

- other candidates for BTC’s?

. mostly collective spins at the moment… (few exceptions)

. lattice models, limit-cycles…

. dissipative topological systems?

. others?

- and... why should I care? Applications?

. Sensors . Clocks

. Quantum engines . Simulating complex quantum networks
….



  

Thanks for your attention!

UFF,Niterói,Brazil

If you are interested…
contact: fernandoiemini@id.uff.br
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