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. idea: careful tailoring the coupling of the system to the environment (synthetic 
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coupled to atom systems

dark states:
cannot absorb nor 

emmit photons



  

- Can we generalize this dark-state physics to the dissipative many-body scenario?



  

- Can we generalize this dark-state physics to the dissipative many-body scenario?

- Mathematical formalism:

. a pure state        is a dark state if:



  

- Can we generalize this dark-state physics to the dissipative many-body scenario?

- Mathematical formalism:

. a pure state        is a dark state if:

eigenstate of the Hamiltonian



  

- Can we generalize this dark-state physics to the dissipative many-body scenario?

- Mathematical formalism:

. a pure state        is a dark state if:

kernel of jump operators

eigenstate of the Hamiltonian

*general conditions are broader than that...
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* also known as frustration-free Hamiltonians:

. local? 

. physically implemetable?

. nontrivial many-body states?

noting that 

dark state is a ground space for all these terms. I.e., 

- Dark state = ground state (zero energy) of the parent Hamiltonian:

Topological Majorana 
fermions

- How to “engineer” interesting dark states driven uniquely by dissipation? A pretty useful 
relation: 
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. quadratic Hamiltonian – solvable...
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. Bogoliubov de Gennes transformation:

Kitaev chain

gs is the new 
“vacuum”

trivial/
insulator

trivial/
insulator

supercondutor/
edge Majoranas

. if jump operators

(strong dissipation, H~0)

ground is the dark state!

usually highly nonlocal :/
but not always :)
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fermion in a lattice site paired Majoranas

- “half” fermions;
- particles are their own anti particles;

(complex) fermion
(real) Majorana fermion

fermion

MF

schematically...

- looking from a different perspective / Majorana fermion formalism:
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- substituting in the Hamiltonian:

- trivial phase:

ground state just minimizes each maj. pair / 
physical fermion site insulator



  

- substituting in the Hamiltonian:

“sweet point”:

. topological phase;

. local interacting MF’s = frustration-free terms
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bulk
superconduting

zero energy edge 
Majorana fermions!

- top. phase (“sweet point”):

Bogoliuobov
 excitations:

zero energy 
Bog. excitation

two-fold ground 
state degeneracy . qubit

. robust (topological)

. fault-tolerant 
computing
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reservoir

alternate Rabi frequency

auxiliary lattice

mean-field
approx
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- not so simple...

Phys. Rev. B 93, 115113 (2016)

mean-field
approx

- Conservation of particle number, a strong constraint:

. despite generating superconduting properties;

. unique steady states… no topological edge Majorana states;



  

- a way to circumvent... 

Phys. Rev. B 93, 115113 (2016)

- conservation of particle number: ok

- superconducting: ok

- degenerated steady states (edge Mfs): ok

- physical implementation/feasibility: ?



  

In fact, the quest for edge Majorana fermions is still open!

Experimental observations

Spectroscopy
(zero-bias conductance peaks)

much debate, no consensus, 
retractions/conflicting data...

V. Mourik et al., Science 336, 1003 (2012);
M. T. Deng et al., Nano Lett. 12, 6414 (2012);
A. Das, Y. Ronen et al., Nature Physics 8, 887 (2012); 
L. P. Rokhinson et al., Nature Physics 8,795 (2012); 
S. Nadj-Perge et al., Science 346, 602 (2014); 
S. M. Albrecht et al., Nature 531, 206 (2016);
Zhang, H. et al Nature 556, 74–79 (2018)
...



  

In fact, the quest for edge Majorana fermions is still open!

Experimental observations

V. Mourik et al., Science 336, 1003 (2012);
M. T. Deng et al., Nano Lett. 12, 6414 (2012);
A. Das, Y. Ronen et al., Nature Physics 8, 887 (2012); 
L. P. Rokhinson et al., Nature Physics 8,795 (2012); 
S. Nadj-Perge et al., Science 346, 602 (2014); 
S. M. Albrecht et al., Nature 531, 206 (2016);
Zhang, H. et al Nature 556, 74–79 (2018)
...

- “radically” approaches may be shed 
some light into alternative solutions?
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 quantum subspaces
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- acts in the gs subspace, described by those MF’s defining the subspace:

- braiding do not create/anihilate particles, conserves parity:
 

.     forbiden;
 

.       allowed.

- it is unitary (exponential of “i” times Hermitian)

Braiding
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qubit rotation
(not only global phases...)

∣ψ>=α∣0 0>+β∣11>
∣0 0>

∣11>

- fault-tolerant
(non-abelian statistics)

Topological Quantum 
Computation
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- Dissipation not always detrimental;

- Through careful tuning of system/environment coupling one can engineer nontrivial 
dissipative steady states:

. dark states  - pure

. many-body correlations

. topological properties

. … frustration-free ground states

- Alternative to usual methods on state preparation

- Quantum computing with dissipation;

Conclusions



  

Thanks for your attention!

UFF,Niterói,Brazil

If you are interested…
contact: fernandoiemini@id.uff.br
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