

Workshop on Multineutron Clusters in Nuclei and in Stars Sao Paulo Juni 2-6, 2025

Measurement of ⁶H Groundstate Energy at MAMI

Josef Pochodzalla and Tianhao Shao for A1 Collaboration

Johannes Gutenberg-University Mainz and Fudan University

based on Phys.Rev.Lett.134.162501 (2025)

Workshop on Multineutron Clusters in Nuclei and in Stars Sao Paulo Juni 2-6, 2025

Measurement of ⁶H Groundstate Energy at MAMI

- Tour of neutral systems there may be more than just nnnn
 - Neutron rich systems: ⁶H
 - MAML experiment Outlook and Summary

Josef Pochodzalla and Tianhao Shao for A1 Collaboration

Johannes Gutenberg-University Mainz and Fudan University

based on Phys.Rev.Lett.134.162501 (2025)

Short tour through neutral systems (there may be out there than just nnnn)

Playground of the Workshop

The World is not flat

The World is not flat

^{JG} Hyperos in Neutron Stars

Remember talk

of Francesca

Cameron 1959, Ambartsumyan & Saakyan 1960

 $e^- + p \rightarrow v_e + \Lambda$ $p_{F,n}^2 + m_n^2 \ge m_A^2$ m_{Λ} =1116 MeV, m_n = 939MeV $\Rightarrow p_{F,n} \approx 600 MeV \simeq 3 fm^{-1}$ non-interacting Fermi-gas: $\rho = \frac{p_{F,n}^3}{3\pi^2} \Rightarrow p_{F,n}(\rho_0) = 1.7 fm^{-1}$ \Rightarrow appearence of hyperons at $\rho_{\Lambda} \approx 5.5 \rho_0$ with interactions $\rho_{\Lambda} \approx 2 - 3\rho_{0}$

- Baryon density in neutron stars 2-3 ρ_0
- Fermi level of neutrons beyond m_A
- Time scale of explosion $O(s) \leftrightarrow$ Weak interaction $O(10^{-10}s)$
- \Rightarrow hyperons can appear by weak interaction
- Once they appear they are stable because of Pauli supression

Light Nuclear Systems

Neutral Systems

JGIU The nnA Puzzle

- Such a state has been suggested by the HypHI collaboration
- > weak decay nnA→π-³H (invariant mass) ⇒ bound state
- Lifetime = typical weak decay lifetime >> strong decay

C. Rappold et al., Phys. Rev. C 88 , 041001(R) (2013)

- Statistical Decay Model ⁶_AHe^{*} at E_x=40MeV
 - Λ 30.7% nnΛ 17.3%
 - ³_AH 13.9% ⁴_AH 29.2%
 - ⁴_AHe 3.9% ⁵_AHe 4.8%
- > but:
 - > The experiment poses questions
 - > all modern state of the art theories do not allow a bound nnA state

$I^{G^{III}}$ Approaching the nnA

- 2018: J-Lab E12-17-003
 - ³H(e,e'K⁺)(nnΛ)
 - missing mass experiment
 - Phys. Rev. C 105, L051001 (2022)

*"*³_A*n* resonancepossibly observed. However, to make a definitive identification, improved statistics are required".

- 2022: FRS+WASA for S447
 - ⁶Li + ¹²C
 - for $d + \pi$ 2× better mass resolution
 - 8 times better S/BG ratio expected
 - lifetime

The existence of this state would require to re-think our understanding of three-body interactions

Neutral Systems

IG^{IG} E906 – the case of nnAA

- > aim: search for $\Lambda\Lambda$ hypernuclei by sequential weak π^- decays
- > 9.10^{11} K^{-} on Be target: ${}^{9}\text{Be}(\text{K}^{-},\text{K}^{+})\Xi^{-} + X$

J.K. Ahn, et al., Phys. Rev. Lett. 87 (2001) 132504.

Doube Hypernulei $A_{\Lambda\Lambda}^{AO}Z^* \rightarrow A_{\Lambda\Lambda}^{A}Z + X$

$$\rightarrow \pi^{-} +^{A}_{\Lambda} (Z + 1)$$
$$\rightarrow \pi^{-} +^{A} (Z + 2)$$

Twin Hypernuclei $A_{\Lambda\Lambda}^{A0}Z^* \rightarrow A_{\Lambda}^{A1}Z_1 + A_{\Lambda}^{A2}Z_2 + X$

$I^{G|U}$ E906 – the case of nnAA

- Explore all energetically possible decay channels by a statiscial model
- Include branching ratios etc.

JGIU Take home message

- Structure of conventional and strange nuclei should be treated together
- Caveat: information on hypernuclei is much more limited
 - Few ten nuclei
 - Ground state masses
 - > Lifetime
 - In sime cases excited states
- When it comes to the core of neutron stars non-strange and strange baryons and there multi-body interactions are important

The extremly neutron rich system ⁶H

Light Neutron Rich Systems

JGIU Exotic Hydrogen Isotope

- Largest neutron-to-proton ratios known so far
 - > ⁴H, ⁵H : clear signal observed
 - ▹ ⁶H, ⁷H : Indistinct signal, controversial results
- Laboratory for multi-neutron interactions

	Li-4 Lithium-4	Li-5 Lithium-5	Li-6 Lithium-6	Li-7 Lithium-7	Li-8 Lithium-8	Li-9 Lithium-9	Li-10 Lithium-10	Li-11 Lithium-11	Li-12 Lithium-12
	He-3 Helium-3	He-4 Helium-4	He-5 Helium-5	He-6 Helium-6	He-7 Helium-7	He-8 Helium-8	He-9 Helium-9	He-10 Helium-10	
[] = 1] rdrogen-1 (Protium)	月。2 Hydrogen-2 (Deuterium)	H-3 Hydrogen-3 (Tritium)	H- 4 Hydrogen-4	H-5 Hydrogen-5	H- 6 Hydrogen-6	H-7 Hydrogen-7			
	N Neutron					Exotic "dir 4p decay me	Unknown isotopes rect/true" chanism	°N •°C ← •°C beam	Secondary bea yield > 5000 p

- Mirror nuclei of proton rich systems
 - GSI-Super-RFS Proposal G-22-00111: Towards limits nuclear structure by using a ⁹C beam

JGIU Observed ⁶H ground state energies

Reaction	E _r [MeV]	Г [МеV]	year
⁷ Li(⁷ Li, ⁸ B) ⁶ H	2.7 ± 0.4	1.8±0.5	1984
⁹ Be(¹¹ B, ¹⁴ O) ⁶ H	2.6 ± 0.5	1.3 ± 0.5	1986
⁹ Be(π⁻,pd) ⁶ H	6.6±0.7	5.5 ± 2.0	2003
¹¹ B(π⁻,p⁴H)6H	7.3 ± 1.0	5.8 ± 2.0	2003
¹² C(⁸ He, ⁶ H→t+3n) ¹⁴ N	2.91+0.85-0.95	1.52 +1.77-0.35	2008
²H(⁸ He,⁴He) ⁶ H	>4.5	5	2022

D. Aleksandrov et al. , Yadernaya Fizika 39,513 (1984)

In most cases: nuclear transfer or kick-out reactions

$^{12}C(^{8}He, ^{5,6,7}H \rightarrow t + xn)^{17-x}N$ JGU

- Active ¹²C target detector MAYA
- Nitrogen and tritium identified

Assuming detected nitrogen is

(a)

-10

- $^{15}N \Rightarrow {}^{5}H$
- $^{14}N \Longrightarrow {}^{6}H$
- $^{13}N \Rightarrow ^{7}H$

0

-10

-5

0

Excitation Energy (MeV)

5

10

15

10

15

5

-5

20

25

30

^{JG} Theoretical situation of ⁶H

The MAMI Measurement

JGIU MAMI-A1 Setup

- > MAMI is an electron accelerator with $E_e = 1.5 GeV$
 - > Oacted at the Institut für Kernphysik, Mainz Univ.
 - Sequence of 4 microtrons
 - MAMI-B: 855 MeV electron beam

JGU MAMI-A1 Setup

Experimet A1

- > 4 magnetic focussing spectrometers
- > Resolution: $\delta p/p < 10-4$
- Angular acceptance: <30 mrad</p>
- Missing Mass experiment
 - ⁷Li(e,e'pπ⁺)⁶H

Experimental Principals

- Measure the momenta of the
 - scattered electron
 - the produced proton and
 - > The produced π +
- > Then reconstruct the miss-mass spectrum $^{7}Li(e, e'p\pi^{+})^{6}H$
- For the planning educated guess for reaction scheme is needed

- Expected rate: 1 count in the region of interest per day
 - Confirmed by experiment
- Expected missing mass resolution: 1.2 MeV with 1mm thick target

^{JG} Choice of kinematics

- feasible with the setups of three spectrometers
- **MAMI** energy
- W ~ 1200 MeV for proton to produce Delta(1232)
- low momentum transfer to ⁶H

e':

> Lithium

- > low melting point 180°C
- > Low density 0.53 g/cm³

run_2023: 92.7% natural Lithium (7.4% ⁶Li, 92.6% ⁷Li)
 run_2024: 99.99% enriched ⁷Li

JGIU Data analysis

- Signal data: triple coincidence between 3 spectrometers
- Random background =
- AB random + AC ramdom + BC random 2 × total random
- weighted according to the areas of the selected regions
- no further normalization neede

⁶H spectrum: Missing mass – 3H+n+n+n

- Support ⁶H ground-state energy and width should be small
 - ➤ E = 2.3 ± 0.5 (stat.) ± 0.4 (syst.) MeV,
 - > $\Gamma = 1.9 \pm 1.0$ (stat.) ± 0.4 (syst.) MeV

First time to observe ⁶H in an electron scattering experiment

Measured ⁶H ground-state energy and width are much smaller than 2022 works. Neutron interactions in ⁶H maybe stronger than expect

Outlook

JGIU Future options

24 0

Ne

18 =

17 O

SN

18 C

14 B

¹³ Be

12 Li

15 F

14 E

SI

AI

10 N

18 C

"N

14 C

13 B

Be

Li

¹⁰ He

100

15 N

14 C

15 O

^aN

0

12 B

Be

Li

[®]He

13 B

AN

13 C

12 B

1º Li

10 Be

Li

⁸He

7H

12 C

11 B

Be

Li

He

Be

8Li

'He

BH

1º Be

10 B

Be

8Li

THe

AH

⁶He

5H

B

Be

He

5He

AH

Electron scattering experiment can be used to study neutron nuclei

AHe

5He

AH

an

Be

Ann

He

AH

=º

1

'H

n

2H

3H

E-

- \succ ⁶Li(e, e'pπ⁺)⁵H
- → ⁴He(e, e'pπ⁺)³n
- > ⁷Li(e, e'π⁺π⁺)⁷H
- > ${}^{4}\text{He}(e, e'\pi^{+}\pi^{+}){}^{4}n$

JGU Is there a nnn state?

Precise Spectroscopy of the 3n and 3p Systems via the ${}^{3}H(t, {}^{3}He)3n$ and ${}^{3}He({}^{3}He, t)3p$ Reactions at Intermediate Energies

K. Mikio^{1,2} K. Kameya,^{1,2} D. Sakai,^{1,2} R. Urayama,^{1,2} N. Imai,³ S. Ishikawa,⁴ S. Michimasa,³ S. Ota,³ M. Sasano,² H. Takeda,² T. Uesaka,² H. Haba,² M. Hara,⁵ Y. Hatano,⁵ T. Hayamizu,² N. Kobayashi,⁶ A. Tamii,⁶ S. Adachi,⁷ T. Chillery,³ M. Dozono,^{2,8} Y. Fujikawa,⁸ H. Fujita,⁶ N. Fukuda,² T. Furuno,⁶ J. Gao,⁹ S. Goto,¹⁰ S. Hanai,³ S. Hayakawa,³ Y. Hijikata,^{2,8} K. Himi,⁷ Y. Hirai,¹⁰ J. W. Hwang,¹¹ M. Ichimura,^{2,*} D. Inomoto,¹⁰ M. Inoue,^{1,2} H. Kasahara,¹⁰ T. Kawabata,^{2,7} K. Kishimoto,^{2,10} S. Kitayama,^{1,2} K. Kusaka,² J. Li,³ Y. Maeda,¹² Y. Maruta,^{1,2} T. Matsuziki,² S. Nakai,¹² H. Nishibata,^{2,10} M. Otake,² Y. Saito,¹² H. Sakai,² A. Sakaue,³ H. Sato,² K. Sekiguchi,^{1,12} Y. Shimizu,² S. Shimoura,³ L. Stuhl,^{2,11} T. Sumikama,² H. Suzuki,² R. Tsuji,²⁸ S. Tsuji,⁷ H. Umetsu,¹ Y. Utuki,^{1,2} T. Waksa,¹⁰ A. Watanabe,¹² K. Yako,³ Y. Yanagisawa,² N. Yokota,^{2,10} C. Yonemura,^{2,10} K. Yoshida,² and M. Yoshimoto²

(RIBF-SHARAQ11 Collaboration and RCNP-E502 Collaboration)

¹Department of Physics, Tohoku University, Sendai 980-8578, Japan ³EIKEN Nishina Center, Wako 351-0198, Japan ³Center for Nuclear Study, the University of Tokyo, Hong, Okyo 113-0033, Japan ⁵Science Research Center, Hosei University, Tokyo 102-8160, Japan ⁵Hydrogen Isotope Research Center, University, Tokyo 102-8160, Japan ⁵Hydrogen Isotope Research Center, University, OI 1000,

IGIU Expectations for the Trineutron

PHYSICAL REVIEW C 110, 014004 (2024)

Trineutron resonances in the SS-HORSE extension of the no-core shell model

I. A. Mazur © Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon 34126, Republic of Korea

M. K. Efimenko[©] and A. I. Mazur[©] Laboratory for Modeling of Quantum Processes, Pacific National University, Khabarovsk 680035, Russia

I. J. Shin

I. J. Shin
Institute for Rare Isotope Science, Institute for Basic Science, Daejeon 34000, Republic of Korea

V. A. Kulikov o and A. M. Shirokov o Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia

J. P. Vary ¹⁰ Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011-3160, USA TABLE II. Energies E_r and widths Γ of trineutron resonant states obtained with soft *NN* interactions Daejeon16 [23], JISP16 [22], and SRG-evolved Idaho N³LO [46]. Uncertainties are presented in parentheses. All values are in MeV.

	3,	/2-	1/2-		
Interaction	E_r	Г	E_r	Г	
Daejeon16	0.48(6)	0.96(21)	0.48(8)	0.96(17)	
JISP16	0.35(8)	0.70(9)	0.35(11)	0.67(22)	
N ³ LO, SRG, $\Lambda = 2 \text{ fm}^{-1}$	0.34(8)	0.70(19)	0.35(9)	0.68(16)	

PHYSICAL REVIEW C 100, 054313 (2019)

Ab initio no-core Gamow shell-model calculations of multineutron systems

J. G. Li,¹ N. Michel¹,^{2,3} B. S. Hu¹,¹ W. Zuo,^{2,3} and F. R. Xu¹,^{*}</sup> ¹School of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China ²Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ³School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Reaction scheme to produce nnn

Helium target needed

Possible nnn search

▹ ⁴He target

- > Temperature T = 21K
- > pressure p = 15 bar
- > \Rightarrow density $\rho = 33,843 \text{ mg/cm}^3$

Diploma thesis Matthias Heilig

JGIU Summary

- For the first time we produced ⁶H in an electron scattering experiment at MAMI-A1.
- The measured ⁶H ground-state energy and width are much smaller than the latest experimental and theoretical works
- Electron scattering experiment can be used to search for nnn

Tianhao Shao, Jinhui Chen, Josef Pochodzalla, Patrick Achenbach, Mirco Christmann, Michael O. Distler, Luca Doria, Anselm Esser, Julian Geratz, Christian Helmel, Matthias Hoek, Ryoko Kino, Pascal Klag, Yu-Gang Ma, David Markus, Harald Merkel, Miha Mihovilović, Ulrich Muller, Sho Nagao, Satoshi N. Nakamura, Kotaro Nishi, Fumiya Oura, Jonas Pätschke, Björn Sören Schlimme, Concettina Sfienti, Marcell Steinen, Michaela Thiel, Andrzej Wilczek, and Luca Wilhelm