Evolution of shapes and symmetries along isotopic chains in neutron rich nuclei

Anna E. McCoy

ICTP June 3, 2025

Outline

Goal: Looking for simple pictures that provide a more intuitive understanding of nuclear structure

- Start from an *ab initio* description and mapping back onto simple pictures
 - Effective single particle model
 - Elliott SU(3) model (long range correlations)
- Brief review of ab initio no-core shell model
- Two case studies: beryllium and carbon

Neutron rich *p*-shell nuclei

<mark>0</mark> 8			^(3/2–) ¹³ O	¹⁴ O	^{1/2–} ¹⁵ 0	¹⁶ O ⁰⁺	^{5/2+}	¹⁸ O	^{5/2+}	²⁰ O ⁰⁺	^(5/2+) 21O	²² 0 ⁰⁺
N 7			¹² N	^{1/2–} ¹³ N	¹⁴ N	^{1/2–} ¹⁵ N	¹⁶ N	^{1/2–} ¹⁷ N	¹⁸ N	¹⁹ N	²⁰ N ²⁻	^(1/2–) ²¹ N
<mark>C</mark> 6	^(3/2–) ⁹ C	¹⁰ C	^{3/2–} ¹¹ C	(12C) ⁰⁺	1/2-	(14C)0+	1/2+	(16C) ⁰⁺	17C 3/2+	(18C)0+	1/2+	20C 0+
<mark>B</mark> 5	⁸ B ²⁺	^{3/2–} [⁹ B]	¹⁰ B ³⁺	^{3/2–} ¹¹ B	¹² B	^{3/2–} ¹³ B	¹⁴ B	¹⁵ B		^(3/2–) ¹⁷ B		^(3/2–) ¹⁹ B
Be 4	^{3/2–} ⁷ Be	⁸ Be	⁹ Be	10Be	1/2+	12Be	^(1/2-)	14Be				
Li 3	⁶ Li	^{3/2–} ⁷ Li	⁸ Li ²⁺	^{3/2–} ⁹ Li		^{3/2–} ¹¹ Li						
	3	4	5	6	7	8	9	10	11	12	13	14

No-core shell model

Solve many-body Schrodinger equation

$$\sum_{i}^{A} - \frac{\hbar^2}{2m_i} \nabla_i^2 \Psi + \frac{1}{2} \sum_{i,j=1}^{A} V(|r_i - r_j|) \Psi = E \Psi$$

Expanding wavefunctions in a basis

$$\Psi = \sum_{k=1}^{\infty} a_k \phi_k$$

Reduces to matrix eigenproblem

$$\begin{pmatrix} H_{11} & H_{12} & \dots \\ H_{21} & H_{22} & \dots \\ \vdots & \vdots & \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix} = E \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix}$$

Harmonic oscillator basis

- Basis states are configurations, i.e., distributions of particles over harmonic oscillator shells (*nlj substates*)
- States are organized by total number of oscillator quanta above the lowest Pauli allowed number N_{ex}
- States with higher N_{ex} contribute less to the wavefunction
- Basis must be truncated: Restrict $N_{\text{ex}} \le N_{\text{max}}$

 $N_{\rm ex} = 2$

Convergence Challenge

Results for calculations in a finite space depend upon:

- Many-body truncation N_{max}
- Single-particle basis scale $\hbar\omega$

Effective single particle picture

Natural orbitals maximize occupation of lowest orbitals, by diagonalizing the density matrix

Quadrupole deformation

Nilsson Model

Wood Saxon parameters: J. Suhonen. From Nucleons to Nuclei Concepts of Microscopic Nuclear Theory, Chapter 3.

Nilsson Model

Nilsson Model

Mixing of intruder and normal states

Phys. Lett. B 856 138870 (2024).

- Mixing between ground state and low lying 0⁺₂ state
- Mixing occurs as states cross
- Mixing persists in physical states as indicated by measurable *E*0 transition.

Decomposition by N_{ex} : ¹²Be

Radii

Neutron rich *p*-shell nuclei

<mark>0</mark> 8			^(3/2–) ¹³ O	¹⁴ O	^{1/2–} ¹⁵ 0	¹⁶ O	^{5/2+} 17O	¹⁸ O	^{5/2+} ¹⁹ O	²⁰ O ⁰⁺	^(5/2+) 21O	²² O
N 7			¹² N	^{1/2–} ¹³ N	¹⁴ N	^{1/2–} ¹⁵ N	¹⁶ N ^{2–}	^{1/2–} ¹⁷ N	¹⁸ N	¹⁹ N	²⁰ N ^{2–}	^(1/2–) ²¹ N
<mark>C</mark> 6	^(3/2–) ⁹ C	¹⁰ C	^{3/2–}	(12C) ⁰⁺	1/2-	(14C)0+	1/2+	(16C) ⁰⁺	3/2+	(18C)0+	1/2+	20C 0+
<mark>B</mark> 5	⁸ B	^{3/2–} [⁹ B]	¹⁰ B ³⁺	^{3/2–} ¹¹ B	¹² B	^{3/2–} ¹³ B	¹⁴ B ^{2–}	¹⁵ B		^(3/2–) ¹⁷ B		^(3/2–) ¹⁹ B
Be 4	^{3/2–} ⁷ Be	[⁸ Be]	^{3/2–} ⁹ Be	⁰⁺ ¹⁰ Be	^{1/2+} ¹¹ Be	⁰⁺ ¹² Be	^(1/2–) [¹³ Be]	⁰⁺ ¹⁴ Be				
Li 3	⁶ Li	^{3/2–} ⁷ Li	⁸ Li 2+	^{3/2–} ⁹ Li		^{3/2–} ¹¹ Li						
	3	4	5	6	7	8	9	10	11	12	13	14

Deformation of Carbon isotopes

Radii

Outline

Goal: Looking for simple pictures that provide a more intuitive understanding of nuclear structure

- Start from an *ab initio* description and mapping back onto simple pictures
 - Effective single particle model
 - *Elliott SU(3) model (long range correlations)*
- Brief review of ab initio no-core shell model
- Two case studies: beryllium and carbon

Elliott SU(3)

Elliott SU(3)

Labels (λ, μ) associated with deformation parameters β and γ O. Castanos, J. P. Draaver, Y. Leschber, Z. Phys. A 329 (1988) 3.

$$\beta^2 \propto (\lambda^2 + \lambda\mu + \mu^2 + 3\lambda + 3\mu + 3)$$

$$\gamma = \tan^{-1} \left[\sqrt{3}(\mu + 1)/(2\lambda + \mu + 3) \right]$$

Lowest energies correspond to most deformed state D. J. Rowe, G. Thiamova, and J. L. Wood. Phys. Rev. Lett. 97 (2006) 202501.

$$H = H_0 - \underbrace{\kappa \mathbf{Q} \cdot \mathbf{Q}}_{\propto \beta^2 \langle r^2 \rangle^2} + L \cdot S$$

SU(3) symmetry of a configuration

- Each particle has SU(3) symmetry (N, 0), $N = 2n + \ell$
- Allowed spins dictated by antisymmetry constraints
- Final quantum numbers are $N_{\rm ex}(\lambda\mu)S$. _

Elliott rotational bands: ¹⁰Be

SU(3) and S_p decomposition

(5,0)

SU(3) and S_p decomposition

U.S. DEPARTMENT OF ENERGY

SU(3) and S_p decomposition

Conclusions

- A deformed single particle picture provides an simple approximate description for (light) neutron rich nuclei
 Incorporating deformation in theory important → deformed coupled cluster
- Breakdown of N = 8 shell closure melts in ¹²Be, but not in ¹⁴C Also don't see N = 6 or N = 14 subshell closure
- Occupations hint core of ¹⁹C halo not quite ¹⁸C
 Caveat: Carbon results only with low N_{max}. Intruder states could impact ground state structure.
- SU(3) picture suggests 10 Be and carbon isotopes triaxial
- Spin decompositions indicate breakdown of 3α structure in carbon isotopes

