Structure of three-body systems with hard core nucleon-nucleon interactions

Bahati Mukeru

Department of Physics, University of South Africa (UNISA)

ICTP-SAIFR/MITP workshop on multineutron clusters in nuclei and in stars, São Paulo, Brazil, June 2-6 2025

イロト イポト イヨト イヨト

Э

O Nuclear matter under extreme condition: Exotic nuclei

Interplay of nn and three-body interactions in three-body systems

Breakup reactions with various *nn* interactions

Onclusion

Э

Nuclear matter under extreme condition:

- The driplines: limits of the nuclear landscape, where additional nucleons can no longer be kept in the nucleus, they literally drip out.
- Possible disappearance of normal nuclear shell closures, replaced by new magic numbers.
- Gradual vanishing of the binding energy of particles (clusters) may give rise to beta-delayed particle emission or even particle radioactivity.
- Occurrence of nuclear halo states: nucleon(s) outside a saturated core within the same exotic nucleus.

Bahati Mukeru

Structure of three-body systems with hard core nucleon-nucleon

-

Theoretical Adv.: Few-Body structure

- ⁶He \rightarrow ⁴He + n + n
- ${}^{16}\text{Be} \rightarrow {}^{14}\text{Be} + n + n$
- ${}^{22}C \rightarrow {}^{20}C + n + n$

Property: Extended matter radius

イロト イヨト イヨト イヨト 三日

HH Expansion Method Expansion of the 3B WF Coupled equations

One defines: $L = \ell_x + \ell_y$ $S = s_{n1} + s_{n2}$ \boldsymbol{n}_1 J = L + S $\rho = \sqrt{x^2 + y^2}$: Hyper-radius (x,ℓ_x) (y, ℓ_u) $\alpha = \arctan(y/x)$: Hyper-angle $Y_{\ell_{x}}^{m_{l_{x}}}(\Omega_{x})$: spherical harm. associated with ℓ_{\star} n_2 $Y_{\ell_v}^{m_{l_y}}(\Omega_y)$: spherical harm. associated with $\ell_{\rm v}$

イロン イヨン イヨン イヨン Bahati Mukeru Structure of three-body systems with hard core nucleon-nucle

Э

HH Expansion Method Expansion of the 3B WF Coupled equations

The expansion basis is constructed as follows:

 $\Phi_{\beta}^{JM}(\Omega) = [Y_{KLM_{L}}(\Omega) \otimes \chi_{S}]_{JM}$

$$Y_{\mathcal{K}LM_{L}}(\Omega) = [Y_{\ell_{x}}(\Omega_{x}) \otimes Y_{\ell_{y}}(\Omega_{y})]_{LM_{L}}\mathcal{P}_{K}^{\ell_{x},\ell_{y}}(\alpha)$$

 $\mathcal{P}_{K}^{\ell_{x},\ell_{y}}(\alpha) = \mathcal{N}_{K}^{\ell_{x},\ell_{y}}(\cos\alpha)^{\ell_{x}}(\sin\alpha)^{\ell_{y}} \mathcal{P}_{n}^{\ell_{x}+1/2,\ell_{y}+1/2}(\cos 2\alpha)$

$$\Omega \equiv (\alpha, \Omega_x, \Omega_y) \equiv (\alpha, \theta_x, \varphi_x, \theta_y, \varphi_y)$$

 $K = 2n + \ell_x + \ell_y$: Hyper-momentum

 $P_n^{\ell_x+1/2,\ell_y+1/2}(\cos 2\alpha)$: Jacobi polynomials

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

HH Expansion Method Expansion of the 3B WF Coupled equations

The WF is expanded as follows:

$$\Psi_{JM}(
ho,\Omega)=rac{1}{
ho^{5/2}}\sum_eta {\sf F}^J_eta(
ho) \Phi^{JM}_eta(\Omega)$$

•
$$F^{J}_{\beta}(\rho)$$
: radial part of WF

- $\Phi_{\beta}^{J}(\Omega)$: angular part off wf.
- β ≡ (K, L, S, ℓ_x, ℓ_y): contains the various quantum numbers.

イロン 不同 とくほど 不同 とう

HH Expansion Method Expansion of the 3B WF Coupled equations

The substitution of $\Psi_{JM}(\rho, \Omega)$ into Schrödinger eq. gives a set of CDE:

$$\begin{bmatrix} -\frac{\hbar^2}{2m_N} \left(\frac{d^2}{d\rho^2} + \frac{\mathcal{L}(\mathcal{L}+1)}{\rho^2} \right) - \varepsilon_{3b} \end{bmatrix} F_{\beta}^J(\rho) + \sum_{\beta' \neq \beta} V_{\beta'\beta}(\rho) F_{\beta'}^J(\rho) = 0$$

$V_{\beta'\beta}(\rho)$: Coupling matrix elements

$$V_{\beta'\beta}(\rho) = \langle \Phi_{\beta'}^{JM}(\Omega) | V_{cn}(x) + V_{nc}(x) + v_{nn}(x) | \Phi_{\beta}^{JM}(\Omega) \rangle + V_{3b}(\rho) \delta_{\beta\beta'}$$

 $V_{cn_1}(x) = V_{n_1c}(x)$: core-neutron interaction $v_{nn}(x)$: neutron-neutron interaction

3

Seven different nn interactions are used:

B3Y-Fetal: Shallower, but more repulsive at $x \rightarrow 0$ **KKS-Av18:** Deeper, but more repulsive at $x \in [0.4 : 0.6]$

Bahati Mukeru

Structure of three-body systems with hard core nucleon-nucleon-

Convergence of ε_{3b} in terms of K_{max} :

Covergence is obtained in all 7 cases.

Convergence is faster for soft core *nn* **interactions**.

イロト イヨト イヨト イヨト

Table: Root-mean-square radii, matter radius and the weight of $W_{40}(\%)$ and $W_{42}(\%)$ on the total WF for ¹⁶Be

Interaction	$\sqrt{\langle ho^2 angle}$ (fm)	$R_{mat}(fm)$	W ₄₀ (%)	W ₄₂ (%)
Gaussian	5.484	3.140	64	25
Minnesota	5.615	3.155	62	27
Pöschl-Tell	5.433	3.134	65	24
M3Y-Reid	5.535	3.146	55	34
M3Y-Paris	5.604	3.153	55	36
KKS-Av18	5.611	3.154	52	37
B3Y-Fetal	5.651	3.158	50	38

Bahati Mukeru Structure of three-body systems with hard core nucleon-nucleon

イロト イヨト イヨト イヨト

æ

Table: Root-mean-square radii, matter radius and the weight of $W_{00}(\%)$ on the total WF for ^{22}C

Interaction	$\sqrt{\langle ho^2 \rangle}$	R _{mat}	$W_{00}(\%)$
Gaussian	10.867	3.667	90
Minnesota	10.877	3.668	90
Pöschl-Tell	10.864	3.664	91
M3Y-Reid	11.003	3.685	97
M3Y-Paris	11.036	3.689	97
KKS-Av18	11.062	3.693	97
B3Y-Fetal	11.092	3.697	97

イロト イヨト イヨト イヨト

臣

Conclusion

$$W_{KL} = \int_{0}^{\infty} d\rho |F_{\beta}^{J}(\rho)|^{2}$$

$$\sqrt{\langle \rho^{2} \rangle} = \left[\int_{0}^{\infty} d\rho \rho^{2} |F_{\beta}^{J}(\rho)|^{2}\right]$$

$$R_{mat} = \sqrt{\frac{1}{A}\left(A_{c}R_{c}^{2} + \langle \rho^{2} \rangle\right)}$$

$$\int_{0}^{\infty} d\rho \rho^{2} |F_{\beta}^{J}(\rho)|^{2}$$

$$\int_{0}^{0} d\rho \rho^{2} |F_{\beta}^{J}(\rho)|^{2}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

Table: Depth of 3B adjusted to obtain the experimental ε_{3b}

Interaction	v _{3b} (⁶ He)	v _{3b} (¹⁶ Be)	v _{3b} (²² C)
Gaussian	-1.7330	-1.0310	-3.938
Pöschl-Teller	-1.308	-0.4590	-3.963
Minnesota	-2.267	-2.419	-4.082
M3Y-Reid	-27.4870	-5.0177	-6.935
M3Y-Paris	-27.6975	-6.0447	-7.180
KKS-Av18	-27.8390	-6.3315	-7.339
B3Y-Fetal	-27.9850	-6.9201	-7.498

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

PT interactions

The off-diagonal p-t interaction is:

$$U(\mathbf{r}, \mathbf{R}) = U^{Coul}(\mathbf{r}, \mathbf{R}) + U^{Nucl}(\mathbf{r}, \mathbf{R})$$

= $U^{coul}_{ct}(\mathbf{R}_{ct}) + U^{Coul}_{vt}(\mathbf{R}_{vt}) + U^{Nucl}_{ct}(\mathbf{R}_{ct}) + U^{Nucl}_{vt}(\mathbf{R}_{vt})$

PT interactions

Double folding procedure used for $U_{ct}(R_{ct})$:

$$U_{ct} = \iint \rho_t(\mathbf{r}_t) \rho_c(\mathbf{r}_c) \mathbf{v}_{nn}(\mathbf{s}) d\mathbf{r}_t d\mathbf{r}_p$$

- *ρ_t*: target nucleus density
- *ρ_c*: core nucleus density
- $v_{nn}(s)$: nucleon-nucleon interaction

•
$$s = R_{ct} - r_t + r_c$$

イロト イヨト イヨト イヨト

э

PT interactions

Table: Calculated Coulomb barrier heights compared with SPP potential

Interaction	$^{29}{ m F} + ^{208}{ m Pb}$	$^{30}\text{Ne} + ^{208}\text{Pb}$
M3Y-Reid	81.13	90.35
M3Y-Paris	80.65	89.82
KKS-Av18	82.06	91.40
B3Y-Fetal	80.37	89.51
SPP	80.35	89.47

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Coupled equations Results

We solve the following CDE obtained with CDCC formalism

$$[T_{R} + U_{\alpha_{b}\alpha_{b}}^{LJ}(R) + \varepsilon_{\alpha} - E_{cm}]F_{\alpha}^{LJ}(R) - \sum_{\alpha \neq \alpha'} i^{L-L'} U_{\alpha\alpha'}^{LL'J}(R)F_{\alpha'}^{L'J}(R) = 0$$

 T_R : Kinetic energy term $U_{\alpha_b\alpha_b}^{LJ}(R)$: Interaction in the elastic scattering channel ε_{α} : excitation energies

 E_{cm} : Incident energy in the c.m.

A D D A D D A D D A D D A

 $U_{\alpha\alpha'}^{LL'J}(R)$: CME

Coupled equations Results

Solve CDE to obtain reaction observables

• BC at $R \to \infty$:

$$F_{\alpha}^{LJ}(R) \rightarrow \frac{i}{2} \left[H_{\alpha}(K_{\alpha}R) \delta_{\alpha_{b}\alpha} - H_{\alpha}^{+}(K_{\alpha}R) S_{\alpha\alpha'}^{J}(K_{\alpha'}) \right]$$

- $H_{\alpha}(K_{\alpha}R)$: incoming Coulomb wave
- $H_{\alpha}(K_{\alpha}R)$: outgoing Coulomb wave

Obtain scattering matrix $S^J_{\alpha\alpha'}(K_{\alpha'})$ and construct breakup observables

(日) (四) (三) (三) (三)

Coupled equations Results

$$^{30}\text{F} + ^{208}\text{Pb} \rightarrow ^{29}\text{F} + n + ^{208}\text{Pb}$$

$$^{31}\text{Ne} + ^{208}\text{Pb} \rightarrow ^{30}\text{Ne} + \textit{n} + ^{208}\text{Pb}$$

Same $S_n = -0.472 \,\mathrm{MeV}$ is considered in both cases.

Observation:

Folded potential account for similar results in both cases, similar to a 3B system.

イロト イヨト イヨト イヨト

Coupled equations Results

Observation:

At $\varepsilon \ll 1$, KKS-Av18 corresponds to higher peaks $(p_{3/2})$. It also corresponds to larger $min(V_{ct}(R_{ct}))$

In conclusion:

- The various nn interactions are found to provide equivalent description of the internal structures of three-body neutron-rich nuclei, irrespective of whether they contains strongly repulsive hard cores or not.
- For a light system (with fewer neutrons), a strongly attractive three-body interaction is needed in the case of a nn interaction with a strongly repulsive core.
- A weak 3B interactions when the number of neutrons increases, can be an indication that the role of the 3B interaction is being compensated by *nn* correlations.
- These *nn* interactions are also found to describe the breakup cross sections.