Deformation in one-neutron halo nuclei using halo effective field theory

Live-Palm Kubushishi

P.Capel, D.R.Phillips, H-W.Hammer

Department of Physics and Astronomy Ohio University

June 5, 2025

Halo nuclei

- Light, neutron-rich nuclei with large matter radius
- \bullet Low $\boldsymbol{\mathsf{S}}_n$ or $\boldsymbol{\mathsf{S}}_{2n}{:}$ one or two loosely-bound neutrons
- Clusterised structure: neutrons can tunnel far from the core
 → halo-nucleus ≡ compact core + valence neutron(s)

- Our case study : $^{11}\text{Be} \equiv {}^{10}\text{Be} + n$
- Short-lived \rightarrow studied via reactions (e.g. **breakup**)
 - \rightarrow need of an effective few-body model for reaction calculations
 - \rightarrow Halo-EFT

Halo-EFT description of ¹¹Be

• Halo-structure \rightarrow separation of scales (in energy/distance)

$$ightarrow$$
 small parameter $\eta=\sqrt{rac{\mathrm{S}_{1\mathrm{n}}}{\mathrm{E}_{2^+}}}$ or $rac{\mathrm{R}_{\mathrm{core}}}{\mathrm{R}_{\mathrm{halo}}}\simeq 0.4 < 1$

 \rightarrow expansion of the core-neutron Hamiltonian along $\eta,$

i.e. reproducing the low-energy (viz. long distance) behaviour of the system [Bertulani, Hammer, van Kolck, NPA 712, 37 (2002)] Review: [Hammer, Ji, Phillips, JPG 44, 103002 (2017)]

- ${}^{11}\text{Be} = {}^{10}\text{Be}(0^+) + n$ [core has no internal structure]
 - \rightarrow single-particle description: $\textit{H}(r) = \mathrm{T}_r + \mathrm{V_{cn}}(r)$
- Effective Gaussian potentials in each partial wave ℓj @NLO ($\ell \leqslant 1)$:

$$V_{cn}(r) = V_{\ell j}^{(0)} e^{-\frac{r^2}{2\sigma^2}} + V_{\ell j}^{(2)} r^2 e^{-\frac{r^2}{2\sigma^2}}$$
$$V_{\ell j}^{(0)} \text{ and } V_{\ell j}^{(2)} \text{ fitted to reproduce:}$$
$$\rightarrow \mathbf{S}_n \text{ & asymptotic normalization coefficient (ANC) for bound states}$$
$$\rightarrow \text{ effective range parameters for continuum states}$$
$$\sigma := \text{cut-off} \rightarrow \text{ evaluates sensitivity to short-range physics}$$

What is the problem ?

• Assumption: ¹⁰Be remains in its 0⁺ ground state still valid ?

 \rightarrow Nuclear breakup: $^{11}Be+C \rightarrow ^{10}Be+n+C$

 \Rightarrow Missing $[^{10}Be(2^+)]$ degree of freedom

June 5, 2025

4 / 20

[Moro & Lav. PRL 109, 232502 (2012)]

Core excitation within Halo-EFT

• Extension of Halo-EFT to include core excitation:

$$H(\mathbf{r},\xi) = \mathrm{T}_{\mathbf{r}} + \mathrm{V}_{\mathrm{cn}}(\mathbf{r},\xi) + \mathrm{h}_{\mathrm{c}}(\xi)$$

 $h_c(\xi)$:= intrinsic Hamiltonian of the core with eigenstates $\chi_I^c(\xi)$

• Halo-EFT particle-rotor model [Bohr and Mottelson (1975)]:

$$V_{cn}(\mathbf{r},\xi) = V_{cn}(\mathbf{r}) + \beta \sigma Y_2^0(\hat{\mathbf{r}}') \frac{d}{d\sigma} V_{cn}(\mathbf{r})$$

• Set of radial coupled-channel Schrödinger equations:

$$\begin{bmatrix} T_{r}^{\ell} + V_{\alpha\alpha}(r) + \epsilon_{\alpha} - E \end{bmatrix} \psi_{\alpha}(r) = -\sum_{\alpha' \neq \alpha} V_{\alpha\alpha'}(r) \psi_{\alpha'}(r)$$

with $V_{\alpha\alpha'}(r) = \langle \mathcal{Y}_{\alpha}(\hat{r}) \chi_{\alpha}(\xi) | V_{cn}(\mathbf{r}, \xi) | \mathcal{Y}_{\alpha'}(\hat{r}) \chi_{\alpha'}(\xi) \rangle, \ \alpha = \{\ell, s, j, I\}$

\rightarrow solved within the R-Matrix method on a Lagrange mesh [D. Baye, Phys. Rep. 565 (2015) 1]

 \rightarrow study impact of core excitation on: ψ_{α} , δ_{α}

Core excitation in ¹¹Be $\frac{1}{2}^+$ ground state

- Compare to *ab initio* predictions [Calci et al., PRL 117, 242501 (2016)] $\Psi_{1/2^+} = \psi_{1s1/2}(\mathbf{r}) \otimes \chi_{0^+}^{^{10}\text{Be}} + \psi_{0d5/2}(\mathbf{r}) \otimes \chi_{2^+}^{^{10}\text{Be}} + \psi_{0d3/2}(\mathbf{r}) \otimes \chi_{2^+}^{^{10}\text{Be}}$
 - NLO potentials fitted to reproduce S_n and *ab initio* ANC for $\neq \beta$

Core excitation in ¹¹Be $\frac{1}{2}^-$ bound excited state

- $\Psi_{1/2^-} = \psi_{0p1/2}(\mathbf{r}) \otimes \chi_{0^+}^{^{10}\mathrm{Be}} + \psi_{0p3/2}(\mathbf{r}) \otimes \chi_{2^+}^{^{10}\mathrm{Be}} + \psi_{0f5/2}(\mathbf{r}) \otimes \chi_{2^+}^{^{10}\mathrm{Be}}$
- \bullet NLO potentials fitted to reproduce ${\bf S}_n$ and ${\it ab}$ initio ANC for $\neq \beta$

- phase shifts: less good than without core excitation
- \Rightarrow No influence of core excitation on structure of ^{11}Be e.s.because shell-model state ?

Electric dipole strength: B(E1)

E1 transition from bound state to bound state: $\frac{1}{2}^+ \rightarrow \frac{1}{2}^-$

	B(E1) (e ² fm ²)	
σ (fm)	$\beta = 0.5$	$\beta = 0$
1.3	0.104	0.103
1.5	0.106	0.106
1.8	0.109	0.108
2.0	0.110	0.109
ab initio	0.117	
Experiments		
[PRC 28, 497]	0.116(12)	
[PLB 394, 11]	0.099(10)	
[PLB 650, 124]	0.105(12)	
[PLB 732, 210]	0.102(2)	

- Core excitation has no influence on B(E1)
- Good agreement with exp. data but lower than ab initio
- \bullet Ab initio overestimates exp. B(E1) \rightarrow wrong pre-asymptotic region ?

Core excitation in low-energy resonances : $\frac{5}{2}^+$, $\frac{3}{2}^-$, $\frac{3}{2}^+$ Compare to *ab initio* predictions [Calci et al., PRL 117, 242501 (2016)]

• NLO potentials **fitted to** reproduce exp. **E**_{res} and Γ_{res} for $\neq \beta$

• Excellent agreement with *ab initio* results \rightarrow probing **nature of resonances** $[\Gamma_{0^+}, \Gamma_{2^+}]$

 \bullet Direct access to scattering wfs, phase shifts $\rightarrow \frac{dB(E1)}{dE}$, cross sections,...

dB(E1)/dE

E1 transition from $\frac{1}{2}^+$

bound state to the continuum with final-state interactions

- Good agreement with exp. data reproduced but overshoot at low E (like ab initio)
- Significant σ -dependency because of $\frac{3}{2}^{-}$ phaseshift

Coulomb breakup & Equivalent Photon Method

Coulomb breakup: ${}^{11}\text{Be}+\text{Pb} \rightarrow {}^{10}\text{Be}+n+\text{Pb}$ @69AMeV \rightarrow E1-dominated

Coulomb breakup & Equivalent Photon Method

Coulomb breakup: ${}^{11}\text{Be}+\text{Pb} \rightarrow {}^{10}\text{Be}+n+\text{Pb}$ @69AMeV \rightarrow E1-dominated

 \rightarrow B(E1) distribution overshoots reflected on cross-sections (which are folded)

Caveats

Simple portable structure model for (breakup) reactions codes, including core deformation

 \rightarrow with 2 caveats:

- Power counting not discussed
- @NLO: non zero interactions in channels where $\ell \geq 1$ (mean field vision)

QUESTION: Could we formulate this inclusion of deformation in a more EFT-oriented spirit ?

 \rightarrow Yes. let us discuss it...

Towards a rotor (Nilsson) Halo-EFT

Goal:=describe key features of the low-energy spectrum of (light) deformed one-neutron nuclei **Key idea**:= keep Halo-EFT and add deformation as subleading effect \rightarrow perturbatively **Assumptions on the core**:

- axially [a=c=R_{core}] symmetric rigid rotor: Ĥ_{core} = ^{Î²}/_{2θ}
 → rotational spectrum: 0⁺g.s. (bandhead) and low-lying 2⁺ excited state
- deformed ellipsoid along z-axis (symmetry axis) in intrinsic frame \rightarrow stretching parameter ζ directly linked to β for small deformation [c = ζR_{core}]

Operators

-c-n potentials in Halo-EFT (momentum space)

$$\begin{split} & \texttt{@LO}: \mathbf{V}_{\mathrm{LO}} = \mathbf{C}_{0} \\ & \texttt{@NLO}: \mathbf{V}_{\mathrm{NLO}} = \mathbf{C}_{0} + \mathbf{C}_{2}(\mathbf{p}^{2} + \mathbf{p}'^{2}) \end{split}$$

-Core is a rigid rotor $\rightarrow \hat{\rm H}_{\rm core} = \frac{\hat{I}^2}{2\theta} \sim {\bf v}^2$ -Quadrupole contribution:

$$\text{@NNLO}: V_{def} = C_{def} \mathbf{I}.\mathbf{q}.\mathbf{I}.\mathbf{q} - \frac{1}{3} (\mathbf{I}.\mathbf{q})^2$$
 with $\mathbf{q} = \mathbf{p} - \mathbf{p}'$

 \rightarrow C_{def}:=free parameter (not an LEC) related to β -**Hyperfine** contribution:

$$\mathrm{V}_{\mathrm{hf}} = \mathrm{C}_{\mathrm{hf}} \; \mathbf{I}. \mathbf{j} \qquad ext{ with } \; \; \mathbf{j} = oldsymbol{\ell} + oldsymbol{s}$$

 \rightarrow $\mathrm{C}_{\mathrm{hf}}{:=}$ additionnal LEC to be fitted

 \rightarrow higher order terms suppressed by powers of \mathbf{v}^2

Goal: tune $C_0,\,C_2$ and $C_{\rm hf}$ to reproduce low-energy spectrum of halo nucleus

Rotor (Nilsson) Halo-EFT

 $\label{eq:Question: What about the case where $p_{halo} \sim p_{rotor}$?} \\ \rightarrow $deformation becomes LO [H_{LO} := H_{Nilsson}]$}$

$$\frac{\gamma^2}{2\mu} \sim \frac{\mathrm{I}(\mathrm{I}+1)}{2\theta}$$
 (1)

$$\theta = \theta_{\rm xx} = \theta_{\rm yy} = \frac{\rm Am_N}{5} R_{\rm core} (1 + \zeta^2) \quad \text{and} \quad \mu = \mu_0 m_N$$
(2)

$$\frac{\gamma^2}{2\mu_0} \sim \frac{\mathrm{I}(\mathrm{I}+1)}{\frac{\mathrm{A}}{5}\mathrm{R}_{\mathrm{core}}^2(1+\zeta^2)}$$
(3)

with different regimes:

 $\zeta \gg 1$: prolate (:=elongation along z-axis); $\zeta \ll 1$: oblate (:=flattening); $\zeta = 1$: spherical \rightarrow relates the geometry (moment of inertia), binding, nb of nucleons \rightarrow this scenario could happen for heavier halos (larger nb of nucleons): eg: ¹⁷C, ¹⁹C (sd shell), ³¹Ne (fp shell)

¹¹Be: positive parity states

[PRELIMINARY]

- $\frac{1}{2}$ ⁺g.s.; S_{1n}=0.5 MeV; E₂+(¹⁰Be)=3.368 MeV \rightarrow p_{halo} \gg p_{rotor}
- $\bullet\,$ Tune C_0,C_2 and C_{hf} against $S_{1n},$ positions of the resonances of ^{11}Be

- We reproduce the position of each state
- \bullet Unprecised widths for resonances \rightarrow higher order effect

³¹Ne: deformed p-wave halo

[PRELIMINARY]

- $\frac{3}{2}$ g.s.; S_{1n}=0.24 MeV; E₂₊(³⁰Ne)=0.801 MeV \rightarrow p_{halo} \sim p_{rotor}
- \bullet Tune C_0 and C_{hf} against $S_{1n}\text{,}$ positions of the resonances, for $\beta{=}0.56\text{,}$ we get:

- We reproduce the position of each state
- No scattering data to compare to (no exp. widths)

³¹Ne: $\frac{3}{2}^{-}$ ground state

[PRELIMINARY]

Wave functions in each channel for β =0.56:

Other models available...but no scattering data:

- Urata, et al. PRC 83, 041303(R) (2011); Minomo, et al. PRL 108, 052503 (2012);
- Hong, Bertulani, Kruppa, PRC 96 064603 (2017)...

Outlook: E1-dissociation/Coulomb breakup [Elkamhawy, Hammer JPG 50 02510 (2023)]

Conclusion

We want to study reactions involving **one-neutron halo nuclei** :

 $\bullet\,$ need of a realistic few-body model for reaction calculations $\rightarrow\,$ Halo-EFT

Our model of one-neutron halo nuclei [¹¹Be] provides:

- explicit inclusion of core excitation within Halo-EFT
- realistic description of both bound and low-lying resonant states in deformed halos [¹¹Be]
- portable structure model including deformation for reaction codes

[L.-P. Kubushishi and P. Capel, (2025), (in preparation)]

Outlook:

- \bullet same formalism to study structure and breakup of $^{17}\text{C},~^{19}\text{C}$ (sd-shell), ^{37}Mg
- include our model in reaction codes (nuclear breakup, knock-out,...)
- Nilsson Halo-EFT for light deformed nuclei

[L.-P. Kubushishi and D. R. Phillips, (2025), (in preparation)] \rightarrow sd-shell nuclei: ^{17}C , ^{19}C

Thanks to my collaborators!

- Pierre Capel (JGU Mainz)
- Daniel R. Phillips (Ohio University)
- Hans-Werner Hammer (TU Darmstadt)

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

