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Halo EFT
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Halo EFT

Define Rhalo=<r2>1/2. Seek EFT expansion in Rcore/Rhalo. Valid for λ≲Rhalo

Typically R≡Rcore∼2 fm.  Since <r2> is related to the neutron separation 
energy we seek systems with neutron separation energies of order 1 MeV

22C, 11Li, 12Be, 19B, 62Ca (hypothesized), and 3H:  all s-wave 2n halos
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Bedaque, Hammer, van Kolck, PLB (2003); 

Review: Hammer, Ji, DP, J. Phys. G 44, 103002 (2017) 



Halo nuclei: examples

http://nupecc.org
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The unitarity limit in momentum distributions of 2n halos

An EFT approach to computing quasi-free core knockout
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An EFT approach to computing quasi-free core knockout

We can measure ann in the nn FSI!

We can measure the bound-state nn momentum 
distribution in the halo!

All other reaction mechanisms can be filtered out!



Two-body scattering amplitude in Halo EFT

Effective-range expansion, valid for kR<1

Typical situation |r|∼R. Here we assume |r|≪|a|

LO in an expansion in powers of r/a: reproduce a, or equivalently S1n

NLO in the expansion: reproduce r and a, or equivalently S1n and ANC 

Errors for scattering are then O(r3/a3) and O(k3r3)

t2B
0 (E) = −

2π
mR

1
k cot δ(E) − ik

; k = 2mRE

k cot δ(E) = −
1
a

+
1
2

rk2 + O(k4R3)



Two-body scattering amplitude in Halo EFT

Effective-range expansion, valid for kR<1

Typical situation |r|∼R. Here we assume |r|≪|a|

LO in an expansion in powers of r/a: reproduce a, or equivalently S1n

NLO in the expansion: reproduce r and a, or equivalently S1n and ANC 

Errors for scattering are then O(r3/a3) and O(k3r3)

t2B
0 (E) = −

2π
mR

1
k cot δ(E) − ik

; k = 2mRE

k cot δ(E) = −
1
a

+
1
2

rk2 + O(k4R3)

Elastic scattering: this is effective-range theory with built-in UQ



But it’s more than just s-wave nn & nc scattering

So not just two-body scattering: also EM processes

And other partial waves

Extension to pp, p-core, and cluster-cluster scattering

Expansion around limit of a bound or unbound state near threshold. 
Include higher-order effects in ERE in proportion to their importance. 
Expansion in , where  is scale of unresolved core physics

Extends to three-body states at cost of an additional parameter (S2n)

Then predictive for four-body states (bosons or distinguishable 
particles) at LO accuracy

kRcore Rcore

Bertulani, Hammer, van Kolck (2003); Bedaque, Hammer, van Kolck 
(2003); Brown & Hale (2005); Braun et al. (2018); Ando (2016-present)

Kong & Ravndal (1999); Higa, Hammer, van Kolck (2008); 
Ryberg, Forssén, Hammer, Platter (2014, 2016)

Chen, Rupak, Savage (1999); 
Hammer, DP (2011)

Bedaque, Hammer, van Kolck (1999); Hammer & Mehen (2001); Bedaque et al. (2002); Ji, Platter, DP (2009)

Platter, Hammer, Meißner (2005); Bazak, Kirscher, König, Pavon Valderrama, Barnea, van Kolck (2018)



Equations for s-wave 2n halo
Canham, Hammer (2008)



Core-n and n-n contact interactions at leading order: solve 3B problem

(cn)-n contact interaction to stabilize three-body system

Equations for s-wave 2n halo

= 2×Ac An

An
+ An

= Ac + An

Canham, Hammer (2008)



Core-n and n-n contact interactions at leading order: solve 3B problem

(cn)-n contact interaction to stabilize three-body system

Efimov-Thomas effects

Equations for s-wave 2n halo

= 2×Ac An

An
+ An

= Ac + An

Canham, Hammer (2008)
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Core-n and n-n contact interactions at leading order: solve 3B problem

(cn)-n contact interaction to stabilize three-body system

Efimov-Thomas effects

Inputs: Enn=1/(m ann2), Enc, S2n (=B)

Output: everything; up to O(Rcore/Rhalo)

Equations for s-wave 2n halo

= 2×Ac An

An
+ An

= Ac + An

Canham, Hammer (2008)
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11Li as a 2n halo
ann=-18.7 fm, Enc=0.026 MeV

S2n=369 keV

Calculations done with a cutoff of 470 
MeV, but results checked for a cutoff of 
700 MeV

Here results with a spin-0 core, but we 
also examined case of spin-3/2 core

Results identical if spin-1 and spin-2 nc 
interactions have equal strength

11Li wave function 

Göbel, Acharya, Hammer, DP, PRC (2023)



11Li as a 2n halo
ann=-18.7 fm, Enc=0.026 MeV

S2n=369 keV

Calculations done with a cutoff of 470 
MeV, but results checked for a cutoff of 
700 MeV

Here results with a spin-0 core, but we 
also examined case of spin-3/2 core

Results identical if spin-1 and spin-2 nc 
interactions have equal strength

11Li wave function 

Göbel, Acharya, Hammer, DP, PRC (2023)

Can we test this prediction for 
ground-state momentum distribution?
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E1 photodissociation of a 2n halo
PWIA

tnn FSI tnc FSI

dB(E1)
dE

= ∑
μ

∫ dp p2 ∫ dq q2 |c ⟨p, q, Ω(1,μ)
c |ℳ(E1,μ) |Ψ⟩ |2 δ(Ef − E)

c⟨p, q, Ω(1,μ)
c | (1 + tnn(Ep)G(nn)

0 (Ep))ℳ(E1,μ) |Ψ⟩
n⟨p, q, Ω(0,ξ)

n | (1 + tnc(Ep)G(nc)
0 (Ep))ℳ(E1,μ) |Ψ⟩

then can multiply Møllers for two t’s in final-state, three t’s in final-state, etc. 

Modifications to matrix element due to one final-state interaction/
wave-function distortion encoded in Møller operators
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Adding FSI, piece by piece

 so PWIA images rc times probability distributionℳ(E1,μ) = eZcrcY1,μ( ̂rc)

: nn FSI effect is largeΩ†
nn = (1 + tnnG0)

 nc FSI effect seems small, but does shift peakΩ†
nc = (1 + tncG0)

Order in which Møller operators are applied affects peak height somewhat



Comparison with data

Two active nc spin 
channels is favored

scenario



Comparison with data

Agreement with data is good, given that this is only a 
leading-order calculation



What we learn from 11Li

Momentum distribution of s-wave 2n halos dominated by low-
momentum part 

In principle momentum c-nn momentum distribution “imaged” in 
Coulomb dissociation

But FSI is large, especially due to nn interactions

An order-by-order treatment of FSI using Møller operators seems 
to converge, but reasons for that are not entirely clear

11Li Coulomb dissociation work shows

Seek a more selective probe of the nn 
momentum distribution



RIKEN experiment with 6He beam

Detect proton and alpha in TPC

Detect neutrons in HIME + NEBULA: excellent energy resolution 

Tom Aumann spokesperson



6He(p,p'α) and the nn scattering length

Quasi-free alpha-particle knockout can leave nn pair almost at rest

Final-state interaction then generates significant dependence of neutron 
relative-energy spectrum f(p2/mn) on ann

6He acts as a “holder” for low-momentum neutrons  

Neutrons actually move fast in lab. frame: inverse kinematics

Tnn

-q
-q+p/2

-q-p/2

(𝜔,q+k)
q

Ac

Göbel, Aumann, Bertulani, Frederico, Hammer, DP, PRC (2021)
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Sensitivity to ann and (not) rnn

Note that since this is not an absolute measurement 
we need to decide how to normalize the spectra

6He structure at low 
momentum not significantly 

affected by cutoff or ann (or rnn)

But measured neutron
spectrum is affected by ann 

(and not by rnn)

no FSI with nn FSI



What we learn from 6He 

Very little sensitivity to ann in “structure part”

NLO corrections to structure part should be small (not this talk) 

Even less sensitivity to rnn

Strong ann dependence of final spectrum from FSI

This modification can be well described by an enhancement factor

Same conclusions hold for 3H

ρfull(Enn) ≈ G(Enn, ann, rnn)ρg.s.(Enn)

So 6He relative-momentum distribution work shows:

Göbel, Kirchner, Hammer, PRC (2025)



nn momentum distributions for s-wave 2n halos
Göbel, Hammer, DP, PRC (2024)



nn momentum distributions for s-wave 2n halos

Plot in dimensionless units so all 2n halos fall on same plot

Göbel, Hammer, DP, PRC (2024)



nn momentum distributions for s-wave 2n halos

Plot in dimensionless units so all 2n halos fall on same plot

Entirely within EFT’s domain of validity for all but 14Be

Göbel, Hammer, DP, PRC (2024)



Going to the unitarity limit

The “unitarity limit” is another limit on top of LO Halo EFT: |a|→∞

The 2B state is then right at threshold. No scales left: r→0, |a|→∞.

2B amplitude: , 2B problem has conformal invariance

Efimov effect in 3B system: infinite tower of bound states 

Ratio of 4B and 3B binding energies  + excited tetramer

Scaling dimension of multi-neutron momentum distributions calculable

What about momentum distribution of nn relative-momentum 
distributions  in Borromean s-wave 2n halos?

t2B(E = k2/mR) ∼
1
ik

E(n)

E(n−1)
= 515

E4B,n/E3B,n = 4.6

Son & Hammer (2022); Chowdry, Mishra, Son (2023) 

Platter & Hammer (2007); Deltuva (2012)



The unitarity limit can be seen in 2n halos

Works because halos 
are sufficiently bound 
that precise values of 
ann and anc do not 
matter.

A dependence also 
goes away

But can it be measured?

i.e., ρg.s. is the same 
function for all halos to 

better than 20%

ρg.s.(Enn/S2n; Vnn, Vnc, S2n, A) ≈ ρg.s.(Enn/S2n)

Cf. for 19B: Hiayma, Lazauskas, Marqués, Carbonell (2019); Hiyama, Lazauskas, Carbonell, Frederico (2023) 



Results for other 2n halos after FSI modification
Use Møller operator to include nn FSI:

Relative energy distribution:  ρ(Enn) =
mn

4Enn ∫
Λ

0
dq q2 |Ψc(pnn, q) |2 p2

nn

ψ(wFSI)
c (p, q) = < p, q; ζc, ξc | (1 + tnn(Ep)G0(Ep)) |Ψ⟩
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Results for other 2n halos after FSI modification
Use Møller operator to include nn FSI:

Relative energy distribution:  ρ(Enn) =
mn

4Enn ∫
Λ

0
dq q2 |Ψc(pnn, q) |2 p2

nn

nn interaction
produces

variation on scale
1/(mna2

nn)

Ground-state
distribution varies

on scale S2n

ψ(wFSI)
c (p, q) = < p, q; ζc, ξc | (1 + tnn(Ep)G0(Ep)) |Ψ⟩



Divide out by FSI factor
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Divide out by FSI factor
Hypothesis: ρ(wFSI)(Enn/S2n; ann, rnn) ≈ G(Enn; ann, rnn)ρg.s.(Enn/S2n)

So we plot: ρ(Enn/S2n) =
ρfull LO Halo EFT(Enn/S2n; ann)

G(Enn; ann, rnn)

Distributed ±20%
around UL 
result for ρ
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An EFT treatment of QF knockout
Briceño, Costa, Hammer, DP,  in preparation

This impulse approximation diagram has a qm→0 pole if the 2n halo has 
zero binding energy

Momenta∾k in wave function suppressed by (ɣ/k)4 in Halo EFT

Consider behavior of diagrams with different FSIs in terms of their low-
momentum scaling: count powers of p and q in each diagram

Only one-body operator, as only it has this on-shell pole (aka QF peak)

-qm/2+pm

-qm/2-pm

(𝜔,qm+k)qm

Ac
ω ≈

(qm + k)2

2M
≈

k2

2M

for qm ≪ k



Assumptions

Events are selected in which core particle is in quasi-free kinematics

Events are plotted vs qm and anything that is constant as a function of qm 
is removed as background

Only low-momentum part of loops generate the rapid dependence on qm 
that we are looking for

Scaling of low-momentum part of loops can be computed by replacing 
scattering amplitude by its on-shell value

Work with nn amplitude at unitarity and zero binding of halo 

Two-body currents generate at best weak qm dependence

Experiment

EFT



Start with the simplest case: PWIA

qm
qm + k

(−B, 0) −
qm

2
− pm

−
qm

2
+ pm

∼ Γ(pm, qm)
1

B + Enn + 3q2
m

4M

Diverges as  and  and qm→0B → 0 Enn → 0

Infra-red pole for zero energy bound-state

∼ Γ(pm, qm)
1

p2
m + 3q2

m/4

This diagram is proportional
to the momentum-space

wave function of the three-body state

Γ



Adding the nn FSI

qm

qm + k

(ω, k)

(−B, 0) −
qm

2
− pm

−
qm

2
+ pm

∼ ∫ d3l Γ(l, qm)
1

3q2
m/4 + l2

1
l2 − p2

m

1
pm

∼ Γ(pm, qm)
1

{qm, pm}pm

Same order (or even larger in certain regions of phase space) as 
diagrams where ground-state momentum distribution imaged directly 

tnn
Γ

This diagram involves integrating the 
cnn wave function against the unitarity-limit t



Key observation for nc FSI diagrams

Struck particle propagator , suppressed for k≫qm

And scattering amplitudes at relative momenta of order k carry at least an additional 
power of 1/k.

Core-neutron FSI is suppressed by  (no pole as halo nucleus’ binding→0) 

And this will hold for all diagrams, no matter how complicated, involving such FSI

∼
1

(l − qm) ⋅ k

{qm, pm}2/k2

Eikonal like

(ω, k)
qm + k

(−B, 0)

−
qm

2
+ pm

−
qm

2
− pm

∼ ∫ d3l Γ(l, qm /2 − l/2 + pm)
1

qm ⋅ (l − pm)
1

k ⋅ (l − qm)
1
k

∼ Γ({qm, pm})
1
k2

tnc
Γ



Summary and outlook
Claim part 1: Fast core removal on 2n halos offers the opportunity to measure the 
neutron-neutron scattering length via final-state interactions 

Claim part 2: S-wave 2n halos all have the same ground-state nn momentum distribution, 
within the size of higher-order corrections 

Claim part 3: It is approximately the unitary limit momentum distribution: nothing about 
the nn and nc interactions matters except that they’re strong 

Test: measure the nn relative energy distribution on several halos and divide out FSI 
effects 

EFT argument based on the infra-red poles of the quasi-free knockout amplitude implies 
that these conclusions receive “reaction-mechanism” corrections  

To do 1: assess impact of NLO corrections to both structure and reaction mechanisms

To do 2: Complete treatment of FSI in Coulomb dissociation

To do 3: Extend QF knock-out argument to more neutrons left behind: tri-neutrons, 
tetra-neutrons, etc. 

1/(a0p) ∼ r0p

∼ q2
m /k2

6He, 3H

11Li, 14Be, 17B, 22C



Lagrangian: shallow S- and P-states

c, n: “core”, “neutron” fields. c: boson, n: fermion. 

σ, πj: S-wave and P-wave fields

Minimal substitution generates leading EM couplings

Additional EM couplings at sub-leading order

L = c†
⇤

i⌃t +
⇤2

2M

⌅
c + n†

⇤
i⌃t +

⇤2

2m

⌅
n

+⇤†
⇧
�0

⇤
i⌃t +

⇤2

2Mnc

⌅
+ �0

⌃
⇤ + ⇥†

j

⇧
�1

⇤
i⌃t +

⇤2

2Mnc

⌅
+ �1

⌃
⇥j

�g0

�
⇤n†c† + ⇤†nc

⇥
� g1

2

⇧
⇥†

j (n
⇥

i⇤j c) + (c†
⇥

i⇤j n†)⇥j

⌃

�g1

2
M �m

Mnc

⇧
⇥†

j

�
i⇤j (nc)�

⇥
i⇤j (n†c†)⇥j

⌃
+ . . . ,


