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Data from M. Centelles et al, PRC 82, 054314 (2010), X. Roca-Maza et al, PRC 88, 024316 (2013),

Hu et al, Nat Phys. 18, 1196–1200 (2022).
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Data from M. Centelles et al, PRC 82, 054314 (2010), X. Roca-Maza et al, PRC 88, 024316 (2013),

Hu et al, Nat Phys. 18, 1196–1200 (2022).
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Nuclear response functions
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 Building blocks: protons and neutrons.

 Solve quantum many-body problem

with controlled approximations.

 2 ingredients: nuclear interactions and many-body solver. 

Ab initio nuclear theory



 Starting point: Hartree-Fock reference state   

 Add correlations via:

with

Coupled-cluster theory

G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D. J. Dean, RPP 77, 096302 (2014). 7
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 Starting point: Hartree-Fock reference state   

 Add correlations via:

with

Coupled-cluster theory

singles and 

doubles

(CCSD)

+ triples

(CCSDT-1)

→ coefficients from

coupled-cluster  

equations

G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D. J. Dean, RPP 77, 096302 (2014). 7
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From bound to dipole-excited states

8S. Bacca, N. Barnea, G. Hagen, G. Orlandini, T. Papenbrock, PRL 111, 122502 (2013).

Continuum problem Bound-state like problem

Lorentz Integral 

Transform (LIT)

For more details on LIT  see Miriam El Batchi’s poster



The case of  40,48Ca

R. Fearick, P. von Neumann-Cosel, S. Bacca, FB et al, Phys. Rev. Research 5, L022044 (2023). 9
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Constraints on symmetry energy
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Happy ending for 40,48Ca... but what’s next?

11 13

? ? ?

We need to extend our method beyond closed-shell nuclei!

𝛾

New (p,p’) experiments 

in open-shell Ca, Ni isotopes, 

as e.g. 42Ca, 58Ni…

… and with future 

upgrades, Coulomb 

excitation possible for

very neutron-rich nuclei. 



Open-shell nuclei:
two-particle-attached systems (2PA) 

2p-0h 3p-1h

12FB et al., PRC 110, 044306 (2024).



⍺D along the oxygen chain 

13FB et al., PRC 110, 044306 (2024).



⍺D along the calcium chain 
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⍺D along the calcium chain 

14FB et al., PRC 110, 044306 (2024).
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F. Marino, FB et al., arXiv:2504.11012 [nucl-th]. 
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Adding two-particle removed nuclei

15
F. Marino, FB et al., arXiv:2504.11012 [nucl-th]. 

What can we do while 

we wait for new data?

 see Tim Egert’s poster
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Fission

Hendrik Schatz, J. Phys. G: Nucl. Part. Phys. 43 064001 (2016)



Many other nuclear properties 
impact astrophysics

16

Fission

Hendrik Schatz, J. Phys. G: Nucl. Part. Phys. 43 064001 (2016)



17

Goal: solving

with
t = t0

Responses in a time-dependent approach



17

Goal: solving

with

For small ε, first-order time-dependent perturbation theory yields:

t = t0

Responses in a time-dependent approach



17

Goal: solving

with

For small ε, first-order time-dependent perturbation theory yields:

t = t0

Fourier transform

Responses in a time-dependent approach



17

Goal: solving

with

For small ε, first-order time-dependent perturbation theory yields:

t = t0

Fourier transform

Responses in a time-dependent approach



Time-dependent coupled-cluster equations
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Time-dependent coupled-cluster (TDCC) ansatz: 

where

D.A. Pigg, G. Hagen, H. Nam, T. Papenbrock, PRC 86, 014308 (2012).



Time-dependent coupled-cluster equations
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Time-dependent coupled-cluster (TDCC) ansatz: 

where

Cluster amplitudes evolve in time according to:

D.A. Pigg, G. Hagen, H. Nam, T. Papenbrock, PRC 86, 014308 (2012).
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Time-dependent dipole moment

NNLOopt , Nmax = 6
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Simulation time and resolution

Maximum 

simulation time

ResolutionNNLOopt , Nmax = 6
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Static LIT-CC vs time-dependent CC: 4He

NNLOopt , tmax = 2048 fm/c

Deviations of less than 1-2% between the two complementary approaches!
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Static LIT-CC vs time-dependent CC: 16O

NNLOopt , tmax = 2048 fm/c

Very good agreement also for 16O!
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Collective oscillations in real time

16O
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What happens when we increase ε? 

 Up to now, ε = 0.1 fm/MeV, where we are 

still in the linear regime.

 Non-linearities emerge when the 

perturbation becomes comparable to 

typical scale of H0.

 For 16O, B(E1)1/2 ~ 10-2  e fm [TUNL 

database], so we need ε = 100 MeV/fm

to get a perturbation ~ MeV. 
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What happens when we increase ε? 
NNLOopt , Nmax = 4

 Up to now, ε = 0.1 fm/MeV, where we are 

still in the linear regime.

 Non-linearities emerge when the 

perturbation becomes comparable to 

typical scale of H0.

 For 16O, B(E1)1/2 ~ 10-2  e fm [TUNL 

database], so we need ε = 100 MeV/fm

to get a perturbation ~ MeV. 



25

What happens when we increase ε? 

P.-G. Reinhard et al, Eur. Phys. J. A 32, 19–23 (2007).
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What happens when we increase ε? 

P.-G. Reinhard et al, Eur. Phys. J. A 32, 19–23 (2007).

NNLOopt , Nmax = 4, tmax = 1024 fm/c



Conclusions
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 Electric dipole polarizabilities cast light on the collective excitations of the nucleus as well as 

constraining the symmetry energy. 

 We extended ab initio reach of this observable to nuclei in the vicinity of closed shells.

 We started working on a time-dependent description of nuclear responses and working on different 

strategies to optimize it (natural orbital basis + adapting solver to GPUs + emulators…) for 

applications to non-linear problems and reactions in the long term.
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Static and time-dependent LITs

Γ = 10 MeV,  NNLOopt , Nmax = 6
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Static and time-dependent LITs

Γ = 5 MeV,  NNLOopt , Nmax = 6
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Static and time-dependent LITs

Γ = 1 MeV,  NNLOopt , Nmax = 6


