

Reactions induced by the ⁶He exotic nucleus: recent results from RIBRAS

K. C. C. Pires, R. Lichtenthäler, A. Lépine-Szily, O. C. B. dos Santos, U. Umbelino, A. S. Serra, B. P. Monteiro, H. F. G. Arruda, D. A. Santana, F. R. Loureiro, J. A. E. Narváez and RIBRAS Collaboration

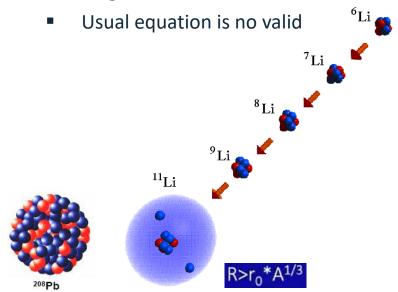
IF-USP

Outline

- Motivation to study nuclear reactions
- Exotic nuclei: some of their properties
- Methods for production of exotic nuclei: radioactive ion beams
- The RIBRAS system
- The research program
- Conclusions

Why to study nuclear reactions?

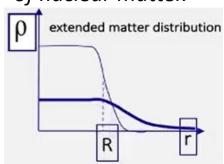
- 1. Investigating Atomic Structure;
- 2. Understanding different reaction mechanisms;
- Insights into nuclear processes in star and cosmic events: Origin and Evolution of the Universe;
- 4. Understanding the production of new isotopes and elements;
- 5. Applications: medicine, arts, arqueology, industry (technological advancements).

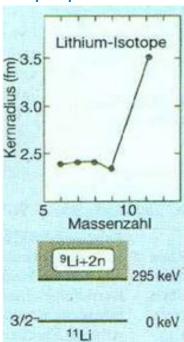


1980: Starts new era of experiments

1985: Significant milestone in Nuclear Physics

- ☐ Tanihata discovers the ¹¹Li
 - Large radius

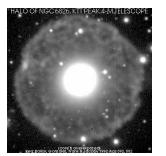


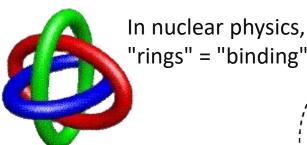

Opened up new perspectives for studying nuclear structure and properties

Saturation of the nuclear force implies a constant density.

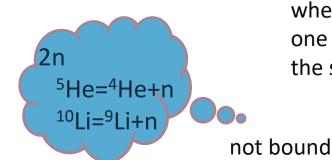
 $R=r_0*A^{1/3}, r_0\sim 1.3 \text{ fm}$

Unusual distributions of nuclear matter.


Halo effect and Borromean Nucleus



Distribution of nuclear particles beyond the typical range of nuclear forces

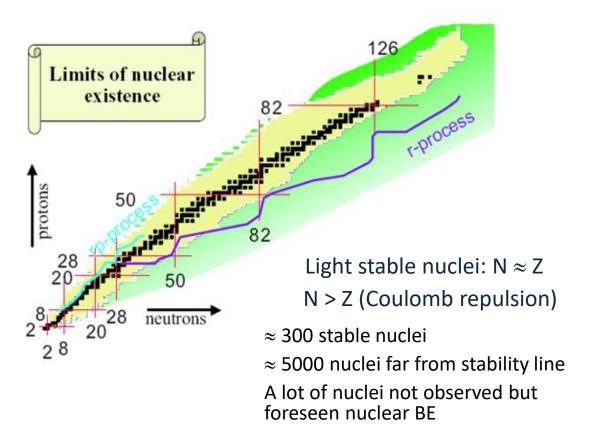


Particles around the nucleus, which significantly increases its radius

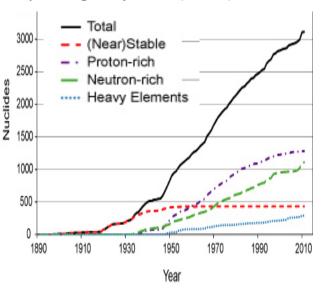
Borromean Nucleus:

$${}^{6}\text{He} = {}^{4}\text{He} + 2n$$
 ${}^{11}\text{Li} = {}^{9}\text{Li} + 2n$

"rings" = "binding".


V₁₂

V₂₃


Nucleus:

System of N nucleons, where removal of any one nucleon renders the system unbound

The nuclide chart: Nuclear Physics' field of study IFUSP

M Thoennessen *Rep. Prog. Phys.* **76 (2013)** 056301

Other properties of exotic nuclei

- Exotic nuclei in general are far from the line of stability
- Show different properties from those of stable nuclei.
 - an excess of protons (proton-rich) or neutrons (neutron-rich),
 - low binding energy;
 - half-lives that can vary from days to minutes to microseconds.

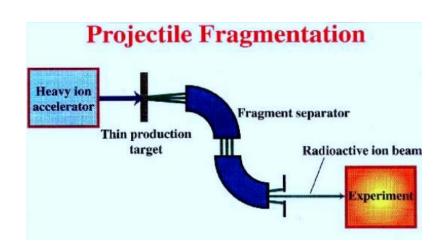
B.E(MeV) (structure)
1.47 (α+d)
2.46 (α+t)
1.67 (α + α +n)

exotic nuclei	B.E(MeV) (structure)
¹¹ Li (T _{1/2} =8.75ms)	0.300 (n+n+9Li) three-body
⁶ He (T _{1/2} =807ms)	0.973 (n+n+alfa)
¹¹ Be (T _{1/2} =13.81s)	0.501 (n+10Be)
⁸ B (T _{1/2} =770 ms)	0.137 (p+7Be)
¹⁷ F (64.5 s)	0.6 MeV (p+16O)
	0.1 MeV for 1st ¹⁷ F excited state

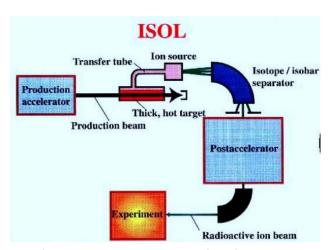
Stable nuclei have separation energies for protons and neutrons around 7-10 MeV.

7/33

Why study nuclei outside the stability line?

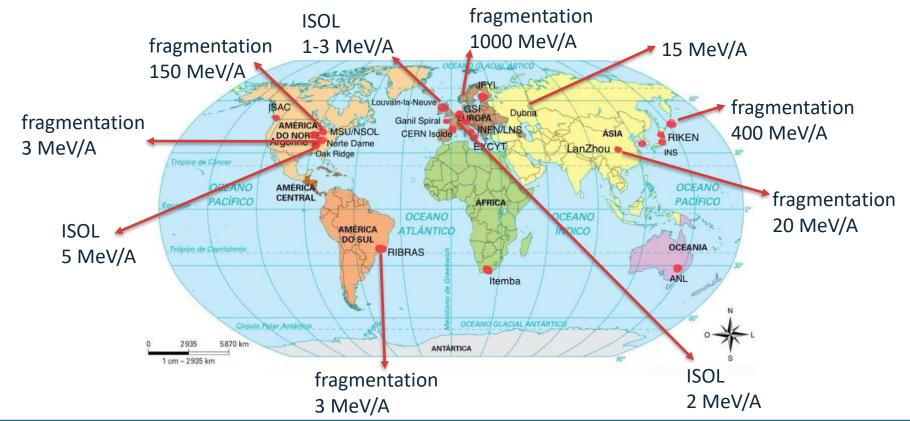

- What are the limits of the atomic nucleus?
- □ Testing nuclear models under extreme conditions of isospin and very low binding energies. Nuclear models were developed based on data from nuclei near the stability line.
- ☐ How does nuclear structure depend on isospin?
- Measurements of masses and radii of nuclei near the drip line. New phenomena such as neutron and proton halos / neutron skin.
- Nuclear Astrophysics: The nucleosynthesis of elements in stars involves paths that include exotic nuclei.
- ☐ Applications: Production of radioisotopes for medicine.

How to study nuclei outside the stability line?



- ☐ How to produce nuclei outside the stability line?
 - ☐ High-intensity accelerators: 10¹²⁻¹⁴ pps

Methods for the production of radioactive beams

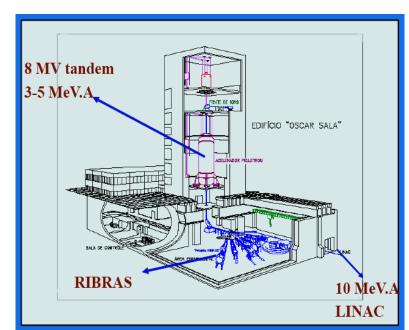

In-flight production: thin target + separator

Online separation: thick target + ion source + separator + post-accelerator

Rare Isotopes Beam facilities in the world



Major Facility for Nuclear Physics research



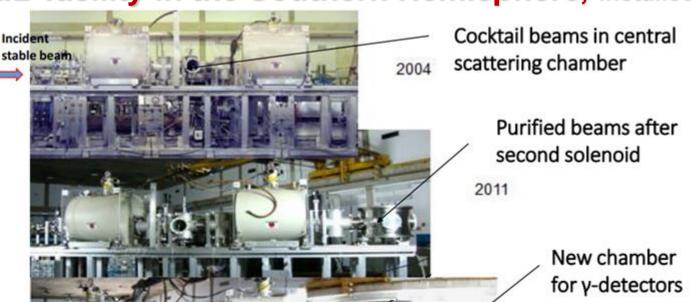
in Brazil

Tandem Accelerator
Pelletron 8UD

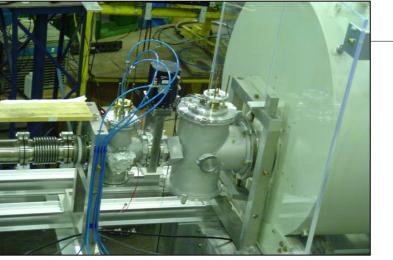
University of São Paulo Brazil

primary beams:

⁶Li, ⁷Li, ^{10,11}B, ⁹Be, ¹²C, ^{16,17,18}O, ...



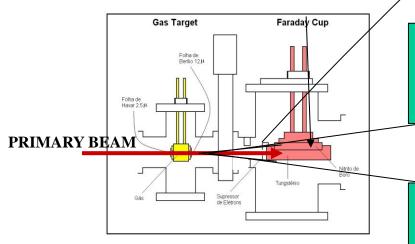
RIBRAS - Radioactive Ion Beams in Brasil

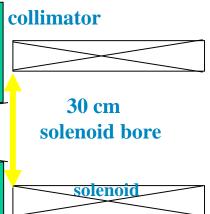

First RIB facility in the Southern Hemisphere, installed in 2004

Evolution over the years

2015

2022

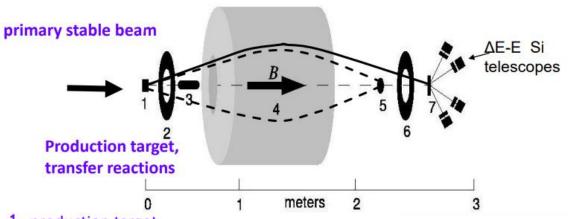



Production target

Solid targets: ⁹Be, LiF, ¹²C, etc or gas targets

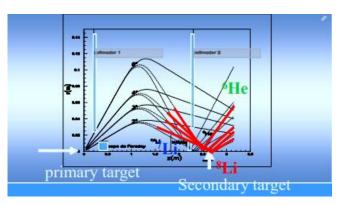
Angular acceptance

 $2 \deg \le \Delta \theta \le 6 \deg$ \longrightarrow 30msr


ICTP-SAIFR/MITP Workshop – São Paulo/SP – 2025

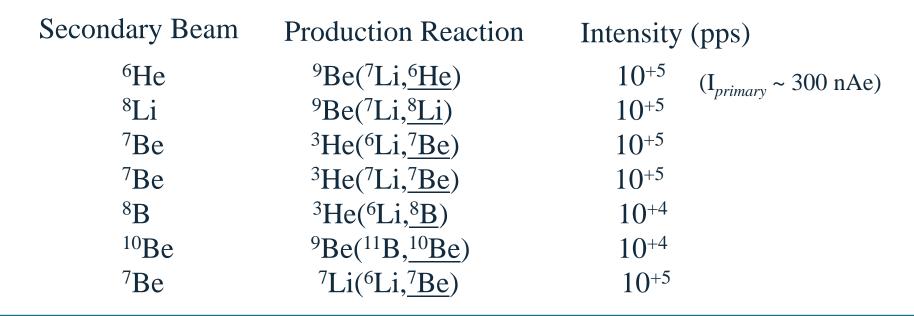
13/33

Selection with the first solenoid

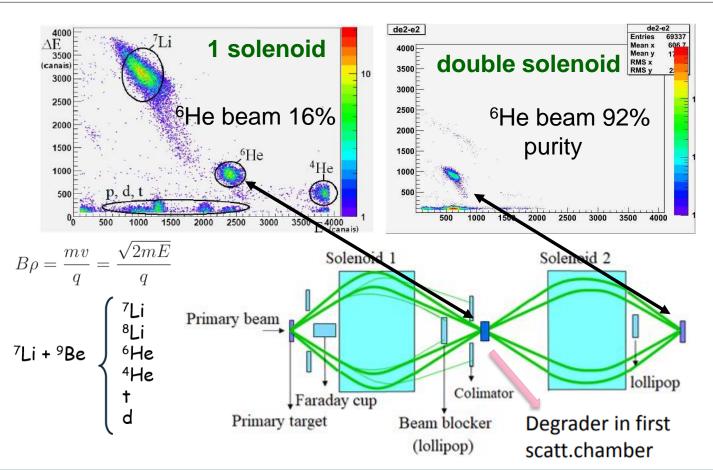


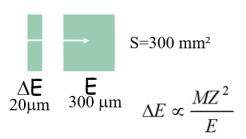
$$B\rho = \frac{mv}{q} = \frac{\sqrt{2mE}}{q}$$

Maximum Bp=1.8Tm


- 1- production target
- 2- collimator
- 3- Faraday cup
- 4- solenoid
- 5- lollipop blocker
- 6- collimator
- 7- scattering chamber, secondary target and detectors

Production reactions beams at RIBRAS





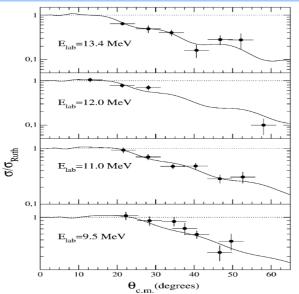
Beam purification using double solenoids

Second solenoid helps cleaning the secondary beam: degrader changes the Bp of the particles with different Z (q)

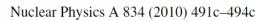
Scientific interest at RIBRAS

Inclusive measurements of nuclear reactions with weakly-bound, clusterstructured, low-energy, light, radioactive ion beams

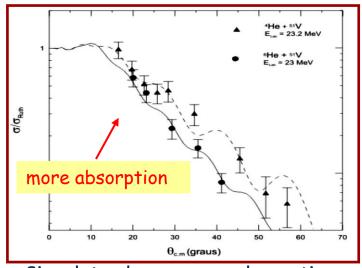
Resonance scattering with radioactive beams on H target ⁸Li + p, ⁶He + p, ¹⁰B + p



Some results at RIBRAS


Physics Letters B 647 (2007) 30–35

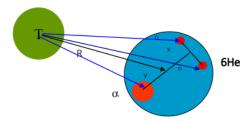
Optical Model calculation São Paulo potential ($N_1 \sim 0.7$; a=0.56(2)=normal nuclear diffuseness)


No effect of breakup coupling.

⁶He+⁵¹V elastic scattering

Optical Model calculation São Paulo potential (N ₁~1.4(4); a=0.67(3) larger than normal nuclear absorption and diffuseness)

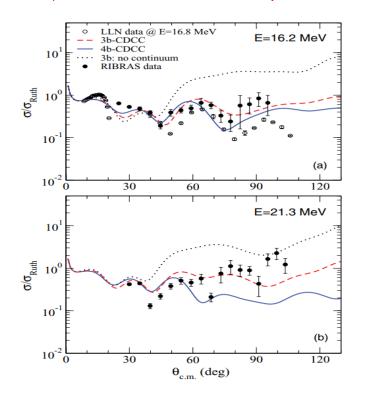
Simulates long range absorption due to breakup coupling


⁶He+⁹Be elastic scattering

No free parameters! ⁶He - target potential

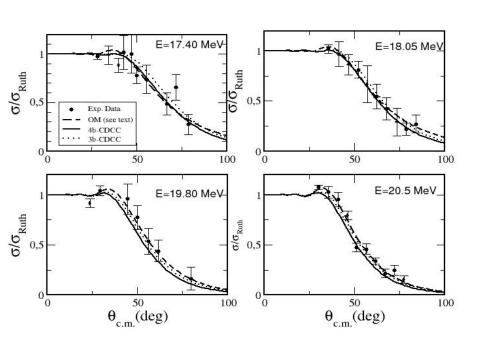
 $\mathsf{U}_{6He\text{-}\mathrm{T}} = \langle \mathsf{\Phi}_{6He} \, | \, \mathsf{U}_{\alpha-T} + \mathsf{U}_{n\text{-}T} + \mathsf{U}_{n\text{-}T} | \, \mathsf{\Phi}_{6He} \rangle$

The cluster-target potentials are obtained from scattering data from previous experiments.

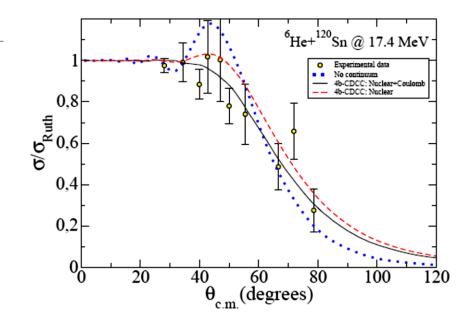


⁶He is 3 body Borromean system ⁶He→alpha+2n 3b-CDCC -----⁶He→alpha+n+n 4b-CDCC

4b-CDCC calculations:


- cluster model for the ⁶He-target potential
- coupling to continuum (breakup states)

3 and 4 body CDCC calculations for ⁶He (continuum discretized coupled-channel)



couplings to
nuclear
breakup
channels are
important in
⁶He reactions
by **light** targets

⁶He+¹²⁰Sn elastic scattering

PHYSICAL REVIEW C 81, 044605 (2010) Elastic scattering and total reaction cross section of $^6{\rm He}$ + $^{120}{\rm Sn}$

Details of the coupling to the break-up channel

No-coupling to exited states, equiv to optical model calculation

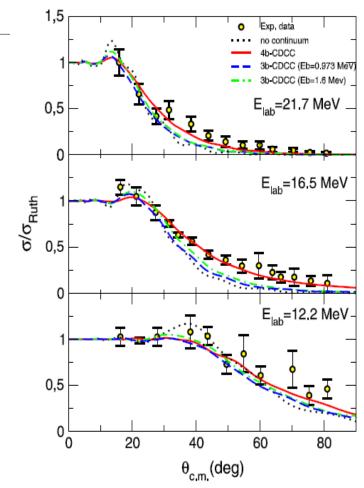
Language 4b-CDCC only nuclear coupling

4b-CDCC Coulomb + nuclear coupling

Not a fit!!

⁶He+⁵⁸Ni elastic scattering

Physics Letters B 732 (2014) 228-232

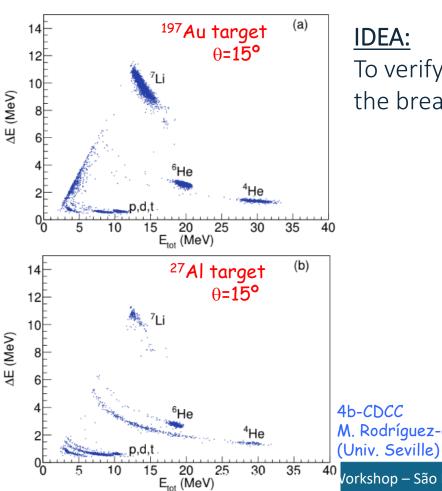

Four-body effects in the 6 He + 58 Ni scattering

V. Morcelle ^{a,b}, K.C.C. Pires ^{c,d}, M. Rodríguez-Gallardo ^e, R. Lichtenthäler ^{d,*}, A. Lépine-Szily ^d, V. Guimarães ^d, P.N. de Faria ^b, D.R. Mendes Junior ^b, A.M. Moro ^e, L.R. Gasques ^d, E. Leistenschneider ^d, R. Pampa Condori ^d, V. Scarduelli ^d, M.C. Morais ^f, A. Barioni ^g, J.C. Zamora ⁱ, J.M.B. Shorto ^h

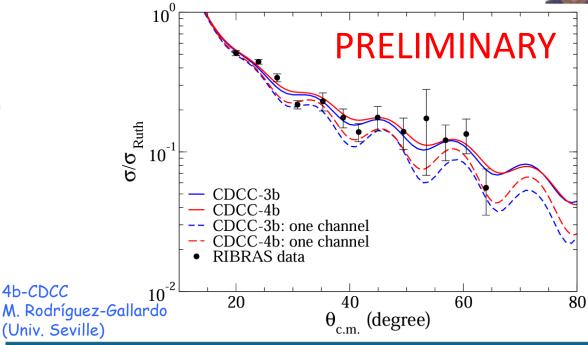
Comparison with CDCC calc.

3-body and 4-body CDCC calculations give different cross Sections at $\theta_{cm} > 40^{\circ}$.

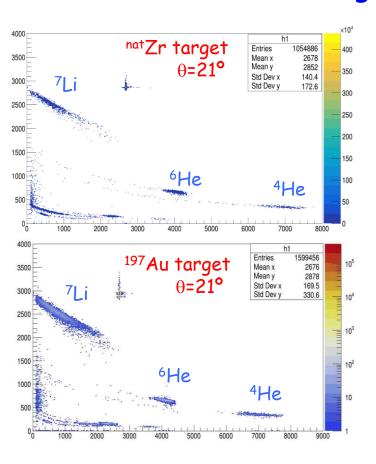
Excellent agreement with 4-body CDCC calculation



⁶He+²⁷Al elastic scattering @ E_{lab}=18 MeV (work in progress)



IDEA:


To verify the no effect on the breakup coupling

Master project of H. F. G. de Arruda (in progress)

⁶He+natZr elastic scattering @ E_{lab}=18.1MeV (work in progress)

IDEA:

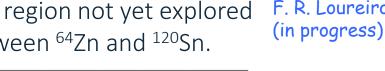
 V_0

(MeV)

111.92

(fm)

1.18


(fm)

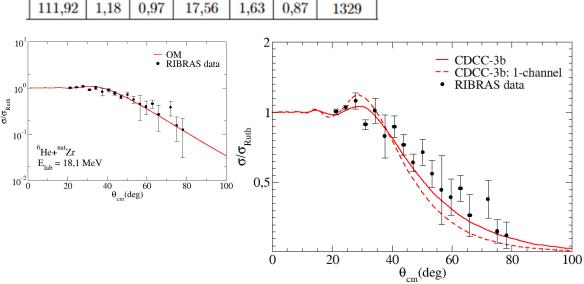
0.97

Target mass region not yet explored located between ⁶⁴Zn and ¹²⁰Sn.

 W_0

(MeV)

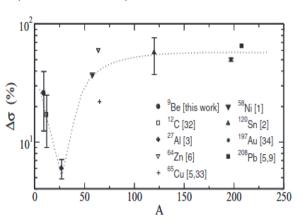
 σ_{Reac}


(mb)

 a_i

(fm)

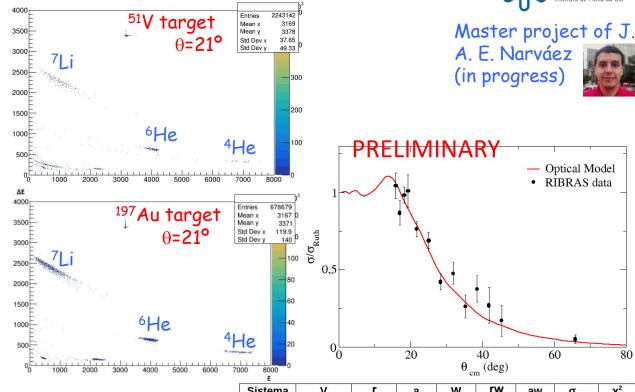
(fm)


⁶He+⁵¹V elastic scattering @ E_{lab}=18 MeV

(work in progress)

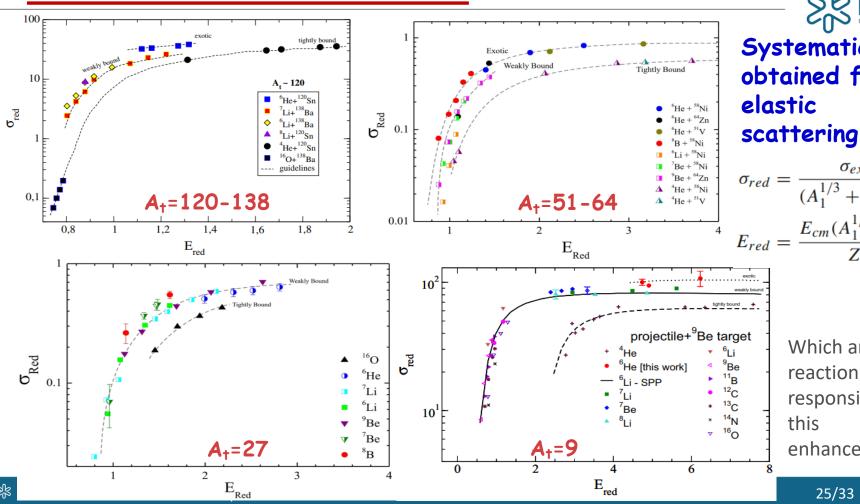
New method to calculate the nuclear radius from low energy fusion and total reaction cross sections

K. C. C. Pires, S. Appannababu, R. Lichtenthäler, and O. C. B. Santos Phys. Rev. C 98, 014614 – Published 23 July 2018



IDEA:

Verify the decrease in the σ^{reac} for the ^{6}He in relation to ^{6}Li .

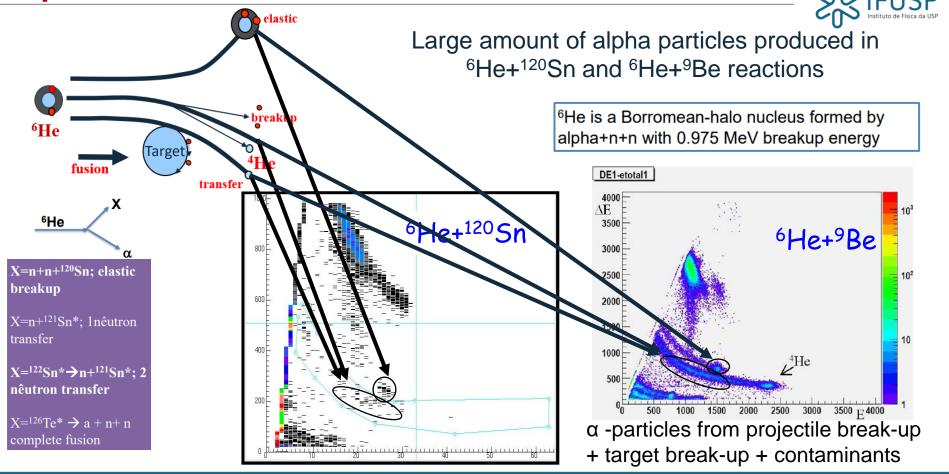

The A=27-58 massa range requires additional information

K. C. C. Pires

Sistema	V (MeV)	r (fm)	a (fm)	W (MeV)	rw (fm)	aw (fm)	σ _{reac} (mb)	χ²
⁶ He+ ⁵¹ V	5	1,3	0,65	5,0	1,5	0,7	1829,6	1.116

Total Reaction Cross Section

$$\sigma_{red} = \frac{\sigma_{exp}}{(A_1^{1/3} + A_2^{1/3})^2}$$

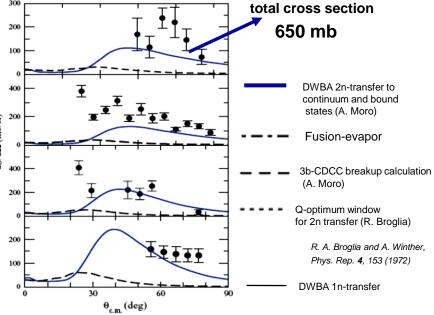

$$E_{red} = \frac{E_{cm}(A_1^{1/3} + A_2^{1/3})}{Z_1 Z_2}$$

Which are the reaction channels responsible for this enhancement?

α-production with ⁶He beam measured at RIBRAS

Energy spectra and angular distributions of a-particles from ⁶He+¹²⁰Sn collision

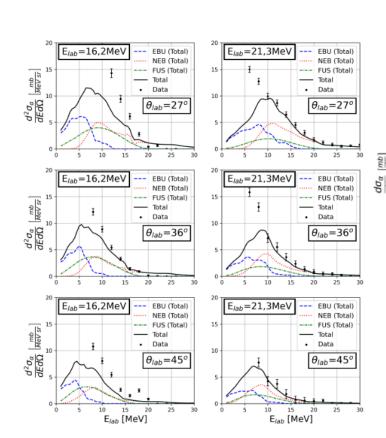
PHYSICAL REVIEW C 82, 034602 (2010)

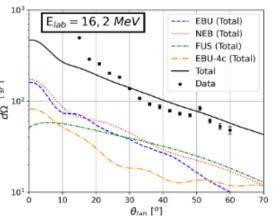

α -particle production in $^6{\rm He} + ^{120}{\rm Sn}$ collisions

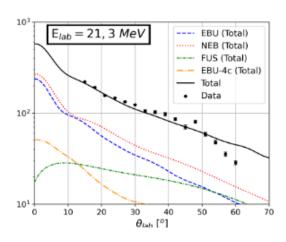
P. N. de Faria, ¹ R. Lichtenthäler, ¹ K. C. C. Pires, ¹ A. M. Moro, ² A. Lépine-Szily, ¹ V. Guimarães, ¹ D. R. Mendes Jr., ¹ A. Arazi, ³ A. Barioni, ¹ V. Morcelle, ¹ and M. C. Morais ¹ Instituto de Fisica, Universidade de São Paulo, Caixa Postal 66318, 05314-970 São Paulo, Brazil

20

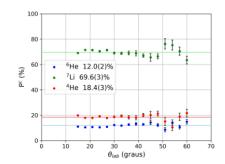
$120 \text{Sn} (^{6}\text{He}, ^{4}\text{He})^{122} \text{Sn}$ $\frac{40}{30}$ $\frac{40}{40}$ $\frac{120}{40} \text{Sn} + 2n$ $\frac{40}{40}$ $\frac{120}{40} \text{Sn} + 2n$ $\frac{40}{40}$ $\frac{120}{40} \text{Sn} + 2n$ $\frac{120}{40} \text{Sn} + 2n$ $\frac{40}{40}$ $\frac{100}{40}$ $\frac{100}{4$

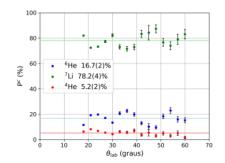

a-particles resulting from 2ntransfer reaction mostly


12 14 16 18 E_{lab}(MeV)


Energy spectra and angular distributions of a-particles from ⁶He+⁹Be collision

Master project of B. P. Monteiro (finished 2023)





- The sum of the theoretical calculations was made considering the contribution of each particle in the secondary beam (weighted sum)

B. P. Monteiro et al. In preparation

Sistema	Energia	CDCC-3c	CDCC-4c	IAV	PACE	TOTAL
⁴ He+ ⁹ Be	24,7	-	-	-	119,30	119,30
⁶ He+ ⁹ Be	16,2	29,25	-	29,44	3,46	62,15
⁷ Li+ ⁹ Be	13,1	91,87	-	134,36	$45,\!45$	271,67
⁹ Be+ ⁴ He	55,6	-	33,83	-	-	33,83
⁹ Be+ ⁶ He	24,3	-	3,18	-	-	3,18
⁹ Be+ ⁷ Li	16,8	-	11,99	-	-	11,99
TOTAL		121,12	48,99	163,79	168,20	502,11

Sistema	Energia	CDCC-3c	CDCC-4c	IAV	PACE	TOTAL
⁴ He+ ⁹ Be	32,3	-	-	-	27,64	27,64
⁶ He+ ⁹ Be	21,3	28,85	-	26,18	9,45	64,48
⁷ Li+ ⁹ Be	17,6	102,56	-	140,11	51,82	294,49
⁹ Be+ ⁴ He	72,6	-	9,83	-	-	9,83
⁹ Be+ ⁶ He	31,9	-	17,32	-	-	17,32
⁹ Be+ ⁷ Li	22,6	-	20,07	-	-	20,07
TOT	AL	131,41	47,22	166,29	88,91	433,83

E _{lab} =16,2 MeV	E _{lab} = 21,3 Me
σ_{reac} =1488 mb	σ_{reac} = 1483 m

elastic elastic

+ +

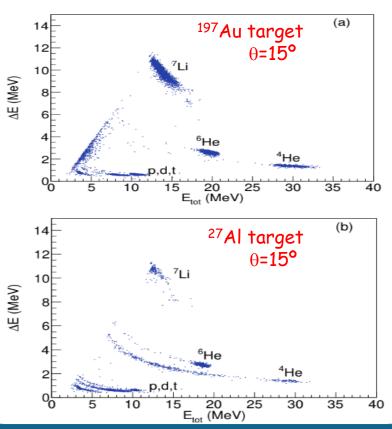
inelastic breakup

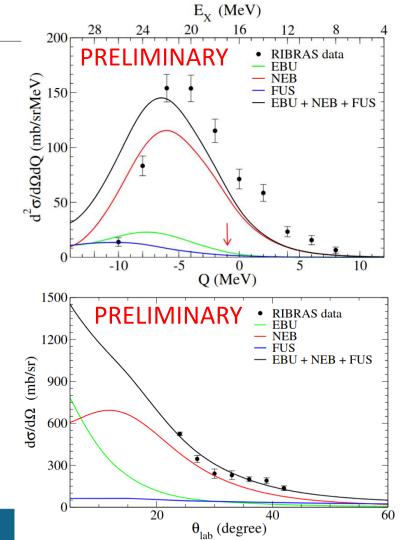
+ total fusion:

1450,5 mb

elastic

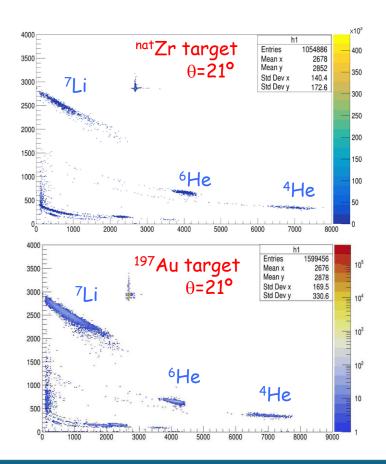
+ total fusion inelastic breakup

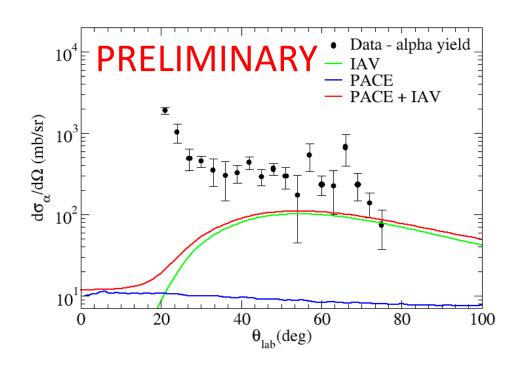

+ total fusion:


1037,1 mb

2,52% 30,07%

difference in relation to the total reaction cross section


Energy spectra and angular distributions of a-particles from ⁶He+²⁷Al collision



Angular distributions of a-particles from ⁶He+^{nat}Zr collision

Future research plans at RIBRAS

- Main research objectives: Study in detail the reaction mechanism of weakly bound, cluster structured radioactive nuclei with light, medium and heavy mass targets at energies around the Coulomb barrier.
- Increase the detection capability for charged particles and γ-rays at RIBRAS.
- Exclusive measurements of nuclear reactions with weakly bound radioactive at energies around the Coulomb barrier;
- The plan consists in the use of existing and the installation of new digital equipment (strip detectors for charged particles, Lyso gamma detectors and electronic devices mainly digitizers) at LAFNA ⇒ Breakup, transfer ⇒ coincidence measurements
- A low-energy, light, radioactive beam facility, as RIBRAS, can make competitive contribution in nuclear reaction studies.

RIBRAS COLLABORATION

UFF UFRRJ UNIFESP TANDAR CEADEN

Univ. Sevilha

Univ. Notre Dame

Univ. Berkley

RIBRAS COLLABORATION

UFF

K. C. C. Pires

