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Semiclassical Dynamics and Bloch Functions

Bloch state: _
Pi(r) = ™ u(r)

Wave packet constructed from Bloch states:
W(r.t) = [ dialk ) vulr)

Where: a(k, t) is sharply peaked around k.(t)

Real-space form of the wave packet:
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Smooth Evolution of Bloch States and Berry Connection

Instantaneous eigenstate of the time-independent Hamiltonian:

":I(k(t))uk(t) = e(k(t))uk(r)
Time evolution of the Bloch state:

d .
Euk(t) =k- Vkuk
Berry connection:

A(k) = i(uk|Vkuk)
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Berry Phase Rate and Accumulation

Projecting onto the state itself gives the geometric phase rate:

. < d
] uk(t)

s ) = k- AK()

Berry phase accumulated over time:

t k(t)
7(1’)2/0 k(t’)-.A(k(t’))dt’:/k(O) A(K) - dk
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Semiclassical Dynamics: Lagrangian + Final Equation of

Motion

Lagrangian:

L= (k+eA(r)) ¥ —e(k) + ep(r) + k - A(k)

Step 1: Euler-Lagrange for r Step 2: Euler-Lagrange for k

oL oL
5 k + eA(r) " A(k)
—k=—e(E+fxB) =t = Vie(k) — k x Q(k)

Final Equations of Motion:

k=—e(E+fxB)
t = Vie(k) — k x Q(k)
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Crystal and Magnetic Structure of Co3Sn,S,
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Energy Dispersion of Co3Sn,S,

Energy (eV)
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Weyl Hamiltonian and Eigenstates

Consider a Weyl node at momentum ky. Define the displacement from the node:
q=k—kyw
The low-energy Weyl Hamiltonian is:
H(q) =xo-q

Its eigenvalues are:
+(q) = +lq|

In spherical coordinates, the positive-energy eigenstate (conduction band) is:

0
_ [ cos3z
lui(q)) = <sin geiqﬁ)
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Berry Curvature of Weyl point

The Berry curvature is derived from the Berry connection:

1q
Q(q) = Vq x Aq) = 2laP

@ This expression represents the field of a monopole located at the Weyl point
ky .

@ The Weyl node acts as a source or sink of Berry flux, depending on its
chirality .
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Phase-Space Modification, Chiral Anomaly, and CME

Phase-Space Modification
Berry curvature modifies the phase-space density of states:

D(k):1+%B~Q(k)

Chiral Anomaly in k-Space
From the semiclassical Boltzmann equation with Berry curvature corrections:

dp5 63
P E-B
dt 4722
where ps is the chiral charge density.
Chiral Magnetic Effect (CME):
2

e
Jeme = ———usB
CME = 4575 15

where ps is the chiral chemical potential.
[D. E. Kharzeev, Chiral Magnetic Effect]
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Negative Magnetoresistance and Chiral Imbalance

Relaxation

Jove x 5B = Negative Magnetoresistance (NMR)

Relaxation Dynamics

Chiral imbalance relaxes via inter-valley scattering, characterized by a
relaxation time 7,:

dps e Ps
s _ ¢ g.B_P
dt 472 p2 T

Conclusion
NMR occurs when E || B, and its magnitude is influenced by the chiral

node separation, different types of disorder, and electron-phonon
scattering.
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NMR Properties

© Negative magnetoresistance (NMR) appears only when E || B; for E L B, a
positive magnetoresistance is typically observed.

@ NMR is strongest when E || B || b, where b is the chiral separation vector
between Weyl nodes.

@ The chiral vector b is aligned with the easy axis of magnetization: b || Measy.

@ The chiral magnetic current follows:

Jeme o< usB o< (E-B)B = o(B) — 0(0) o< B2, for small s.

Dima Cheskis (Ariel University) Ferromagnetic Weyl Semimetals July 8, 2025



NMR, Previous Experiments

@ For B L I'(§ =90°), a positive
magnetoresistance is observed.

@ For B || I' (8 =0°), a negative
magnetoresistance is demonstrated.

@ The magnetoconductance for B || I’
follows a near-parabolic dependence:
o(B) — o(0) < B up to 14 T.

Magnetoresistance (%)

E. Liu et al., Giant anomalous Hall effect in a
ferromagnetic kagome-lattice semimetal, Nature
Physics 14, 1125-1131 (2018),
https://doi.org/10.1038/s41567-018-0234-5
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https://doi.org/10.1038/s41567-018-0234-5

Sample scheme with electronic contacts

Figure 1: Description of the first image
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Sample scheme with electronic contacts
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Figure 2: Description of the second image
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Sample scheme with electronic contacts
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Figure 3: Description of the third image
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Sample scheme with electronic contacts

Figure 4: Description of the fourth image
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Magnetoresistance at 0°

NMR at 0°
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Zoomed View: Magnetoresistance at 0°
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Magnetoresistance at 90°
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Zoomed View: Magnetoresistance at 90°
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Conclusions and Future Plans

Conclusions

e Negative Magnetoresistance (NMR): Strongly observed when the
magnetic field is applied parallel to the c-axis, and remains negative
up to 40 K. Maximum effect occurs for E || B || b.

o Hysteresis in Magnetoresistance: Angular dependence of NMR
appears only above 5 Tesla.

e Magnetoconductance Behavior: Displays B2 dependence only
when NMR is aligned with the c-axis and field exceeds 5 Tesla.

Future Plans
o Complete DC NMR Measurements: Finalize the set of DC
magnetoresistance experiments.
@ AC NMR: Perform AC magnetoresistance measurements to probe
intervalley scattering time.
@ ARPES: Conduct angle-resolved photoemission spectroscopy to map
the electronic band structure.

Dima Cheskis (Ariel University) Ferromagnetic Weyl Semimetals July 8, 2025



