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Figure 1
(a) Space-time picture of a heavy ion collision, where the color indicates the temperature of the plasma formed. Dynamics takes place as
a function of proper time (blue curves), which is why plasma forms later at higher rapidities. (b) Snapshots of a central 2.76 TeV PbPb
collision at different times (different horizontal slices of the space-time picture on the left) with hadrons (blue and gray spheres) as well as
quark–gluon plasma (red ) (see http://web.mit.edu/mithig/movies/LHCanmation.mov). In both panels, at a given time the hottest
regions can be found at high rapidity close to the outgoing remnants of the nuclei, and the red lines indicate the approximate
longitudinal location of particles with rapidity y = 0, y = 1, and y = 6. Panel a adapted from Reference 7. Panel b adapted from
Reference 8.

order half the speed of light. As the discs recede from one another and the QGP produced between
them is expanding and cooling, new QGP is continually forming in the wake of each receding disc;
see Figure 1. This happens because the quarks and gluons produced at high rapidity are moving
at almost the speed of light in one of the beam directions, meaning that when enough time has
passed in their frame for them to form QGP a long time has passed in the lab frame, around 330
fm/c for rapidity y = 6.5. Throughout this QGP production process, each disc gradually loses
energy as partons with higher and higher rapidity separate from it and form QGP. In contrast,
the occasional high-pT particles seen in some collisions are produced by large-angle scattering at
very early times, when the incident nuclei collide.

The process ends once QGP has formed at the rapidities where most of the baryon number
from the incident nuclei ends up, which is expected to be about two units of rapidity less than that of
the incident nuclei, based upon measurements made in low-energy proton–nucleus ( pA) collisions
(9). So, the discs lose about 85% of their energy while varying amounts of QGP form at varying
rapidities over a range that extends between y = −6.5 and y = 6.5 in collisions at the LHC. A
good way to visualize the QGP production process described above is to consider the production
of each volume element of QGP in its own local rest frame, where the two colliding nuclei have
an asymmetric rapidity and energy, and then boost this volume of QGP back to the lab frame.

After production, each elemental volume of QGP expands in all directions. Looked at overall,
the droplet of fluid flows hydrodynamically, as its initial high pressure drives fluid motion, expan-
sion, and consequent cooling. This picture holds until the energy density at a given location in the
fluid drops below that within an individual hadron, at which point the fluid falls apart into a mist
of hadrons that scatter off one another a few times and then stream away freely. This mechanism
of particle production, via an intermediate epoch during which a hydrodynamic fluid forms and
expands, is quite different from the current understanding of particle production in elementary
collisions in which only a few new particles are created.
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a) Space-time picture of a HIC, color indicates 
T of the plasma formed

b) Snapshots of a central 2.76 TeV Pb+Pb collison. Blue and grey are 
hadrons, red is the quark-gluon plasma 
http://web.mit.edu/mithig/movies/LHCanmation.mov 
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(a) Space-time picture of a heavy ion collision, where the color indicates the temperature of the plasma formed. Dynamics takes place as
a function of proper time (blue curves), which is why plasma forms later at higher rapidities. (b) Snapshots of a central 2.76 TeV PbPb
collision at different times (different horizontal slices of the space-time picture on the left) with hadrons (blue and gray spheres) as well as
quark–gluon plasma (red ) (see http://web.mit.edu/mithig/movies/LHCanmation.mov). In both panels, at a given time the hottest
regions can be found at high rapidity close to the outgoing remnants of the nuclei, and the red lines indicate the approximate
longitudinal location of particles with rapidity y = 0, y = 1, and y = 6. Panel a adapted from Reference 7. Panel b adapted from
Reference 8.

order half the speed of light. As the discs recede from one another and the QGP produced between
them is expanding and cooling, new QGP is continually forming in the wake of each receding disc;
see Figure 1. This happens because the quarks and gluons produced at high rapidity are moving
at almost the speed of light in one of the beam directions, meaning that when enough time has
passed in their frame for them to form QGP a long time has passed in the lab frame, around 330
fm/c for rapidity y = 6.5. Throughout this QGP production process, each disc gradually loses
energy as partons with higher and higher rapidity separate from it and form QGP. In contrast,
the occasional high-pT particles seen in some collisions are produced by large-angle scattering at
very early times, when the incident nuclei collide.

The process ends once QGP has formed at the rapidities where most of the baryon number
from the incident nuclei ends up, which is expected to be about two units of rapidity less than that of
the incident nuclei, based upon measurements made in low-energy proton–nucleus ( pA) collisions
(9). So, the discs lose about 85% of their energy while varying amounts of QGP form at varying
rapidities over a range that extends between y = −6.5 and y = 6.5 in collisions at the LHC. A
good way to visualize the QGP production process described above is to consider the production
of each volume element of QGP in its own local rest frame, where the two colliding nuclei have
an asymmetric rapidity and energy, and then boost this volume of QGP back to the lab frame.

After production, each elemental volume of QGP expands in all directions. Looked at overall,
the droplet of fluid flows hydrodynamically, as its initial high pressure drives fluid motion, expan-
sion, and consequent cooling. This picture holds until the energy density at a given location in the
fluid drops below that within an individual hadron, at which point the fluid falls apart into a mist
of hadrons that scatter off one another a few times and then stream away freely. This mechanism
of particle production, via an intermediate epoch during which a hydrodynamic fluid forms and
expands, is quite different from the current understanding of particle production in elementary
collisions in which only a few new particles are created.
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b) Snapshots of a central 2.76 TeV Pb+Pb collison. Blue and grey are 
hadrons, red is the quark-gluon plasma 
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Very intense magnetic 
fields at initial times

ELECTROMAGNETIC FIELD EVOLUTION IN . . . PHYSICAL REVIEW C 83, 054911 (2011)
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FIG. 3. (Color online) Time dependence of the spatial distribution of the magnetic field By at times t created in Au + Au (
√

s = 200 GeV)
collisions with the impact parameter b = 10 fm. The location of spectator protons is shown by dots in the (x-z) plane. The level By = 0 and
the projection of its location on the (x-z) plane are shown by the solid lines.

our case is about 0.15 fm/c. For peripheral collisions this
time is even shorter.

Globally, the spatial distribution of the magnetic field
is evidently inhomogeneous and Lorentz-contracted along
the z axis. At the compression stage there is a single
maximum which in the expansion stage is split into two
parts associated with the spectators. In the transverse di-
rection, the bulk magnetic field is limited by two minima
coming from the torqued structure of the single-charge field
(see Fig. 1).

The possibility of attaining extremely high magnetic fields
in heavy-ion collisions was pointed out 30 years ago [41],
but there have been only two real attempts to estimate the
magnetic field for relativistic heavy-ion collisions [21,26].
In Ref. [21] the colliding ions were treated as infinitely thin
layers (pancake-like), and the results in the center of a Au-Au
collision eBy(0, 0, z) could be presented in a semianalytical
form. In Fig. 4 these estimates are confronted with our results.
It is clearly seen that the magnetic field in our transport model
for b = 10 fm is lower than the estimate from Ref. [21] for both
b =12 and 8 fm. This difference originates mainly from the fact
that to simulate rapidity degradation of pancake-like nuclei, a
heuristic function was assumed with making no difference
between surviving baryons and new created particles [21],

whereas in our case the dynamical hadron-string model is used
for both primary and subsequent interactions while keeping
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FIG. 4. (Color online) Time dependence of the |eB| field in the
center of the nuclear overlap region for Au + Au (

√
s = 200 GeV)

collisions from the HSD calculations. The dotted and dot-dashed
curves are from Ref. [21] at the impact parameters b = 8 and 12 fm,
respectively.
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FIG. 5. (Color online) Magnetic field evolution at the point x for
y = 0.

electric and baryonic charges and energy-momentum conser-
vation [36]. The approximation of Ref. [21] is reasonable for
first collisions but gets progressively worse with interaction
time as seen in Fig. 4. The difference in the shape of the
time dependence of the magnetic field for early times is
due to neglecting the finite size of the colliding nuclei in
Ref. [21].

Also, in our treatment, the self-interaction is excluded for
charges within the Lorentz-contracted hadron volume. Our
consideration treats more accurately the retardation effect
discussed above which constrains the contributions to the given
point from some charges. It is especially important for the field
contribution from participants.

It is of interest to note that in our transport model, the
spectator contribution to the magnetic field is practically
vanishing at t ≈1 fm/c (see Fig. 4). In subsequent times
the magnetic field eBy is formed essentially due to produced
participants with roughly equal number of negative and
positive charges which approximately compensate each other.
The visible effect in our approach is by an order of magnitude
lower than that in the estimate [21], which demonstrates the
essential role of the retardation in this interaction phase.

Furthermore, the magnetic field distribution in Ref. [26] is
calculated within the UrQMD model and the back reaction of
the field on particle propagation is disregarded. Nevertheless,
our results are quite close to those of Ref. [26].

In Fig. 5, the magnetic field evolution eBy(x, y = 0, z) is
shown as a function of the transverse coordinate x. Practically,
the difference between results for x = 0, 1, 2 fm is less than
20% except the boundary of the overlap region corresponding
to x ≈ b/2 ∼ 5 fm. One thus may conclude that the magnetic
field is rather homogeneous in the transverse direction.

The magnetic field component By(x = 0, y, z) along the
largest axis y of the “almond” (see Fig. 2) is presented in
Fig. 6 for different times. The similarity of all curves for y ∼<
4 demonstrates a high homogeneity of the created field By . It
is of interest that this field stays almost constant during !t ∼
0.1 fm/c.
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FIG. 6. (Color online) Time evolution of the magnetic field at the
point y for the central overlap point x = 0.

B. Energy density and its correlation with By

Along with a high magnetic field, the presence of a
quark-gluon phase is a necessary condition for a manifestation
of the chiral magnetic effect according to Refs. [15,19–23].
The phase structure of excited matter is essentially defined
by the energy density (cf. Ref. [42]). One can expect that for
energy densities ε ∼>1 Gev/fm3 the system is in a deconfined
phase. The evolution of the energy density of created particles
is presented in Fig. 7. Here the maximal energy density (in
the center of the colliding system) is ε > 50 GeV/fm3 at
the moment of maximal overlap of the nuclei. When the
system expands, it takes a sausage-like shape (or dumb-bell
shape if the energy density values are taken into consideration
additionally) and the energy density drops fast. But even at time
t ∼ 0.5 fm/c (last panel in Fig. 7), the local energy density is
seen to be above an effective threshold of a quark-gluon phase
transition ε ∼> 1 GeV/fm3. Different levels of the magnetic
field strength are plotted in the same figure. It is clearly seen
that the location of the maximum energy density correlates
with that for the magnetic field.

The variation of the energy density distribution with the
transverse coordinate x is shown in Fig. 8. Here the plotted
values of ε correspond to averages within the Lorentz-
contracted cylinder with |z| < 5/γ fm and radius R = 1 fm
centered at point x. One can see that the energy density changes
more strongly in x than the magnetic field (note the logarithmic
scale in Fig. 8). In particular, the maximal ε decreases by
a factor ∼20 when one proceeds from x = 0 to x = 3 fm;
and close to the spectator-participant boundary (at x ≈ 3 fm),
the energy density very quickly (within roughly ∼ 0.3 fm/c)
drops below the effective threshold for deconfinement, ε ∼
1 Gev/fm3.

One should note that the energy density should be calculated
in the rest system. The choice of a symmetric position of the
cylinder volume with respect to the z = 0 plane essentially
leads to an approximately vanishing total momentum of
particles inside this volume. The time averaged γ factor of
particles in this cylinder in the c.m. system is 〈γ 〉 ∼ 1.1. Note,
however, that the created particles are not in local equilibrium!
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Figure 6
(a) A peripheral heavy ion collision produces an approximately elliptical collision region (red shading). A gas of weakly interacting
particles would give a more or less isotropic distribution of final particles (red ), whereas a fluid would give rise to an anisotropic
distribution (blue), due to the difference in pressure gradients in the transverse directions. (b) In Reference 108, a hydrodynamic model
with several temperature-dependent parameterizations of η/s is compared with ALICE measurements of the anisotropy, as obtained by
the integrated Fourier coefficients vn (n = 2–4 from top to bottom), for charged particles with transverse momenta pT between 0.2 and
5.0 GeV in √sNN = 2.76-TeV collisions as a function of the centrality class (0% being head-on collisions) (107). For more off-central
collisions there is an increasing and large v2, giving a hint of the importance of hydrodynamic evolution. (c) This panel shows
event-by-event distributions of the v2 distribution for off-central collisions from Reference 107 compared with ATLAS measurements
(109). The results shown in panels b and c are two among many recent comparisons between increasingly precise measurements of the
anisotropy and increasingly sophisticated hydrodynamic calculations.

To quantify the measurement of the azimuthal momentum anisotropy, we perform a Fourier
transformation on the angular distribution of (charged) hadrons in the final state of the collision
(115), which results in the anisotropic flow coefficients v̄n, defined from

dN̄
dϕ

= N̄
2π

(

1 + 2
∞∑

n=1

v̄n cos[n(ϕ − $̄n)]

)

, 1.

where ϕ is the angle in the transverse plane, $̄n are the event plane angles (the first angle where
the nth harmonic component has its maximum multiplicity), and N̄ is the average number of
particles of interest per event. All these observables can in principle be measured as a function of
rapidity, centrality, and pT and, around midrapidity (in collider experiments), also differentially
for different particle species. The second to fourth harmonics are shown as a function of centrality
in Figure 6b, as extracted from the two-particle correlator with particles separated by a large gap
in rapidity.4 We return to the hydrodynamic curves below.

As anticipated, the system before hadronization indeed requires a full hydrodynamic simula-
tion in order to generate the sizable anisotropies found. Hydrodynamics is a gradient expansion,
assuming that a fluid is everywhere close to thermal equilibrium but allowing for small gradients
in both temperature and velocity field. In ideal (zeroth-order) hydrodynamics, these gradients
are ignored, which by assumption yields an isotropic plasma in the plasma’s local rest frame. For

4There are several ways to measure the vn found in Equation 1, most notably via measuring correlations among four, six, eight,
or more particles or via analyzing particles separated in rapidity. Both techniques are designed to exclude jet-like correlations
between nearby particles that come from the same jet shower or nearly back-to-back correlations from pairs of jets. We do not
review the (by now quite sophisticated) methods for extracting the vn (116). We also do not review the dependence of the vn
on pT or on hadron species (60), even though their dependence on particle momentum and mass provides important evidence
in support of their origin from a single hydrodynamic fluid with a common flow velocity, or their distribution around their
average value in each centrality class, which also supports a consistent picture (e.g., 63, 117, 118).
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Fig. A.1. Magnetic field at the center of a gold–gold collision, for different impact parameters. Here the center of mass
energy is 62 GeV per nucleon pair (Y0 = 4.2).

Hence we only have to take into account the contribution of the participants which were origi-
nally there. It is know that these participants stay traveling along the beam axis according to the
following normalized distribution

f (Y ) = a

2 sinh(aY0)
eaY , −Y0 ! Y ! Y0. (A.7)

Experimental data shows that a ≈ 1/2, consistent with the baryon junction stopping mechanism
(see [63] and references therein).

The contribution of the participants to the magnetic field is hence given by

e #B±
p (τ,η, #x⊥) = ±ZαEM

∫
d2 #x′

⊥

Y0∫

−Y0

dY f (Y ) sinh(Y ∓ η)ρ±(#x′
⊥)θ∓(#x′

⊥)

× (#x′
⊥ − #x⊥) × #ez

[(#x′
⊥ − #x⊥)2 + τ 2 sinh(Y ∓ η)2]3/2 . (A.8)

We have evaluated the magnetic field numerically at the origin (η = 0, #x⊥ = 0) in which case
it is pointing in the y-direction. We took colliding gold ions (Z = 79, R = 7 fm) with different
beam rapidities (Y = 4.19 and Y = 5.36). The results are displayed in Figs. A.1 and A.2. Clearly
enormous magnetic fields are created in non-central heavy ion collisions.

For our purposes it is useful to have some analytic expression of the magnetic field. We can
find reasonable approximations for τ " 2R/ sinh(Y0). First we will consider the spectators, then
we will discuss an approximation for the participants. We will perform both approximations at
the origin (#x⊥ = 0 and η = 0). In that case the magnetic field is pointing in the y-direction,
e #B = eB#ey . Especially for large impact parameters the magnetic field at the origin will be a
good estimate for the magnetic field at the surface of the interacting region, since the magnetic
field in the overlap region is to a good degree homogeneous in the transverse plane.

Kharzeev, McLerran, Warringa, Nucl. Phys. A 803, 227 (2008)

Very intense magnetic 
fields at initial times in the 
collision

Voronyuk, Toneev, Cassing, Bratkovskaya, Konchakovski, Voloshin, Phys. Rev. C 83, 054911 (2011)
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FIG. 3. (Color online) Time dependence of the spatial distribution of the magnetic field By at times t created in Au + Au (
√

s = 200 GeV)
collisions with the impact parameter b = 10 fm. The location of spectator protons is shown by dots in the (x-z) plane. The level By = 0 and
the projection of its location on the (x-z) plane are shown by the solid lines.

our case is about 0.15 fm/c. For peripheral collisions this
time is even shorter.

Globally, the spatial distribution of the magnetic field
is evidently inhomogeneous and Lorentz-contracted along
the z axis. At the compression stage there is a single
maximum which in the expansion stage is split into two
parts associated with the spectators. In the transverse di-
rection, the bulk magnetic field is limited by two minima
coming from the torqued structure of the single-charge field
(see Fig. 1).

The possibility of attaining extremely high magnetic fields
in heavy-ion collisions was pointed out 30 years ago [41],
but there have been only two real attempts to estimate the
magnetic field for relativistic heavy-ion collisions [21,26].
In Ref. [21] the colliding ions were treated as infinitely thin
layers (pancake-like), and the results in the center of a Au-Au
collision eBy(0, 0, z) could be presented in a semianalytical
form. In Fig. 4 these estimates are confronted with our results.
It is clearly seen that the magnetic field in our transport model
for b = 10 fm is lower than the estimate from Ref. [21] for both
b =12 and 8 fm. This difference originates mainly from the fact
that to simulate rapidity degradation of pancake-like nuclei, a
heuristic function was assumed with making no difference
between surviving baryons and new created particles [21],

whereas in our case the dynamical hadron-string model is used
for both primary and subsequent interactions while keeping
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FIG. 5. (Color online) Magnetic field evolution at the point x for
y = 0.

electric and baryonic charges and energy-momentum conser-
vation [36]. The approximation of Ref. [21] is reasonable for
first collisions but gets progressively worse with interaction
time as seen in Fig. 4. The difference in the shape of the
time dependence of the magnetic field for early times is
due to neglecting the finite size of the colliding nuclei in
Ref. [21].

Also, in our treatment, the self-interaction is excluded for
charges within the Lorentz-contracted hadron volume. Our
consideration treats more accurately the retardation effect
discussed above which constrains the contributions to the given
point from some charges. It is especially important for the field
contribution from participants.

It is of interest to note that in our transport model, the
spectator contribution to the magnetic field is practically
vanishing at t ≈1 fm/c (see Fig. 4). In subsequent times
the magnetic field eBy is formed essentially due to produced
participants with roughly equal number of negative and
positive charges which approximately compensate each other.
The visible effect in our approach is by an order of magnitude
lower than that in the estimate [21], which demonstrates the
essential role of the retardation in this interaction phase.

Furthermore, the magnetic field distribution in Ref. [26] is
calculated within the UrQMD model and the back reaction of
the field on particle propagation is disregarded. Nevertheless,
our results are quite close to those of Ref. [26].

In Fig. 5, the magnetic field evolution eBy(x, y = 0, z) is
shown as a function of the transverse coordinate x. Practically,
the difference between results for x = 0, 1, 2 fm is less than
20% except the boundary of the overlap region corresponding
to x ≈ b/2 ∼ 5 fm. One thus may conclude that the magnetic
field is rather homogeneous in the transverse direction.

The magnetic field component By(x = 0, y, z) along the
largest axis y of the “almond” (see Fig. 2) is presented in
Fig. 6 for different times. The similarity of all curves for y ∼<
4 demonstrates a high homogeneity of the created field By . It
is of interest that this field stays almost constant during !t ∼
0.1 fm/c.
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FIG. 6. (Color online) Time evolution of the magnetic field at the
point y for the central overlap point x = 0.

B. Energy density and its correlation with By

Along with a high magnetic field, the presence of a
quark-gluon phase is a necessary condition for a manifestation
of the chiral magnetic effect according to Refs. [15,19–23].
The phase structure of excited matter is essentially defined
by the energy density (cf. Ref. [42]). One can expect that for
energy densities ε ∼>1 Gev/fm3 the system is in a deconfined
phase. The evolution of the energy density of created particles
is presented in Fig. 7. Here the maximal energy density (in
the center of the colliding system) is ε > 50 GeV/fm3 at
the moment of maximal overlap of the nuclei. When the
system expands, it takes a sausage-like shape (or dumb-bell
shape if the energy density values are taken into consideration
additionally) and the energy density drops fast. But even at time
t ∼ 0.5 fm/c (last panel in Fig. 7), the local energy density is
seen to be above an effective threshold of a quark-gluon phase
transition ε ∼> 1 GeV/fm3. Different levels of the magnetic
field strength are plotted in the same figure. It is clearly seen
that the location of the maximum energy density correlates
with that for the magnetic field.

The variation of the energy density distribution with the
transverse coordinate x is shown in Fig. 8. Here the plotted
values of ε correspond to averages within the Lorentz-
contracted cylinder with |z| < 5/γ fm and radius R = 1 fm
centered at point x. One can see that the energy density changes
more strongly in x than the magnetic field (note the logarithmic
scale in Fig. 8). In particular, the maximal ε decreases by
a factor ∼20 when one proceeds from x = 0 to x = 3 fm;
and close to the spectator-participant boundary (at x ≈ 3 fm),
the energy density very quickly (within roughly ∼ 0.3 fm/c)
drops below the effective threshold for deconfinement, ε ∼
1 Gev/fm3.

One should note that the energy density should be calculated
in the rest system. The choice of a symmetric position of the
cylinder volume with respect to the z = 0 plane essentially
leads to an approximately vanishing total momentum of
particles inside this volume. The time averaged γ factor of
particles in this cylinder in the c.m. system is 〈γ 〉 ∼ 1.1. Note,
however, that the created particles are not in local equilibrium!
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Figure 6
(a) A peripheral heavy ion collision produces an approximately elliptical collision region (red shading). A gas of weakly interacting
particles would give a more or less isotropic distribution of final particles (red ), whereas a fluid would give rise to an anisotropic
distribution (blue), due to the difference in pressure gradients in the transverse directions. (b) In Reference 108, a hydrodynamic model
with several temperature-dependent parameterizations of η/s is compared with ALICE measurements of the anisotropy, as obtained by
the integrated Fourier coefficients vn (n = 2–4 from top to bottom), for charged particles with transverse momenta pT between 0.2 and
5.0 GeV in √sNN = 2.76-TeV collisions as a function of the centrality class (0% being head-on collisions) (107). For more off-central
collisions there is an increasing and large v2, giving a hint of the importance of hydrodynamic evolution. (c) This panel shows
event-by-event distributions of the v2 distribution for off-central collisions from Reference 107 compared with ATLAS measurements
(109). The results shown in panels b and c are two among many recent comparisons between increasingly precise measurements of the
anisotropy and increasingly sophisticated hydrodynamic calculations.

To quantify the measurement of the azimuthal momentum anisotropy, we perform a Fourier
transformation on the angular distribution of (charged) hadrons in the final state of the collision
(115), which results in the anisotropic flow coefficients v̄n, defined from

dN̄
dϕ

= N̄
2π

(

1 + 2
∞∑

n=1

v̄n cos[n(ϕ − $̄n)]

)

, 1.

where ϕ is the angle in the transverse plane, $̄n are the event plane angles (the first angle where
the nth harmonic component has its maximum multiplicity), and N̄ is the average number of
particles of interest per event. All these observables can in principle be measured as a function of
rapidity, centrality, and pT and, around midrapidity (in collider experiments), also differentially
for different particle species. The second to fourth harmonics are shown as a function of centrality
in Figure 6b, as extracted from the two-particle correlator with particles separated by a large gap
in rapidity.4 We return to the hydrodynamic curves below.

As anticipated, the system before hadronization indeed requires a full hydrodynamic simula-
tion in order to generate the sizable anisotropies found. Hydrodynamics is a gradient expansion,
assuming that a fluid is everywhere close to thermal equilibrium but allowing for small gradients
in both temperature and velocity field. In ideal (zeroth-order) hydrodynamics, these gradients
are ignored, which by assumption yields an isotropic plasma in the plasma’s local rest frame. For

4There are several ways to measure the vn found in Equation 1, most notably via measuring correlations among four, six, eight,
or more particles or via analyzing particles separated in rapidity. Both techniques are designed to exclude jet-like correlations
between nearby particles that come from the same jet shower or nearly back-to-back correlations from pairs of jets. We do not
review the (by now quite sophisticated) methods for extracting the vn (116). We also do not review the dependence of the vn
on pT or on hadron species (60), even though their dependence on particle momentum and mass provides important evidence
in support of their origin from a single hydrodynamic fluid with a common flow velocity, or their distribution around their
average value in each centrality class, which also supports a consistent picture (e.g., 63, 117, 118).
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Fig. A.1. Magnetic field at the center of a gold–gold collision, for different impact parameters. Here the center of mass
energy is 62 GeV per nucleon pair (Y0 = 4.2).

Hence we only have to take into account the contribution of the participants which were origi-
nally there. It is know that these participants stay traveling along the beam axis according to the
following normalized distribution

f (Y ) = a

2 sinh(aY0)
eaY , −Y0 ! Y ! Y0. (A.7)

Experimental data shows that a ≈ 1/2, consistent with the baryon junction stopping mechanism
(see [63] and references therein).

The contribution of the participants to the magnetic field is hence given by

e #B±
p (τ,η, #x⊥) = ±ZαEM

∫
d2 #x′

⊥

Y0∫

−Y0

dY f (Y ) sinh(Y ∓ η)ρ±(#x′
⊥)θ∓(#x′

⊥)

× (#x′
⊥ − #x⊥) × #ez

[(#x′
⊥ − #x⊥)2 + τ 2 sinh(Y ∓ η)2]3/2 . (A.8)

We have evaluated the magnetic field numerically at the origin (η = 0, #x⊥ = 0) in which case
it is pointing in the y-direction. We took colliding gold ions (Z = 79, R = 7 fm) with different
beam rapidities (Y = 4.19 and Y = 5.36). The results are displayed in Figs. A.1 and A.2. Clearly
enormous magnetic fields are created in non-central heavy ion collisions.

For our purposes it is useful to have some analytic expression of the magnetic field. We can
find reasonable approximations for τ " 2R/ sinh(Y0). First we will consider the spectators, then
we will discuss an approximation for the participants. We will perform both approximations at
the origin (#x⊥ = 0 and η = 0). In that case the magnetic field is pointing in the y-direction,
e #B = eB#ey . Especially for large impact parameters the magnetic field at the origin will be a
good estimate for the magnetic field at the surface of the interacting region, since the magnetic
field in the overlap region is to a good degree homogeneous in the transverse plane.

Kharzeev, McLerran, Warringa, Nucl. Phys. A 803, 227 (2008)

Very intense magnetic 
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FIG. 3. (Color online) Time dependence of the spatial distribution of the magnetic field By at times t created in Au + Au (
√

s = 200 GeV)
collisions with the impact parameter b = 10 fm. The location of spectator protons is shown by dots in the (x-z) plane. The level By = 0 and
the projection of its location on the (x-z) plane are shown by the solid lines.

our case is about 0.15 fm/c. For peripheral collisions this
time is even shorter.

Globally, the spatial distribution of the magnetic field
is evidently inhomogeneous and Lorentz-contracted along
the z axis. At the compression stage there is a single
maximum which in the expansion stage is split into two
parts associated with the spectators. In the transverse di-
rection, the bulk magnetic field is limited by two minima
coming from the torqued structure of the single-charge field
(see Fig. 1).

The possibility of attaining extremely high magnetic fields
in heavy-ion collisions was pointed out 30 years ago [41],
but there have been only two real attempts to estimate the
magnetic field for relativistic heavy-ion collisions [21,26].
In Ref. [21] the colliding ions were treated as infinitely thin
layers (pancake-like), and the results in the center of a Au-Au
collision eBy(0, 0, z) could be presented in a semianalytical
form. In Fig. 4 these estimates are confronted with our results.
It is clearly seen that the magnetic field in our transport model
for b = 10 fm is lower than the estimate from Ref. [21] for both
b =12 and 8 fm. This difference originates mainly from the fact
that to simulate rapidity degradation of pancake-like nuclei, a
heuristic function was assumed with making no difference
between surviving baryons and new created particles [21],

whereas in our case the dynamical hadron-string model is used
for both primary and subsequent interactions while keeping
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FIG. 5. (Color online) Magnetic field evolution at the point x for
y = 0.

electric and baryonic charges and energy-momentum conser-
vation [36]. The approximation of Ref. [21] is reasonable for
first collisions but gets progressively worse with interaction
time as seen in Fig. 4. The difference in the shape of the
time dependence of the magnetic field for early times is
due to neglecting the finite size of the colliding nuclei in
Ref. [21].

Also, in our treatment, the self-interaction is excluded for
charges within the Lorentz-contracted hadron volume. Our
consideration treats more accurately the retardation effect
discussed above which constrains the contributions to the given
point from some charges. It is especially important for the field
contribution from participants.

It is of interest to note that in our transport model, the
spectator contribution to the magnetic field is practically
vanishing at t ≈1 fm/c (see Fig. 4). In subsequent times
the magnetic field eBy is formed essentially due to produced
participants with roughly equal number of negative and
positive charges which approximately compensate each other.
The visible effect in our approach is by an order of magnitude
lower than that in the estimate [21], which demonstrates the
essential role of the retardation in this interaction phase.

Furthermore, the magnetic field distribution in Ref. [26] is
calculated within the UrQMD model and the back reaction of
the field on particle propagation is disregarded. Nevertheless,
our results are quite close to those of Ref. [26].

In Fig. 5, the magnetic field evolution eBy(x, y = 0, z) is
shown as a function of the transverse coordinate x. Practically,
the difference between results for x = 0, 1, 2 fm is less than
20% except the boundary of the overlap region corresponding
to x ≈ b/2 ∼ 5 fm. One thus may conclude that the magnetic
field is rather homogeneous in the transverse direction.

The magnetic field component By(x = 0, y, z) along the
largest axis y of the “almond” (see Fig. 2) is presented in
Fig. 6 for different times. The similarity of all curves for y ∼<
4 demonstrates a high homogeneity of the created field By . It
is of interest that this field stays almost constant during !t ∼
0.1 fm/c.
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FIG. 6. (Color online) Time evolution of the magnetic field at the
point y for the central overlap point x = 0.

B. Energy density and its correlation with By

Along with a high magnetic field, the presence of a
quark-gluon phase is a necessary condition for a manifestation
of the chiral magnetic effect according to Refs. [15,19–23].
The phase structure of excited matter is essentially defined
by the energy density (cf. Ref. [42]). One can expect that for
energy densities ε ∼>1 Gev/fm3 the system is in a deconfined
phase. The evolution of the energy density of created particles
is presented in Fig. 7. Here the maximal energy density (in
the center of the colliding system) is ε > 50 GeV/fm3 at
the moment of maximal overlap of the nuclei. When the
system expands, it takes a sausage-like shape (or dumb-bell
shape if the energy density values are taken into consideration
additionally) and the energy density drops fast. But even at time
t ∼ 0.5 fm/c (last panel in Fig. 7), the local energy density is
seen to be above an effective threshold of a quark-gluon phase
transition ε ∼> 1 GeV/fm3. Different levels of the magnetic
field strength are plotted in the same figure. It is clearly seen
that the location of the maximum energy density correlates
with that for the magnetic field.

The variation of the energy density distribution with the
transverse coordinate x is shown in Fig. 8. Here the plotted
values of ε correspond to averages within the Lorentz-
contracted cylinder with |z| < 5/γ fm and radius R = 1 fm
centered at point x. One can see that the energy density changes
more strongly in x than the magnetic field (note the logarithmic
scale in Fig. 8). In particular, the maximal ε decreases by
a factor ∼20 when one proceeds from x = 0 to x = 3 fm;
and close to the spectator-participant boundary (at x ≈ 3 fm),
the energy density very quickly (within roughly ∼ 0.3 fm/c)
drops below the effective threshold for deconfinement, ε ∼
1 Gev/fm3.

One should note that the energy density should be calculated
in the rest system. The choice of a symmetric position of the
cylinder volume with respect to the z = 0 plane essentially
leads to an approximately vanishing total momentum of
particles inside this volume. The time averaged γ factor of
particles in this cylinder in the c.m. system is 〈γ 〉 ∼ 1.1. Note,
however, that the created particles are not in local equilibrium!
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Figure 6
(a) A peripheral heavy ion collision produces an approximately elliptical collision region (red shading). A gas of weakly interacting
particles would give a more or less isotropic distribution of final particles (red ), whereas a fluid would give rise to an anisotropic
distribution (blue), due to the difference in pressure gradients in the transverse directions. (b) In Reference 108, a hydrodynamic model
with several temperature-dependent parameterizations of η/s is compared with ALICE measurements of the anisotropy, as obtained by
the integrated Fourier coefficients vn (n = 2–4 from top to bottom), for charged particles with transverse momenta pT between 0.2 and
5.0 GeV in √sNN = 2.76-TeV collisions as a function of the centrality class (0% being head-on collisions) (107). For more off-central
collisions there is an increasing and large v2, giving a hint of the importance of hydrodynamic evolution. (c) This panel shows
event-by-event distributions of the v2 distribution for off-central collisions from Reference 107 compared with ATLAS measurements
(109). The results shown in panels b and c are two among many recent comparisons between increasingly precise measurements of the
anisotropy and increasingly sophisticated hydrodynamic calculations.

To quantify the measurement of the azimuthal momentum anisotropy, we perform a Fourier
transformation on the angular distribution of (charged) hadrons in the final state of the collision
(115), which results in the anisotropic flow coefficients v̄n, defined from

dN̄
dϕ

= N̄
2π

(

1 + 2
∞∑

n=1

v̄n cos[n(ϕ − $̄n)]

)

, 1.

where ϕ is the angle in the transverse plane, $̄n are the event plane angles (the first angle where
the nth harmonic component has its maximum multiplicity), and N̄ is the average number of
particles of interest per event. All these observables can in principle be measured as a function of
rapidity, centrality, and pT and, around midrapidity (in collider experiments), also differentially
for different particle species. The second to fourth harmonics are shown as a function of centrality
in Figure 6b, as extracted from the two-particle correlator with particles separated by a large gap
in rapidity.4 We return to the hydrodynamic curves below.

As anticipated, the system before hadronization indeed requires a full hydrodynamic simula-
tion in order to generate the sizable anisotropies found. Hydrodynamics is a gradient expansion,
assuming that a fluid is everywhere close to thermal equilibrium but allowing for small gradients
in both temperature and velocity field. In ideal (zeroth-order) hydrodynamics, these gradients
are ignored, which by assumption yields an isotropic plasma in the plasma’s local rest frame. For

4There are several ways to measure the vn found in Equation 1, most notably via measuring correlations among four, six, eight,
or more particles or via analyzing particles separated in rapidity. Both techniques are designed to exclude jet-like correlations
between nearby particles that come from the same jet shower or nearly back-to-back correlations from pairs of jets. We do not
review the (by now quite sophisticated) methods for extracting the vn (116). We also do not review the dependence of the vn
on pT or on hadron species (60), even though their dependence on particle momentum and mass provides important evidence
in support of their origin from a single hydrodynamic fluid with a common flow velocity, or their distribution around their
average value in each centrality class, which also supports a consistent picture (e.g., 63, 117, 118).
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Fig. A.1. Magnetic field at the center of a gold–gold collision, for different impact parameters. Here the center of mass
energy is 62 GeV per nucleon pair (Y0 = 4.2).

Hence we only have to take into account the contribution of the participants which were origi-
nally there. It is know that these participants stay traveling along the beam axis according to the
following normalized distribution

f (Y ) = a

2 sinh(aY0)
eaY , −Y0 ! Y ! Y0. (A.7)

Experimental data shows that a ≈ 1/2, consistent with the baryon junction stopping mechanism
(see [63] and references therein).

The contribution of the participants to the magnetic field is hence given by

e #B±
p (τ,η, #x⊥) = ±ZαEM

∫
d2 #x′

⊥

Y0∫

−Y0

dY f (Y ) sinh(Y ∓ η)ρ±(#x′
⊥)θ∓(#x′

⊥)

× (#x′
⊥ − #x⊥) × #ez

[(#x′
⊥ − #x⊥)2 + τ 2 sinh(Y ∓ η)2]3/2 . (A.8)

We have evaluated the magnetic field numerically at the origin (η = 0, #x⊥ = 0) in which case
it is pointing in the y-direction. We took colliding gold ions (Z = 79, R = 7 fm) with different
beam rapidities (Y = 4.19 and Y = 5.36). The results are displayed in Figs. A.1 and A.2. Clearly
enormous magnetic fields are created in non-central heavy ion collisions.

For our purposes it is useful to have some analytic expression of the magnetic field. We can
find reasonable approximations for τ " 2R/ sinh(Y0). First we will consider the spectators, then
we will discuss an approximation for the participants. We will perform both approximations at
the origin (#x⊥ = 0 and η = 0). In that case the magnetic field is pointing in the y-direction,
e #B = eB#ey . Especially for large impact parameters the magnetic field at the origin will be a
good estimate for the magnetic field at the surface of the interacting region, since the magnetic
field in the overlap region is to a good degree homogeneous in the transverse plane.

Kharzeev, McLerran, Warringa, Nucl. Phys. A 803, 227 (2008)

Very intense magnetic 
fields at initial times in the 
collision

Voronyuk, Toneev, Cassing, Bratkovskaya, Konchakovski, Voloshin, Phys. Rev. C 83, 054911 (2011)

Very intense magnetic 
fields at initial times
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FIG. 3. (Color online) Time dependence of the spatial distribution of the magnetic field By at times t created in Au + Au (
√

s = 200 GeV)
collisions with the impact parameter b = 10 fm. The location of spectator protons is shown by dots in the (x-z) plane. The level By = 0 and
the projection of its location on the (x-z) plane are shown by the solid lines.

our case is about 0.15 fm/c. For peripheral collisions this
time is even shorter.

Globally, the spatial distribution of the magnetic field
is evidently inhomogeneous and Lorentz-contracted along
the z axis. At the compression stage there is a single
maximum which in the expansion stage is split into two
parts associated with the spectators. In the transverse di-
rection, the bulk magnetic field is limited by two minima
coming from the torqued structure of the single-charge field
(see Fig. 1).

The possibility of attaining extremely high magnetic fields
in heavy-ion collisions was pointed out 30 years ago [41],
but there have been only two real attempts to estimate the
magnetic field for relativistic heavy-ion collisions [21,26].
In Ref. [21] the colliding ions were treated as infinitely thin
layers (pancake-like), and the results in the center of a Au-Au
collision eBy(0, 0, z) could be presented in a semianalytical
form. In Fig. 4 these estimates are confronted with our results.
It is clearly seen that the magnetic field in our transport model
for b = 10 fm is lower than the estimate from Ref. [21] for both
b =12 and 8 fm. This difference originates mainly from the fact
that to simulate rapidity degradation of pancake-like nuclei, a
heuristic function was assumed with making no difference
between surviving baryons and new created particles [21],

whereas in our case the dynamical hadron-string model is used
for both primary and subsequent interactions while keeping
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FIG. 4. (Color online) Time dependence of the |eB| field in the
center of the nuclear overlap region for Au + Au (

√
s = 200 GeV)

collisions from the HSD calculations. The dotted and dot-dashed
curves are from Ref. [21] at the impact parameters b = 8 and 12 fm,
respectively.
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FIG. 5. (Color online) Magnetic field evolution at the point x for
y = 0.

electric and baryonic charges and energy-momentum conser-
vation [36]. The approximation of Ref. [21] is reasonable for
first collisions but gets progressively worse with interaction
time as seen in Fig. 4. The difference in the shape of the
time dependence of the magnetic field for early times is
due to neglecting the finite size of the colliding nuclei in
Ref. [21].

Also, in our treatment, the self-interaction is excluded for
charges within the Lorentz-contracted hadron volume. Our
consideration treats more accurately the retardation effect
discussed above which constrains the contributions to the given
point from some charges. It is especially important for the field
contribution from participants.

It is of interest to note that in our transport model, the
spectator contribution to the magnetic field is practically
vanishing at t ≈1 fm/c (see Fig. 4). In subsequent times
the magnetic field eBy is formed essentially due to produced
participants with roughly equal number of negative and
positive charges which approximately compensate each other.
The visible effect in our approach is by an order of magnitude
lower than that in the estimate [21], which demonstrates the
essential role of the retardation in this interaction phase.

Furthermore, the magnetic field distribution in Ref. [26] is
calculated within the UrQMD model and the back reaction of
the field on particle propagation is disregarded. Nevertheless,
our results are quite close to those of Ref. [26].

In Fig. 5, the magnetic field evolution eBy(x, y = 0, z) is
shown as a function of the transverse coordinate x. Practically,
the difference between results for x = 0, 1, 2 fm is less than
20% except the boundary of the overlap region corresponding
to x ≈ b/2 ∼ 5 fm. One thus may conclude that the magnetic
field is rather homogeneous in the transverse direction.

The magnetic field component By(x = 0, y, z) along the
largest axis y of the “almond” (see Fig. 2) is presented in
Fig. 6 for different times. The similarity of all curves for y ∼<
4 demonstrates a high homogeneity of the created field By . It
is of interest that this field stays almost constant during !t ∼
0.1 fm/c.
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FIG. 6. (Color online) Time evolution of the magnetic field at the
point y for the central overlap point x = 0.

B. Energy density and its correlation with By

Along with a high magnetic field, the presence of a
quark-gluon phase is a necessary condition for a manifestation
of the chiral magnetic effect according to Refs. [15,19–23].
The phase structure of excited matter is essentially defined
by the energy density (cf. Ref. [42]). One can expect that for
energy densities ε ∼>1 Gev/fm3 the system is in a deconfined
phase. The evolution of the energy density of created particles
is presented in Fig. 7. Here the maximal energy density (in
the center of the colliding system) is ε > 50 GeV/fm3 at
the moment of maximal overlap of the nuclei. When the
system expands, it takes a sausage-like shape (or dumb-bell
shape if the energy density values are taken into consideration
additionally) and the energy density drops fast. But even at time
t ∼ 0.5 fm/c (last panel in Fig. 7), the local energy density is
seen to be above an effective threshold of a quark-gluon phase
transition ε ∼> 1 GeV/fm3. Different levels of the magnetic
field strength are plotted in the same figure. It is clearly seen
that the location of the maximum energy density correlates
with that for the magnetic field.

The variation of the energy density distribution with the
transverse coordinate x is shown in Fig. 8. Here the plotted
values of ε correspond to averages within the Lorentz-
contracted cylinder with |z| < 5/γ fm and radius R = 1 fm
centered at point x. One can see that the energy density changes
more strongly in x than the magnetic field (note the logarithmic
scale in Fig. 8). In particular, the maximal ε decreases by
a factor ∼20 when one proceeds from x = 0 to x = 3 fm;
and close to the spectator-participant boundary (at x ≈ 3 fm),
the energy density very quickly (within roughly ∼ 0.3 fm/c)
drops below the effective threshold for deconfinement, ε ∼
1 Gev/fm3.

One should note that the energy density should be calculated
in the rest system. The choice of a symmetric position of the
cylinder volume with respect to the z = 0 plane essentially
leads to an approximately vanishing total momentum of
particles inside this volume. The time averaged γ factor of
particles in this cylinder in the c.m. system is 〈γ 〉 ∼ 1.1. Note,
however, that the created particles are not in local equilibrium!
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Figure 6
(a) A peripheral heavy ion collision produces an approximately elliptical collision region (red shading). A gas of weakly interacting
particles would give a more or less isotropic distribution of final particles (red ), whereas a fluid would give rise to an anisotropic
distribution (blue), due to the difference in pressure gradients in the transverse directions. (b) In Reference 108, a hydrodynamic model
with several temperature-dependent parameterizations of η/s is compared with ALICE measurements of the anisotropy, as obtained by
the integrated Fourier coefficients vn (n = 2–4 from top to bottom), for charged particles with transverse momenta pT between 0.2 and
5.0 GeV in √sNN = 2.76-TeV collisions as a function of the centrality class (0% being head-on collisions) (107). For more off-central
collisions there is an increasing and large v2, giving a hint of the importance of hydrodynamic evolution. (c) This panel shows
event-by-event distributions of the v2 distribution for off-central collisions from Reference 107 compared with ATLAS measurements
(109). The results shown in panels b and c are two among many recent comparisons between increasingly precise measurements of the
anisotropy and increasingly sophisticated hydrodynamic calculations.

To quantify the measurement of the azimuthal momentum anisotropy, we perform a Fourier
transformation on the angular distribution of (charged) hadrons in the final state of the collision
(115), which results in the anisotropic flow coefficients v̄n, defined from

dN̄
dϕ

= N̄
2π

(

1 + 2
∞∑

n=1

v̄n cos[n(ϕ − $̄n)]

)

, 1.

where ϕ is the angle in the transverse plane, $̄n are the event plane angles (the first angle where
the nth harmonic component has its maximum multiplicity), and N̄ is the average number of
particles of interest per event. All these observables can in principle be measured as a function of
rapidity, centrality, and pT and, around midrapidity (in collider experiments), also differentially
for different particle species. The second to fourth harmonics are shown as a function of centrality
in Figure 6b, as extracted from the two-particle correlator with particles separated by a large gap
in rapidity.4 We return to the hydrodynamic curves below.

As anticipated, the system before hadronization indeed requires a full hydrodynamic simula-
tion in order to generate the sizable anisotropies found. Hydrodynamics is a gradient expansion,
assuming that a fluid is everywhere close to thermal equilibrium but allowing for small gradients
in both temperature and velocity field. In ideal (zeroth-order) hydrodynamics, these gradients
are ignored, which by assumption yields an isotropic plasma in the plasma’s local rest frame. For

4There are several ways to measure the vn found in Equation 1, most notably via measuring correlations among four, six, eight,
or more particles or via analyzing particles separated in rapidity. Both techniques are designed to exclude jet-like correlations
between nearby particles that come from the same jet shower or nearly back-to-back correlations from pairs of jets. We do not
review the (by now quite sophisticated) methods for extracting the vn (116). We also do not review the dependence of the vn
on pT or on hadron species (60), even though their dependence on particle momentum and mass provides important evidence
in support of their origin from a single hydrodynamic fluid with a common flow velocity, or their distribution around their
average value in each centrality class, which also supports a consistent picture (e.g., 63, 117, 118).
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Fig. A.1. Magnetic field at the center of a gold–gold collision, for different impact parameters. Here the center of mass
energy is 62 GeV per nucleon pair (Y0 = 4.2).

Hence we only have to take into account the contribution of the participants which were origi-
nally there. It is know that these participants stay traveling along the beam axis according to the
following normalized distribution

f (Y ) = a

2 sinh(aY0)
eaY , −Y0 ! Y ! Y0. (A.7)

Experimental data shows that a ≈ 1/2, consistent with the baryon junction stopping mechanism
(see [63] and references therein).

The contribution of the participants to the magnetic field is hence given by

e #B±
p (τ,η, #x⊥) = ±ZαEM

∫
d2 #x′

⊥

Y0∫

−Y0

dY f (Y ) sinh(Y ∓ η)ρ±(#x′
⊥)θ∓(#x′

⊥)

× (#x′
⊥ − #x⊥) × #ez

[(#x′
⊥ − #x⊥)2 + τ 2 sinh(Y ∓ η)2]3/2 . (A.8)

We have evaluated the magnetic field numerically at the origin (η = 0, #x⊥ = 0) in which case
it is pointing in the y-direction. We took colliding gold ions (Z = 79, R = 7 fm) with different
beam rapidities (Y = 4.19 and Y = 5.36). The results are displayed in Figs. A.1 and A.2. Clearly
enormous magnetic fields are created in non-central heavy ion collisions.

For our purposes it is useful to have some analytic expression of the magnetic field. We can
find reasonable approximations for τ " 2R/ sinh(Y0). First we will consider the spectators, then
we will discuss an approximation for the participants. We will perform both approximations at
the origin (#x⊥ = 0 and η = 0). In that case the magnetic field is pointing in the y-direction,
e #B = eB#ey . Especially for large impact parameters the magnetic field at the origin will be a
good estimate for the magnetic field at the surface of the interacting region, since the magnetic
field in the overlap region is to a good degree homogeneous in the transverse plane.

Kharzeev, McLerran, Warringa, Nucl. Phys. A 803, 227 (2008)

Very intense magnetic 
fields at initial times in the 
collision

Voronyuk, Toneev, Cassing, Bratkovskaya, Konchakovski, Voloshin, Phys. Rev. C 83, 054911 (2011)

Very strong and 
inhomogeneous magnetic fields 

emerge at initial times 
B ∼ 1018 − 1019 G
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Motivation

A constant “classical” magnetic field background has been studied since
the seminal work of Schwinger (Phys. Rev. 82, 664 (1951))
In most theoretical studies, the background magnetic field is idealized
as static and uniform
In HIC scenarios, specially for non-central collisions, strong magnetic
fields emerge in comparatively small regions of space, with spatial
anisotropies and fluctuations
We here propose a statistical model to study the physical effects of
such fluctuations

Enrique Muñoz (PUC Physics)Fermions in a fluctuating magnetic background: Possible implications in the HIC scenario Phys. Rev. D 110, 056003 (2024); Phys. Rev. D 107, 096014 (2023); Phys. Rev. D 109, 056007 (2024); Phys. Rev. D 111, 076028 (2025)3 / 49



The Schwinger propagator
J. Schwinger, Physical Review 82, 664 (1951)

The propagator for the BG magnetic field B = ∇× ABG

SF (x , x ′) = eiΦABG
(x,x′)

∫
d4k
(2π)4 e−ik·(x−x′)SF (k)

The Schwinger phase ΦABG(x , x
′) =

∫ x′

x dξµ
[
Aµ + 1

2 Fµν(ξ − x ′)ν
]

SF(k) = −i
∫ ∞

0

dτ
cos(eBτ)

eiτ(k2
∥−k2

⊥
tan(eBτ)

eBτ −m2+iϵ)

×
{[

cos(eBτ) + γ1γ2 sin(eBτ)
]
(m + /k∥) +

/k⊥
cos(eBτ)

}
The metric tensor splits into two subspaces gµν = gµν∥ + gµν⊥ , such that
gµν∥ = diag (1,0,0,−1) and gµν⊥ = diag(0,−1,−1,0)

/k = /k⊥ + /k∥

k2 = k2
∥ − k2

⊥

Enrique Muñoz (PUC Physics)Fermions in a fluctuating magnetic background: Possible implications in the HIC scenario Phys. Rev. D 110, 056003 (2024); Phys. Rev. D 107, 096014 (2023); Phys. Rev. D 109, 056007 (2024); Phys. Rev. D 111, 076028 (2025)4 / 49



An alternative representation Physical Review D 107, 096014 (2023)

The propagator in terms of a single ”master” integral and its derivatives

SF(k) = −i
[(

m + /k∥
)
A1 + γ1γ2 (m + /k∥

)
A2 +A3/k⊥

]
A1(k ,B) =

∫ ∞

0
dτeiτ(k2

∥−m2+iϵ)−i
k2
⊥

eB tan(eBτ)

A2(k ,B) = ieB
∂A1

∂(k2
⊥)
, A3(k ,B) = A1 + (ieB)2 ∂2A1

∂(k2
⊥)

2

Landau levels (x = k2
⊥/eB)

A1(k ,B) = ie−x

[
1

k2
∥ − m2

+
∞∑

n=1

(−1)n
[
L0

n(2x)− L0
n−1(2x)

]
k2
∥ − m2 − 2n eB

]
The inverse propagator

Ŝ−1
F (k) =

i
D(k)

[(
m − /k∥

)
A1 − γ1γ2 (m − /k∥

)
A2 −A3/k⊥

]
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Inhomogeneus magnetic fields: Statistical model
J. Castaño, M. Loewe, E. Muñoz and J. Rojas, Phys. Rev. D 107, 096014 (2023)

Assumption: At initial stages prior to thermalization, classical ionic currents
exhibit stochastic fluctuations Jµcl(x) + δJµcl(x), acting as sources for classical
background ”BG” gauge fields AµBG(x) (in contrast with photons Aµ(x)).

□
(
AµBG + δAµBG

)
= Jµcl(x) + δJµcl(x)

Statistical properties

δAj
BG(x)δA

k
BG(x′) = ∆Bδj,kδ

(3)(x − x′)

δAµBG(x) = 0

dP
[
δAµBG

]
= Ne−

∫
d3x

[δAµBG(x)]2
2∆B D

[
δAµBG(x)

]
The ensemble-average of over such fluctuations is defined by

O(x ;ABG) =

∫
dP[δAµBG]O(x ;ABG + δABG)

Enrique Muñoz (PUC Physics)Fermions in a fluctuating magnetic background: Possible implications in the HIC scenario Phys. Rev. D 110, 056003 (2024); Phys. Rev. D 107, 096014 (2023); Phys. Rev. D 109, 056007 (2024); Phys. Rev. D 111, 076028 (2025)6 / 49



The Lagrangian
Physical Review D 107, 096014 (2023)

The Lagrangian for this model is a superposition of two terms

L = ψ̄
(
i/∂ − e( /ABG + δ /ABG)− e /A − m

)
ψ − 1

4
FµνFµν ≡ LFBG + LNBG

Fermions immersed in the average BG

LFBG = ψ̄
(
i/∂ − e /ABG − e /A − m

)
ψ − 1

4
FµνFµν

Fermions interacting with the classical background noise (NBG),
represented by the spatial fluctuations δAµ

BG(x)

LNBG = ψ̄
(
−eδ /ABG

)
ψ

Enrique Muñoz (PUC Physics)Fermions in a fluctuating magnetic background: Possible implications in the HIC scenario Phys. Rev. D 110, 056003 (2024); Phys. Rev. D 107, 096014 (2023); Phys. Rev. D 109, 056007 (2024); Phys. Rev. D 111, 076028 (2025)7 / 49



Connected 2k-point correlations and the Replica Method

The ensemble-average over the magnetic background fluctuations
with respect to its mean value Aµ

BG + δAµ
BG

G(x1, . . . , x2k ;ABG) =

(
−i

δ

δJ̄(x1)

)
. . .

(
i

δ

δJ(x2k )

)
lnZ [J̄, J;ABG]

∣∣∣
J=J̄=0

Clearly lnZ [J̄, J;ABG] ̸= lnZ [J̄, J;ABG]

The Replica Method [Mèzard and Parisi, (1991); Kardar, Parisi
and Zhang, (1986)]

lnZ [ABG] = lim
n→0

Z n[ABG]− 1
n

In our scenario, n-replicas of the original fermion fields are defined

ψ(x) → ψa(x) 1 ≤ a ≤ n
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The ensemble-averaged action
Physical Review D 107, 096014 (2023)

The statistical average

Z n[ABG] =

∫ n∏
a=1

D[ψ̄a, ψa]eiS̄[ψ̄a,ψa;ABG]

leads to an effective fermion-fermion interaction

S̄
[
ψ̄a, ψa;ABG

]
=

∫
d4x

(∑
a

ψ̄a (i/∂ − e /ABG − e /A − m
)
ψa − 1

4
FµνFµν

)

+i
e2∆B

2

∫
d4x

∫
d4y

∑
a,b

3∑
j=1

ψ̄a(x)γ jψa(x)ψ̄b(y)γjψ
b(y)δ3(x − y)

︸ ︷︷ ︸
Effective Fermion−Fermion interaction

In what follows, we shall first focus on the fermions in the classical BG
magnetic field B = ê3B

AµBG =
B
2
(0,−x2, x1,0)
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Perturbation Theory Physical Review D 107, 096014 (2023)

Dyson equation for the dressed propagator Ŝ−1
∆ (k) = Ŝ−1

F (k)− Σ̂∆(k)

The self-energy diagram at first-order in ∆ = e2∆B

Σ̂∆(q)=(i∆)
∫ d3p

(2π)3
γ j ŜF (p+q;p0=0)γj=

i(i∆)

(2π)3 [3(γ
0q0−m)Ã1(q0)−γ1γ2(iπeB)(m−q0γ

0)Ã2(q0)]

Dressed propagator

S∆(q)=−iz−1 D(q)
D̃(q)

[(
m+/̃q∥

)
A1(q)+z3γ

1γ2
(

m+/̃q∥

)
A2(q)+A3(q)/̃q⊥

]

The momenta q̃µ = (q0, z−1q), with an effective refractive index
v ′/c = z−1(q) due to magnetic fluctuations.
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Renormalization factors
Physical Review D 107, 096014 (2023)

Wavefunction renormalization factor and refractive index

z(q) = 1 +
3i∆
(2π)3

Ã1(q0)

A1(q)
D(q)

v ′

c
= z−1

Charge renormalization factor

z3(q) =
1 − iπ(i∆)(eB)

(2π)3
Ã2(q0)
A2(q)

D(q)

1 + 3i∆
(2π)3

Ã1(q0)
A1(q)

D(q)

Dressed propagator

S∆(q)=−iz−1(q)D(q)
D̃(q)

[(
m+/̃q∥

)
A1(q)+z3γ

1γ2
(

m+/̃q∥

)
A2(q)+A3(q)/̃q⊥

]
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Refractive Index v ′

c = z−1 Physical Review D 107, 096014 (2023)

20

40
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80

100

2 4 6 8 10

In the very weak field limit eB/m2 ≪ 1, z, z3 → 1, and hence v ′/c → 1
Ultra-intense field eB/m2 ≫ 1 (LLL)

z = 1 +
3
4
∆(eB)e−q2

⊥/eB

π
√

q2
0 − m2

z3 =

1 + ∆(eB)e−q2
⊥/(eB)

4π
√

q2
0−m2

1 + 3
4
∆(eB)e−q2

⊥/(eB)

π
√

q2
0−m2

lim
eB/m2→∞

z3 = 1/3
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The photon polarization tensor for ∆ > 0
J. Castaño and E. Muñoz Phys. Rev. D 109, 056007 (2024)

Πµν(p) = −(iqf )
2

2

∫
d4k
(2π)4 Tr

{
γν iS∆ (k) γµiS∆(k − p)

}
+ c.c.

Fermion propagator (first-order in noise)

iS(p) = iS0(p) + ∆ · iS1(p) + O(∆2)
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Fermion propagator
J. Castaño and E. Muñoz Physical Review D 110, 056003 (2024)

Noiseless propagator in LLL (|qf B|/m2 ≫ 1)

iS0(p) = 2i
e−p2

⊥/|qf B|

p2
∥ − m2 + iϵ

(/p∥ + m)O(↑)

Noise contribution

iS1(p) = i
(
|qf B|
2π

)[
Θ1(p)(/p∥ + m)O(↑) −Θ2(p)γ3O(↑) +Θ3(p)iγ1γ2(/p∥ + m)

]
Spin projectors O(↑,↓) = 1

2

[
1 ∓ sign(qf B)iγ1γ2

]
Θ1(p) =

3(p2
∥ + m2)e−2p2

⊥/|qf B|

(p2
∥ − m2)2

√
p2

0 − m2
, Θ2(p) =

3p3e−2p2
⊥/|qf B|

(p2
∥ − m2)

√
p2

0 − m2

Θ3(p) =
e−2p2

⊥/|qf B|

(p2
∥ − m2)

√
p2

0 − m2
.
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The photon polarization tensor for ∆ > 0
J. Castaño and E. Muñoz Phys. Rev. D 109, 056007 (2024)

At first order in noise ∆

iΠµν
∆ = iΠµν

0 + i
q2

f |qf B|∆
4π

3∑
i=1

Tµν
i

iΠµν
0 =

iq2
f |qf B|
4π2 e−p2

⊥/2|qf B|p2
∥I0(p2

∥)

(
gµν
∥ −

pµ
∥pν

∥

p2
∥

)

I0(p2
∥) =

∫ 1

0
dx

x(1 − x)
x(1 − x)p2

∥ − m2

=
1
p2
∥

1 +
2m2/p2

∥√
1 − 4m2

p2
∥

log


1 +

√
1 − 4m2

p2
∥

1 −
√

1 − 4m2

p2
∥
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The photon polarization tensor for ∆ > 0
J. Castaño and E. Muñoz Phys. Rev. D 109, 056007 (2024)

Tµν
1 = 16i

∫
d4k
(2π)4

e−k2
⊥/eB

k2
∥ − m2

Θ1(k − p)

[
(m2 + k∥ · (p∥ − k∥))(g

µν
∥ − gµν

⊥ )

+(kµ
∥ − pµ

∥ )k
ν
∥ + kµ

∥ (kν
∥ − pν

∥ )

]

Tµν
2 = 16i

∫
d4k
(2π)4

e−k2
⊥/eB

k2
∥ − m2

Θ2(k − p)
(

k3gµν
∥ + kµ

∥ δν3 + kν
∥ δ

µ
3

)

Tµν
3 = 16i

∫
d4k
(2π)4

e−k2
⊥/eB

k2
∥ − m2

Θ3(k − p)

[
(m2 + k∥ · (p∥ − k∥))(g

µν
∥ − gµν

⊥ )

+(kµ
∥ − pµ

∥ )k
ν
∥ + kµ

∥ (kν
∥ − pν

∥ )

]
.
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Noise-induced photon mass for ∆ > 0?
J. Castaño and E. Muñoz Phys. Rev. D 109, 056007 (2024)

Dyson equation for the noise-dressed photon propagator[
Dµν
∆ (p)

]−1
=
[
Dµν

0 (p)
]−1 − iΠµν

∆ (p)

Dµν
0 (p) =

−i gµν

(p2 + iϵ)

lim
p0→0
p→0

iΠµν
0 = 0

The noise contribution

lim
p0→0
p→0

iΠµν
∆ = i

q2
f |qf B|∆

4π

3∑
i=1

lim
p0→0
p→0

Tµν
i

Enrique Muñoz (PUC Physics)Fermions in a fluctuating magnetic background: Possible implications in the HIC scenario Phys. Rev. D 110, 056003 (2024); Phys. Rev. D 107, 096014 (2023); Phys. Rev. D 109, 056007 (2024); Phys. Rev. D 111, 076028 (2025)17 / 49



lim
p0→0
p→0

Tµν
1 =

4i|qf B|
πm

∫
R2

dydx
(2π)2

(x2 + y2 − 1)gµν
∥

(x2 + y2 + 1)3
√

y2 + 1

= −
i|qf B|
32πm

gµν
∥

lim
p0→0
p→0

Tµν
2 = −

4i|qf B|
πm

∫
R2

dydx
(2π)2

x2
(

gµν
∥ + 2δµ3 δ

ν
3

)
(x2 + y2 + 1)2

√
y2 + 1

= −
i|qf B|
2πm

(
gµν
∥ + 2δµ3 δ

ν
3

)

lim
p0→0
p→0

Tµν
3 =

4i|qf B|
3πm

∫
R2

dydx
(2π)2

1

(x2 + y2 + 1)
√

y2 + 1

[
1

(x2 + y2 + 1)2
gµν
∥ − gµν

⊥

]

=
i|qf B|
3πm

[
1
4

gµν
∥ − gµν

⊥

]

Enrique Muñoz (PUC Physics)Fermions in a fluctuating magnetic background: Possible implications in the HIC scenario Phys. Rev. D 110, 056003 (2024); Phys. Rev. D 107, 096014 (2023); Phys. Rev. D 109, 056007 (2024); Phys. Rev. D 111, 076028 (2025)18 / 49



Photon propagator with ∆ > 0
J. Castaño and E. Muñoz Physical Review D 109, 056007 (2024)

Thus we obtain

lim
p0→0
p→0

iΠµν∆ =
αem(qf B)2

mπ
∆

(
59
96

gµν∥ +
1
3

gµν⊥ + δµ3 δ
ν
3

)
,

Photon propagator with noise

Dµν(p) =
−igµν

∥

p2 + M2
∥ + iϵ

+
−igµν

⊥
p2 + M2

⊥ + iϵ
+

3iM2
⊥δµ3 δ

ν
3(

p2 + M2
⊥ + iϵ

) (
p2 +

(
M2

∥ − M2
⊥

)
+ iϵ

)
Noise-induced masses (complex)

M2
∥ = i

59αem

96π
(qf B)2∆

m
M2

⊥ = i
αem

3π
(qf B)2∆

m
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Conclusions

We studied the effects of white noise spatial fluctuations in an otherwise uniform
background magnetic field, over the QED fermion propagator

At first order in ∆, the propagator retains its free form, thus representing renormalized
quasi-particles with the same mass m′ = m, but propagating in a ”dispersive medium” with
an index of refraction v ′/c = z−1, and effective charge e′ = z3e, where z and z3 depend
on the average field and its noise

Low energy components in the propagator (long-wavelength) are more sensitive to the
spatial distribution of the magnetic fluctuations, and hence experience a higher degree of
decoherence, thus reducing v ′/c = z−1. In contrast, the high-energy Fourier modes are
less sensitive to magnetic fluctuations.

The photon propagator develops a complex mass that leads to damping in the dispersion
relation across the effective magnetized medium
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Anisotropic photon yield under magnetic fluctuations
J. Castaño and E. Muñoz Phys. Rev. D 111, 076028 (2025)

Direct photons are commonly estimated as the sum of prompt photons
produced in the hard process at the collision instant, plus thermal
photons emitted from the soft, thermalized portion of the medium.
Nuclear matter undergoes several stages after the collision, from initial
color glass condensate to glasma, then a hydrodynamic QCD regime,
and finally hadronic gas.
The common picture is that of QGP as a nearly perfect hydrodynamic
fluid, but asymmetries in photon production rates have been
experimentally detected by the PHENIX Collaboration at the RHIC
(Phys. Rev. Lett. 109, 122302 (2012), Phys. Rev. C 94, 064901 (2016))
and by the ALICE Collaboration at the LHC (Phys. Lett. B 789, 308
(2019)).
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Anisotropic flow coefficients
X. Wang, I. Shovkovy, L. Yu, and M. Huang, Phys. Rev. D 102, 076010 (2020)

X. Wang and I. Shovkovy, Phys. Rev. D 109, 056008 (2024).

Angular distribution for the emission rate

p0 d3R
dpxdpy dpz

=
d3R

pT dpT dϕdy
=

1
2π

R0

[
1 + 2

∞∑
n=1

vn cos(nϕ)

]
.

Anisotropic flow coefficients

vn =
1
R0

∫ 2π

0
dϕ cos(nϕ)

d3R
pT dpT dϕdy

.

R0 =
1

2π

∫ 2π

0
dϕ

d3R
pT dpT dϕdy

.
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Anisotropic photon yield
X. Wang and I. Shovkovy, Phys. Rev. D 109, 056008 (2024)

J. Castaño and E. Muñoz Phys. Rev. D 111, 076028 (2025)

Coordinates system py = pT cosϕ, pz = pT sinϕ, y = 1
2 ln p0+px

p0−px

Photon emission rate d3R
pT dpT dϕdy = −nB(ω)

(2π)3 Im
{

gµνΠ
µν
R (p)

}
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The photon polarization tensor at T > 0 and ∆ > 0
J. Castaño and E. Muñoz Phys. Rev. D 111, 076028 (2025)

Πµν(p) = −(iqf )
2

2β

∑
ωn

∫
d3k
(2π)3 Tr

{
γν iS∆ (k) γµiS∆(k − p)

}
+ c.c.

The retarded polarization tensor is obtained by analytic continuation

Πµν
R (p0 = ω,p) = Πµν(iνn → ω + iϵ,p).
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The Emission Rate with magnetic noise
J. Castaño and E. Muñoz Phys. Rev. D 111, 076028 (2025)

d3R(noise)
γ

pT dpT dϕdy
=

d3R0
γ

pT dpT dϕdy
+

d3R∆
γ

pT dpT dϕdy
.

The noiseless contribution

d3R0
γ

pT dpT dϕdy
=
∑

f=u,d

q2
f m2

f |qf B|NcnB(ω)

32π4 e− p2
⊥

2|qf B| θ

(
ω −

√
p2

z + 4m2
f

)
I0

I0 = −
∑

s1=±

∑
s2=±

∑
s=±

θ
(

s1E (s)
+

)
θ
(

s2E (s)
−

) [nF(E
(s)
− )− nF(E

(s)
+ )
]

E (s)
+ E (s)

−

∣∣∣∣ ks

E (s)
+

− (ks−p)
E (s)
−

∣∣∣∣ .
Here we defined (for s = ±)

E (s)
± = ±ω

2
+ s

pz

2

√
1 −

4m2
f

ω2 − p2
z
, ks =

pz

2
+ s

|ω|
2

√
1 −

4m2
f

ω2 − p2
z
.
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The Emission Rate with magnetic noise
J. Castaño and E. Muñoz Phys. Rev.D 111, 076028 (2025)

d3R∆
γ

pT dpT dϕdy
=

nB(ω)∆Nc

32π5

∑
f=u,d

q2
f eB2m2

f e−
2p2

⊥
3eB θ

(
ω −

√
p2

z + 4m2
f

){
I +

3
m2

f

J
}

.

Here, we define

I ≡ −
∑

s1,s2,s=±

θ
(

s1E (s)
+

)
θ
(

s2E (s)
−

)([
E (s)
−

]4
− 3m2

f

[
E (s)
−

]2
+ m4

f

){
nF

(
E (s)
−

)
− nF

(
E (s)
+

)}
E (s)
+

[
E (s)
−

]3
([

E (s)
−

]2
− m2

f

)3/2
∣∣∣∣∣ ks

E(s)
+

− (ks−pz )

E(s)
−

∣∣∣∣∣
(2)

J ≡
∑

s1,s2,s=±

θ
(

s1E (s)
+

)
θ
(

s2E (s)
−

) [
E (s)
+ E (s)

− − ks(ks − pz)
]{

nF

(
E (s)
−

)
− nF

(
E (s)
+

)}
E (s)
+ E (s)

−

√[
E (s)
−

]2
− m2

f

∣∣∣∣∣ ks

E(s)
+

− (ks−pz )

E(s)
−

∣∣∣∣∣
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Photon Emission Rate with magnetic noise
J. Castaño s and E. Muñoz Phys. Rev. D 111, 076028 (2025)

100 200 300 400 500

Figure: B = 0.5m2
π. (a) ∆ = 0, (b) ∆ = 10−3 MeV−1.
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Anisotropic flow coefficients with magnetic noise
J. Castaño and E. Muñoz Phys. Rev. D 111, 076028 (2025)

T = 0.2 MeV, Blue: ∆ = 0, Red: ∆ = 10−3 MeV−1.
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Total angular distribution for emitted photons in polar
coordinates
J. Castaño and E. Muñoz Phys. Rev. D 111, 076028 (2025)

5 10 15 20 25

Normalized by R0/2π, with vn (up to n = 6), T = 0.2 MeV, B = 0.5m2
π. Left:

∆ = 0. Right: ∆ = 10−3MeV−1.
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Conclusions

Our results complement previous studies, based on the assumption of a
constant magnetic field background (Phys. Rev. D 102, 076010 (2020);
Phys. Rev. D. 109, 056008 (2024)), by incorporating the effects of
stochastic fluctuations.

The anisotropic flow coefficients are affected by the presence of
stochastic noise. Secondary lobules emerge in addition to the main
directions ϕ = π/2 and ϕ = 3π/2.

The elliptic flow coefficient v2 is weakly affected, whereas the
higher-order components v4 cos(4ϕ) and v6 cos(6ϕ) are significantly
modified by stochastic noise.

Low-frequency photons are more affected by the magnetic noise effects.

Our results suggest that magnetic noise effects should be taken into
account in the theoretical analysis of experimental signals.
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Phenomenological scenario for the magnetic
fluctuations

Very strong magnetic fields B = ∇× ABG are generated locally
within a small spatial region L ∼

√
σ

On average ⟨B⟩ = ê3 B, but smaller transverse components δBx
and δBy exist such that field fluctuations are estimated on the
order of (δB)2 ∼ (δBx)

2 + (δBy )
2.

Therefore, by dimensional analysis

∆B ∼ (δB)2 L5 ∼ (δB)2 σ5/2
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Further estimations

The fraction f of the geometrical cross-section σgeom, defined by a
circle with a radius of r1 + r2 = 2R in a maximum peripheral
collision, and the cross-section σb for a peripheral collision with
impact parameter b

f =
σb

σgeom
=

(
Npart

2N

)2/3

The nuclear radius rA = r0N1/3, where N is the number of
nucleons per ion and r0 ∼ 1.25 fm.
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From the previous expressions

∆B ∼ π5/2 (δB)2 r5
0 N5/3

(
Npart

2N

)5/3

In peripheral heavy-ion collisions, the magnetic fluctuations in the
transverse plane |e δB| ∼ m2

π/4
For an Au+Au collision with N = 197, and if Npart/N = 1/2,

∆ ≡ e2∆B ∼ 2.6MeV−1

For less central collisions with Npart/N = 1/8

∆ ∼ 0.26 MeV−1
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Statistical mechanics of disordered magnets: Spin
glasses
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The Sherrington-Kirkpatrick model: Thermodynamic
properties Phys. Rev. Lett. 35 (26), 1792 (1975)

For a given realization of the set of values of the couplings, the
Free Energy is

F [T ,N,B; {Jij}] = −T ln
[
Tr e−H[{σi},{Jij}]/T

]
= −T ln

 ∑
{σi=±}

e
∑

<i,j>
Jij
T σiσj+

B
T
∑N

i=1 σi


≡ −T lnZ[T ,N,B; {Jij}]

The above is a random variable (via the {Jij}). The physical Free
Energy is the statistical average over the distribution of couplings

F [T ,N,B] ≡ F [T ,N,B; {Jij}] = −T
∫

dP[Jij ] lnZ[T ,N,B; {Jij}]

Enrique Muñoz (PUC Physics)Fermions in a fluctuating magnetic background: Possible implications in the HIC scenario Phys. Rev. D 110, 056003 (2024); Phys. Rev. D 107, 096014 (2023); Phys. Rev. D 109, 056007 (2024); Phys. Rev. D 111, 076028 (2025)35 / 49



Parisi and the replica trick
Phys. Rev. Lett. 43(23), 1754 (1979)

Apply the basic identity

lnZ[T ,B; {Jij}] = lim
n→0

Zn[T ,B; {Jij}]− 1
n

The degrees of freedom σi → σa
i , 1≤ a ≤ n

Zn[T ,B; {Jij}] =
∑

{σa
i =±}

∫ ∏
<i,j>

dJij√
π∆

e−
J2
ij
∆

e
∑

a,<i,j>
Jij
T σ

a
i σ

a
j − B

T
∑

a,i σ
a
i

=
∑

{σa
i =±}

e− ∆2

4T 2
∑

a,b
∑

<i,j>,<k,l> σa
i σ

a
j σ

b
kσ

b
l − B

T
∑n

a=1
∑N

i=1 σ
a
i
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Vertex corrections at O(∆2)

Diagrams contributing to the 4-point vertex

(a) (b)

(c)

Γ̂(a) =
∫ d3q

(2π)3
γ i SF(p−q)γ j⊗γi SF(p′−q)γj

Γ̂(b) =
∫ d3q

(2π)3
γ i SF(p−q)γ j⊗γi SF(p′+q)γj

Γ̂(c) =
∫ d3q

(2π)3
γ i SF(p+q)γ j⊗γi SF(p′−q)γj
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Vertex corrections
Physical Review D 107, 096014 (2023)

Γ̂ = 2Γ̂(a) + 2Γ̂(b) + 4Γ̂(c) = ∆̃(ψ̄γ iψ)(ψ̄γ iψ)

Renormalized ∆̃

∆̃=∆+2∆2
(
J (−,−)

2 +J (−,+)
2 +2J (+,−)

2 +(1−∂2
x )(1−∂2

y )J
(−,−)
3

+(1−∂2
x )(1−∂2

y )J
(−,+)
3 +2(1−∂2

x )(1−∂2
y )J

(+,−)
3

)
In terms of the integrals

J (λ,σ)
1 (p,p′) =

∫ d3q
(2π)3

A1(p+λq)A1(p′+σq)

J (λ,σ)
2 (p,p′) =

∫ d3q
(2π)3

q2
∥A1(p+λq)A1(p′+σq)

J (λ,σ)
3 (p,p′) =

∫ d3q
(2π)3

q2
⊥A1(p+λq)A1(p′+σq)
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Vertex renormalization
Physical Review D 107, 096014 (2023)
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Fermion self-energy and effective mass in a noisy
magnetic background
J. Castaño and E. Muñoz Phys. Rev. D 110, 056003 (2024)

The fermion magnetic mass exhibits a leading double
logarithm (Tsai, PRD 10, 1342 (1974);Jancovici, PRD 187, 2275
(1969); Machet, Int. J. Mod. Phys. 31, 1650071 (2016); Ayala,
Castaño, Muñoz, Loewe, PRD 104, 016006 (2021))

mB − m ∼ αemm
[
ln
(

eB/m2
)]2

Is this behaviour modified by stochastic noise when radiative
corrections are included?

Enrique Muñoz (PUC Physics)Fermions in a fluctuating magnetic background: Possible implications in the HIC scenario Phys. Rev. D 110, 056003 (2024); Phys. Rev. D 107, 096014 (2023); Phys. Rev. D 109, 056007 (2024); Phys. Rev. D 111, 076028 (2025)40 / 49



Fermion self-energy and effective mass in a noisy
magnetic background
J. Castaño and E. Muñoz Phys. Rev. D 110, 056003 (2024)

−iΣ(x, x′ ) = (−ie)2γμiS(x, x′ )γμDμν(x − x′ ) = Φ(x, x′ )∫
d4p

(2π)4 e−ip⋅(x−x′ ) [−iΣ(p)]

Schwinger phases in internal diagrammatic lines to a single
point, such that only an overall phase connecting the
external points of the fermion propagator survives. This
feature considerably simplifies the perturbation theory,
such that only the translational invariant parts of the
self-energy need to be calculated in momentum space [19].
In particular, we have shown that the effects of magnetic
noise over the fermion propagator, at first order in Δ, is
equivalent to a dispersive media, with an effective refrac-
tion index that modifies the group velocity of the otherwise
free particles but not their mass [19]. In contrast, we have
recently shown [22] that, as a consequence of the magnetic
fluctuations combined with charged vacuum polarization in
QED, photons develop anisotropic magnetic masses M⊥
and Mk, which are proportional to Δ [22]. Therefore, a
related question remains opened: What are the effects of the
background magnetic noise over the fermion self-energy
and its corresponding effective mass, when radiative effects
are taken into account? In this article, we shall address this
question from a perturbation theory perspective within the
framework of QED as captured by Eq. (12) by applying our
previous results for the noise-averaged fermion [19] and
photon [22] propagators, respectively, in the very strong
magnetic field limit jeBj ≫ m2 which is relevant for heavy-
ion collisions.

II. THEQEDFERMION SELF-ENERGYAT 1-LOOP

In the configuration space, for a QED fermion with
charge −e and mass m propagating through a magnetized
medium, its self-energy due to radiative effects at 1-loop (as
depicted in Fig. 1) can be expressed as follows:

−iΣðx; x0Þ ¼ ð−ieÞ2γμiSðx; x0ÞγμDμνðx − x0Þ: ð13Þ

Here, the fermion propagator is given by

iSðx; x0Þ ¼ Φðx; x0Þ
Z

d4k
ð2πÞ4

e−ik·ðx−x
0ÞiSðkÞ; ð14Þ

while

Dμνðx − x0Þ ¼
Z

d4q
ð2πÞ4

e−iq·ðx−x
0ÞDμνðqÞ ð15Þ

represents the photon propagator.
As discussed in the literature [10,11], the presence of

the magnetic field breaks the translational invariance of
the propagators, but gauge-covariance is granted by the
Schwinger phase factor Φðx; x0Þ, which takes the following
form:

Φðx; x0Þ ¼ exp
!
ie
Z

x0

x
dξμ

"
Aμ þ

1

2
Fμνðξ − x0Þν

#$
: ð16Þ

For a magnetic field B oriented along the ẑ direction, in
the symmetric gauge

Aμ ¼
B
2
ð0;−x2; x1; 0Þ; ð17Þ

we obtain the phase explicitly as

Φðx; x0Þ ¼ exp
%
ieB
2

ϵijxix0j

&
; ð18Þ

where ϵij is the two-dimensional Levy-Civita tensor.
Similarly, and in consistency with the Dyson equation

for the fermion propagator in configuration space, the
fermion self-energy also involves the Schwinger phase

−iΣðx; x0Þ ¼ Φðx; x0Þ
Z

d4p
ð2πÞ4

e−ip·ðx−x
0Þ½−iΣðpÞ&; ð19Þ

where the translational-invariant factor is given by the
expression

−iΣðpÞ≡ ð−ieÞ2
Z

d4k
ð2πÞ4

γμiSðkÞγνDμνðp − kÞ: ð20Þ

For the effective interaction considered in this theory, as
we explained in the Introduction, the Schwinger phase
becomes a global common factor in the Dyson equation for
the propagator. Therefore, we only need to work with the
translational-invariant, i.e. momentum-space, components
of the Dyson equation.
The presence of a constant magnetic field background

breaks the Lorentz invariance. Therefore, the phase space is
splitted into two subspaces according to the parallel and
perpendicular directions with respect to the background
field. The metric tensor is thus splitted accordingly
gμν ¼ gμνk þ gμν⊥ , where

gμνk ¼ diagð1; 0; 0;−1Þ;

gμν⊥ ¼ diagð0;−1;−1; 0Þ: ð21Þ

=

+ +
FIG. 1. Feynman diagrams depicting the contributions to
fermion self-energy up to order OðΔ2Þ. The single lines represent
fermions and photons in a constant and intense magnetic field,
while double lines depict fermions and photons in a fluctuating
background magnetic field.
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such that only the translational invariant parts of the
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In particular, we have shown that the effects of magnetic
noise over the fermion propagator, at first order in Δ, is
equivalent to a dispersive media, with an effective refrac-
tion index that modifies the group velocity of the otherwise
free particles but not their mass [19]. In contrast, we have
recently shown [22] that, as a consequence of the magnetic
fluctuations combined with charged vacuum polarization in
QED, photons develop anisotropic magnetic masses M⊥
and Mk, which are proportional to Δ [22]. Therefore, a
related question remains opened: What are the effects of the
background magnetic noise over the fermion self-energy
and its corresponding effective mass, when radiative effects
are taken into account? In this article, we shall address this
question from a perturbation theory perspective within the
framework of QED as captured by Eq. (12) by applying our
previous results for the noise-averaged fermion [19] and
photon [22] propagators, respectively, in the very strong
magnetic field limit jeBj ≫ m2 which is relevant for heavy-
ion collisions.

II. THEQEDFERMION SELF-ENERGYAT 1-LOOP

In the configuration space, for a QED fermion with
charge −e and mass m propagating through a magnetized
medium, its self-energy due to radiative effects at 1-loop (as
depicted in Fig. 1) can be expressed as follows:
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0ÞiSðkÞ; ð14Þ

while

Dμνðx − x0Þ ¼
Z

d4q
ð2πÞ4

e−iq·ðx−x
0ÞDμνðqÞ ð15Þ

represents the photon propagator.
As discussed in the literature [10,11], the presence of

the magnetic field breaks the translational invariance of
the propagators, but gauge-covariance is granted by the
Schwinger phase factor Φðx; x0Þ, which takes the following
form:

Φðx; x0Þ ¼ exp
!
ie
Z

x0

x
dξμ

"
Aμ þ

1

2
Fμνðξ − x0Þν

#$
: ð16Þ

For a magnetic field B oriented along the ẑ direction, in
the symmetric gauge

Aμ ¼
B
2
ð0;−x2; x1; 0Þ; ð17Þ

we obtain the phase explicitly as

Φðx; x0Þ ¼ exp
%
ieB
2

ϵijxix0j

&
; ð18Þ

where ϵij is the two-dimensional Levy-Civita tensor.
Similarly, and in consistency with the Dyson equation

for the fermion propagator in configuration space, the
fermion self-energy also involves the Schwinger phase

−iΣðx; x0Þ ¼ Φðx; x0Þ
Z

d4p
ð2πÞ4

e−ip·ðx−x
0Þ½−iΣðpÞ&; ð19Þ

where the translational-invariant factor is given by the
expression

−iΣðpÞ≡ ð−ieÞ2
Z

d4k
ð2πÞ4

γμiSðkÞγνDμνðp − kÞ: ð20Þ

For the effective interaction considered in this theory, as
we explained in the Introduction, the Schwinger phase
becomes a global common factor in the Dyson equation for
the propagator. Therefore, we only need to work with the
translational-invariant, i.e. momentum-space, components
of the Dyson equation.
The presence of a constant magnetic field background

breaks the Lorentz invariance. Therefore, the phase space is
splitted into two subspaces according to the parallel and
perpendicular directions with respect to the background
field. The metric tensor is thus splitted accordingly
gμν ¼ gμνk þ gμν⊥ , where

gμνk ¼ diagð1; 0; 0;−1Þ;

gμν⊥ ¼ diagð0;−1;−1; 0Þ: ð21Þ
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+ +
FIG. 1. Feynman diagrams depicting the contributions to
fermion self-energy up to order OðΔ2Þ. The single lines represent
fermions and photons in a constant and intense magnetic field,
while double lines depict fermions and photons in a fluctuating
background magnetic field.
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056003-3−iΣ(p) ≡ (−ie)2 ∫
d4k

(2π)4 γμiS(k)γνDμν(p − k)

Φ(x, x′ ) = eie ∫x′ 

x dξμ Aμ = e
ieB
2 ϵijxix′ jSchwinger  phase

Translational-invariant self-energy

iS(p) = iS0(p) + Δ ⋅ iS1(p) + O(Δ2)

Dμν(q) = Dμν
0 (q) + Δ ⋅ Dμν

1 (q) + O(Δ2)

Noise-dressed Fermion propagator

Noise-dressed photon propagator

Enrique Muñoz (PUC Physics)Fermions in a fluctuating magnetic background: Possible implications in the HIC scenario Phys. Rev. D 110, 056003 (2024); Phys. Rev. D 107, 096014 (2023); Phys. Rev. D 109, 056007 (2024); Phys. Rev. D 111, 076028 (2025)41 / 49



Fermion propagator
J. Castaño and E. Muñoz Physical Review D 110, 056003 (2024)

Fermion propagator (first-order in noise)

iS(p) = iS0(p) + ∆ · iS1(p) + O(∆2)

Noiseless propagator in LLL (|eB|/m2 ≫ 1)

iS0(p) = 2i
e−p2

⊥/eB

p2
∥ − m2 + iϵ

(/p∥ + m)O(↑)

Noise contribution

iS1(p) = i
(

eB
2π

)[
Θ1(p)(/p∥ + m)O(↑) −Θ2(p)γ3O(↑)

+Θ3(p)iγ1γ2(/p∥ + m)
]

Spin projectors

O(↑,↓) =
1
2
[
1 ∓ sign(eB)iγ1γ2]
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Photon propagator
J. Castaño and E. Muñoz Physical Review D 109, 056007 (2024)

Photon propagator with noise

Dµν(q) =
−igµν

∥

q2 + iM2
∥ + iϵ

+
−igµν

⊥
q2 + iM2

⊥ + iϵ
−

3M2
⊥δµ3 δ

ν
3(

q2 + iM2
⊥ + iϵ

) (
q2 + i

(
M2

∥ − M2
⊥

)
+ iϵ

)
Noise-induced masses

iM2
∥ =

59αem

96π
(eB)2∆

m
iM2

⊥ =
αem

3π
(eB)2∆

m

At first-order in noise

Dµν(q) = Dµν
0 (q) + ∆ · Dµν

1 (q) + O(∆2)

Noise contribution

Dµν
1 (q) = − αem(eB)2

96πm(q2 + iϵ)2

(
59gµν∥ − 32gµν⊥ + 64δµ3 δ

ν
3

)
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Fermion self-energy and magnetic mass
J. Castaño and E. Muñoz Phys. Rev.D 110, 056003 (2024)

The fermion self-energy with magnetic noise ∆ > 0

Σ(p,B,∆) = Σr
0(p,B) + Σr

∆(p,B) + O(∆2)

The magnetic mass operator in the ∆ → 0 limit (Phys. Rev. D 104,
016006 (2021)), B = |eB|/m2

M̂B(∆ = 0) = m + Σ0(p,B)|/p∥=m = O↑M(↑)
B0 +O↓M(↓)

B0

M(↑)
B0 =

αemm
π

[
ln2 B −

(
γe + i

π

2

)
lnB +

π2

3

]
+ O(B−1)

M(↓)
B0 =

αemm
π

[
ln2 B −

(
1 + γe + i

π

2

)
lnB

−
(

2 − γe − π2

3
− i

π

2

)]
+ O(B−1)
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Self-energy and renormalization conditions
J. Castaño and E. Muñoz Phys. Rev. D 110, 056003 (2024)

We define two counterterms

Σr
0(p,B) = Σ0(p,B) + δZ (/p∥ − mγ0)− δm,

Those are fixed by the renormalization conditions

lim
∆→0+

∂

∂/p∥
Σ(p,B,∆)

∣∣∣∣∣/p∥=mγ0,

p=0

=
∂

∂/p∥
Σr

0(p,B)

∣∣∣∣∣/p∥=mγ0,

p=0

=
∂

∂/p∥
Σ0(p,B)

∣∣∣∣∣/p∥=m,
p⊥=0

lim
∆→0+

Σ(p,B,∆)|
/p∥=mγ0,p=0 = Σr

0(p,B)|
/p∥=mγ0,p=0

= M̂B(∆ = 0)− m
= Σ0(p,B)|

/p∥=m,/p⊥=0
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Fermion self-energy and magnetic mass with noise
J. Castaño and E. Muñoz Phys. Rev. D 110, 056003 (2024)

The self energy is projected onto spin O↑,↓ and P± = 1
2

(
1 ± γ0)

particle/antiparticle subspaces

lim
p0→m
p→0

[−iΣ∆(p)]r =
∑
σ=↑,↓

∑
λ=±1

[
−iΣ̃(σ,λ)

∆ OσP(λ)
]

The fermion magnetic mass operator, for ∆ > 0, possesses four
different eigenvalues depending on the spin σ =↑, ↓ and λ = ±
projections

M(σ,λ)
B (∆) = m + M(σ)

B0 + Σ̃
(σ,λ)
∆

The eigenvalues are complex, and hence we have

mσ
B = Re M(σ,λ)

B (∆) = m + Re M(σ)
B0

Γ(σ,λ)(∆) = −2Im M(σ,λ)
B (∆)
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Fermion self-energy and magnetic mass with noise
J. Castaño and E. Muñoz Phys. Rev. D 110, 056003 (2024)

The real parts correspond to the fermion magnetic mass, which
turns out to be noise-independent (in agreement with Phys. Rev.
D 104, 016006 (2021)), for B = |eB|/m2

m(↑)
B = m +

αemm
π

[
ln2 B − γe lnB +

π2

3

]
+ O(B−1)

m(↓)
B = m +

αemm
π

[
ln2 B − (1 + γe) lnB +

π2

3
+ γe − 2

]
+ O(B−1)

The imaginary parts represent a Breit-Wigner resonance due to
the combination of the field and the magnetic noise

Γ(↑,±)(∆) = αemm

(
lnB − 2

√
2Bm∆

π3/2 (3 ln(2)∓ 2)

)

Γ(↓,±)(∆) = αemm

(
lnB − 1 − 2

√
2Bm∆

π3/2 (3 ln(2)± 8)

)
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Fermion magnetic mass and spectral width
J. Castaño and E. Muñoz Phys. Rev. D 110, 056003 (2024)

where we defined the coefficients:

Σ̃ð↓;"Þ
Δ ≡ i

ffiffiffi
2

p

π3=2
ð3 lnð2Þ"8ÞαemΔ

ffiffiffiffiffiffiffiffiffi
jeBj

p
mþOðm2Þ; ð44aÞ

Σ̃ð↑;"Þ
Δ ≡ i

ffiffiffi
2

p

π3=2
ð3 lnð2Þ∓ 2ÞαemΔ

ffiffiffiffiffiffiffiffiffi
jeBj

p
mþOðm2Þ; ð44bÞ

which are clearly purely imaginary.
In summary, our results indicate that the fermion

magnetic mass operator, in the presence of noise Δ > 0,
possesses four different eigenvalues depending on the spin
σ ¼ ↑;↓ and λ ¼ " projections, as follows:

Mðσ;λÞ
B ðΔÞ ¼ mþMðσÞ

B0 þ Σ̃ðσ;λÞ
Δ : ð45Þ

We notice that these eigenvalues are complex, such that
the real parts strictly correspond to the fermion magnetic
mass, i.e. mðσÞ

B ¼ ReMðσ;λÞ
B ðΔÞ, which turns out to be noise

independent

mð↑Þ
B ¼ mþ αemm

π

"
ln2B − γe lnB þ π2

3

#
þOðB−1Þ;

mð↓Þ
B ¼ mþ αemm

π

"
ln2B − ð1þ γeÞ lnB þ π2

3
þ γe − 2

#

þOðB−1Þ; ð46Þ

which are depicted in Fig. 2. We notice that the magnetic
mass is different for each spin projection, as expected from
the Zeeman interaction splitting. This effect becomes
stronger in very intense magnetic fields and may be of
interest in different physical scenarios.
On the other hand, the imaginary parts represent a Breit-

Wigner resonance Γðσ;λÞðΔÞ ¼ −2ImMðσ;λÞ
B ðΔÞ due to the

combination of the field and the magnetic noise given by

Γð↑;"ÞðΔÞ ¼ αemm
$
lnB −

2
ffiffiffiffiffiffi
2B

p
mΔ

π3=2
ð3 lnð2Þ ∓ 2Þ

%
;

ð47aÞ

Γð↓;"ÞðΔÞ ¼ αemm
$
lnB − 1 −

2
ffiffiffiffiffiffi
2B

p
mΔ

π3=2
ð3 lnð2Þ " 8Þ

%
:

ð47bÞ

Figure 3 shows the behavior of Γðσ;λÞðΔÞ, computed from
Eq. (47), as a function of the average magnetic field (in
dimensionless units) B ¼ jeBj=m2, for the four eigenvalues
corresponding to each projection ð↑↓;"Þ, respectively. As
can be seen in the figures, deviations from the noiseless
limit Δ ¼ 0 (solid line) become appreciable after some
critical value B > Bc that depends on the magnitude ofmΔ
via the product mΔ

ffiffiffiffi
B

p
. In cases represented in Figs. 3(a)

and 3(c), for mΔ ¼ 10−2 and mΔ ¼ 10−3 respectively,
where the spin projection is parallel (↑) to the direction of the
background magnetic field, the imaginary part of the
magnetic mass in the subspace given by the projection
PðþÞ decreases as compared to the corresponding one for
the projectionPð−Þ and alsowith respect to the noiseless case
Δ ¼ 0. The opposite occurs when the spin projection is
antiparallel to the direction of the backgroundmagnetic field,
as depicted in Figs. 3(b) and 3(d), formΔ ¼ 10−2 andmΔ ¼
10−3 respectively. This implies that in the quasiparticle
picture, the charge conjugation combined with the breaking
of Lorentz symmetry provided by the magnetic noise results
in different spectral widths for the various modes.
Note that in the heavy-ion collisions scenario, the

magnetic background is about the pion-mass squared, so
that for electrons we would have B ∼ 8 × 104, while for
light quarks B ∼ 8 × 103. Therefore, our approximation
based on the lowest Landau level expression for the
fermion propagator valid for B ≫ 1 is well justified.
Hence, for some ranges of the noise mΔ, the effects
displayed in Fig. 3 might be detected in actual experiments.
In Fig. 4, the imaginary part of the mass eigenvalues,

corresponding to the Breit-Wigner resonances Γðσ;λÞðΔÞ
defined in Eq. (47) for each of the four projections, are
shown as a function of the magnetic noise autocorrelation
mΔ, for a constant average field value of B ¼ 104. In terms
of the physical interpretation, these Breit-Wigner resonan-
ces proportional to ImΣðp;B;ΔÞ lead to a small broadening
in the peak of the Lorentzian spectral density distribution,
as we discussed in Ref. [16]. As seen in Fig. 4, both parallel
ð↑;"Þ spin projections exhibit a linear dependence on mΔ
with a negative slope. This effect is milder in the ð↑;þÞ
than in the ð↑;−Þ polarization. In contrast, the antiparallel
spin polarizations ð↓;"Þ display opposite behavior, with
ð↓;−Þ showing a positive slope, while ð↓;þÞ exhibits a
negative one. Nevertheless, since the spectral broadening
depends on the absolute value of these parameters, in all
four polarizations the spectral width grows with the

FIG. 2. The magnetic mass of the fermion, calculated from
Eq. (46), is shown for the two spin projections as a function of the
average background magnetic field (in dimensionless units)
B ¼ jeBj=m2.
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magnetic noise autocorrelation Δ. As discussed in our
previous work [16], the spectral density corresponding to
each projection is defined by the Lorentzian distributions

ρ̃ðσ;λÞðp2Þ ¼ mðσÞ
B Γðσ;λÞ=π

½p2 − ðmðσÞ
B Þ2%2 þ ½mσ

BΓðσ;λÞ%2
; ð48Þ

where the relative spectral width decays for very intense
magnetic fieldsB ≫ 1 as Γðσ;λÞ

mσ
B
∼ ½lnB%−1. The corresponding

spectral density distributions, as computed from Eq. (48) for
the four different projections, are displayed in Fig. 5, where
the spectral width due to the finite value of Γðσ;λÞ is clearly
appreciated. Interestingly, this spectral broadening effect
induced by the presence of the noise autocorrelationΔ > 0 is
different depending on the spin projection↑;↓, as well as the
projection onto the subspaces Pð'Þ. However, the physical
magnetic mass representing the center of the spectral dis-
tribution only depends on the spin projection, as expected
from the usual Zeeman splitting effect due to the spin-
magnetic field interaction.

FIG. 4. The Breit-Wigner resonance Γðσ;λÞðΔÞ, computed
from Eq. (47), as a function of the noise autocorrelation
parameter mΔ, for a fixed intensity of the average background
field B ¼ jeBj=m2 ¼ 104. The eigenvalues corresponding to
projections onto the four independent subspaces are displayed
for comparison.

FIG. 5. The spectral density distributions for each of the four
projections ↑;↓;', computed from Eq. (48), as a function of the
dimensionless momentum p2=m2. The dashed and dotted lines
correspond to a noise autocorrelationmΔ ¼ 10−2, while the solid
line represents the noiseless limit Δ ¼ 0. The average back-
ground field is B ¼ 105 for all cases.
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FIG. 3. Breit-Wigner resonance Γðσ;λÞ computed from Eq. (47),
as a function of the average background field B ¼ jeBj=m2. The
eigenvalues corresponding to projections onto the four indepen-
dent subspaces are shown for two different values of the magnetic
noise autocorrelation mΔ.
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The imaginary part determines a 
spectral width in the spectral density
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|eB | /m2 = 105
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ρ̃(σ,λ)(p2) → δ(p2 − mσ
B)

In the limit of very strong magnetic fields mΔ = 10−2
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