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WHY RELATIVISTIC MAGNETOHYDRODYNAMICS?

Magnetars

European Space Agency

B ∼ 1015 G

Heavy-ion collisions

ALICE Collaboration

B ∼ 1019 G
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FUNDAMENTALS OF MAGNETOHYDRODYNAMICS
Locally neutral, non-resistive plasma

What are the ingredients of a magneto-fluid-dynamical theory?

• Conservation laws:

∂µTµν = 0 =⇒ Tµν =

(
ε+

B2

2

)
uµuν −∆µν

(
P +

B2

2

)
+ πµν − BµBν .

• Equation of state: ε = 3P.

• Maxwell’s equations:
∂µFµν = Jµ, ∂µF̃µν = 0.

• Equations for the dissipative currents:
◦ Additional relations are required for closure.
◦ Phenomenology, microscopic calculations, ...
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DIFFERENT APPROACHES

• Traditional Israel-Stewart theory with corrected energy-momentum tensor

π̇⟨µν⟩ + πµν = 2ησµν + · · · .

R. Biswas et al., JHEP 10 (2020).

• Non-resistive magnetohydrodynamics for a single-component gas

π̇⟨µν⟩ + πµν = 2ησµν − δπB qBbαβ∆µν
ακgλβπ

κλ + · · · .

G. S. Denicol et al., Phys. Rev. D 98, 076009 (2018).

• Longitudinal approximation for the shear-stress tensor

πµν ≈ πbb

(
bµbν +

1
2
Ξµν

)
.

M. Chandra et al., Astrophys. J. 810, 162 (2015).

Bounds on nonlinear causality have been investigated.
I. Cordeiro et al., Phys. Rev. Lett. 133, 091401 (2024).
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MICROSCOPIC DERIVATION OF FLUID DYNAMICS

Assuming a two-component gas of classical particles described by a Boltzmann equation

kµ∂µf+k + q+kνFµν ∂

∂kµ
f+k = C[f+k , f−k ],

kµ∂µf−k + q−kνFµν ∂

∂kµ
f−k = C[f−k , f+k ].

S. R. De Groot, Relativistic Kinetic Theory: Principles and Applications (1980).

Method of moments
Replace the equation for fk by equations for its irreducible moments.
H. Grad, Comm. Pure Appl. Math. 2, 331 (1949); W. Israel and J. M. Stewart, Ann. Phys. (N.Y.) 118, 341 (1979).

14-moment approximation
Express the distribution function solely in terms of the usual hydrodynamic variables.
W. Israel and J. M. Stewart, Ann. Phys. (N.Y.) 118, 341 (1979). G. S. Denicol et al., Eur. Phys. J. A 48, 170 (2012).
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MICROSCOPIC DERIVATION OF FLUID DYNAMICS
Factorize the single-particle distribution as

f±k = f±0k + δf±k =⇒ δf±k =
f0k

(
π±
µν kµkν

)
2 (ε± + P±)T 2 .

Obtain coupled equations for the total and relative shear-stress tensor

π̇⟨µν⟩ +Σπµν +
2|q|B

5T
bλ⟨µδπ

ν⟩
λ =

8
15

εσµν − 4
3
πµνθ − 10

7
σλ⟨µπ

ν⟩
λ − 2ωλ⟨νπ

µ⟩
λ ,

δπ̇⟨µν⟩ +Σ′δπµν +
2|q|B

5T
bλ⟨µπ

ν⟩
λ = −4

3
δπµνθ − 10

7
σλ⟨µδπ

ν⟩
λ − 2ωλ⟨νδπ

µ⟩
λ .

where πµν = πµν
+ + πµν

− and δπµν = δπµν
+ + δπµν

− . K. Kushwah and G. S. Denicol, Phys. Rev. D 109, 096021 (2024).

Is this theory suitable to describe physical systems?
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CAUSALITY AND STABILITY ANALYSIS

What are the minimal requirements a theory must satisfy?

• Causality: perturbations travel with subluminal speed.
• Stability: perturbations decay exponentially with time.

These properties are intrinsically connected. L. Gavassino, Phys. Rev. X 12, 041001 (2022).
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CAUSALITY AND STABILITY ANALYSIS

• Perform small perturbations around a global equilibrium state

X → X0
equilibrium

+ ∆X
perturbation

• Linearize the magneto-fluid-dynamical equations neglecting terms ∼ O(∆2).

Compute the modes of the theory, ω(k), considering two cases:

• Transverse perturbations: orthogonal to the magnetic field.
• Longitudinal perturbations: parallel to the magnetic field.

• Constrain the transport coefficients such that the following conditions are satisfied:

Im (ω) > 0, lim
k→∞

∣∣∣∣∂Re (ω)
∂k

∣∣∣∣ ≤ 1.

Stability Causality
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TRADITIONAL ISRAEL-STEWART THEORY

Assuming dissipation only due to shear-stress,

π̇⟨µν⟩ + πµν = 2ησµν + nonlinear terms.
For small k ,

ω̂nh(k̂) =
i
τ̂π

− i k̂2 +O(k̂4),

ω̂nh(k̂) =
i
τ̂π

− 4
3

i k̂2 +O(k̂4),

ω̂h(k̂) = i k̂2 + i τ̂π k̂4 +O(k̂6),

ω̂h(k̂) = ±csk̂ +
2
3

i k̂2 +O(k̂3).

Hydrodynamic and nonhydrodynamic modes

• Hydrodynamic modes: long-lived, associated with conserved quantities.
• Nonhydrodynamic modes: short-lived, necessary for linear causality and stability.
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TWO-COMPONENT MAGNETOHYDRODYNAMICS
Longitudinal perturbations
In the small wave number limit, the modes are

ωnh(k) = iΣ− 4i
15Σ

k2 +O(k3),

ωnh(k)=
i
2

Σ+ Σ′ ±

√
(Σ− Σ′)2 −

4q2B2
0

25T 2

+O(k2),

ωh(k) = ± 1√
3

k +
2i

15Σ
k2 +O(k3),

ωh(k) = ±vAk+
2i
5

Σ′(
1 +

B2
0

ε0+P0

)(
4ΣΣ′ +

4q2B2
0

25T 2

)k2 +O(k3).

• Linear causality and stability are simultaneously satisfied.
• Sufficiently large magnetic fields lead to oscillations.
• Diffusive part of Alfvén modes suppressed at large magnetic field.
• Terms that are absent in the longitudinal approximation.
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LONGITUDINAL PERTURBATIONS
Comparison of the hydrodynamic modes
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TWO-COMPONENT MAGNETOHYDRODYNAMICS
Transverse perturbations

Complete theory

ωnh = iΣ+O(k2),

ωnh =
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Longitudinal approximation

ω = iΣ,

ω = ±

√
1 + 3B

3(1 + B)
k .
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SUMMARY

• Magnetohydrodynamics for a two-component plasma is linearly causal and stable.

• Modes are significantly distinct from Israel-Stewart-like theories.

• Causality and stability remain being fulfilled in the longitudinal approximation.

• Longitudinal approximation is justified in the limit of large B.

• Longitudinal approximation fails to capture the dynamics when B is not sufficiently large.
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