Anomalous transport phenomena on the lattice

Gergely Endrődi

ELTE Eötvös University Budapest

Chirality, vorticity and magnetic fields in quantum matter ICTP SAIFR São Paulo, July 8, 2025

Anomalous transport phenomena on the lattice

Gergely Endrődi

in collaboration with:

Bastian Brandt, Eduardo Garnacho, Gergely Markó, Dean Valois

Appetizer

first fully non-perturbative determination of in-equilibrium anomalous transport coefficients

chiral separation effect

(local) chiral magnetic effect

& Brandt, Endrődi, Garnacho, Markó, JHEP 02 142

Brandt, Endrődi, Garnacho, Markó, Valois, 2409.17616
 Brandt, Endrődi, Garnacho, Markó, JHEP 09 092 ¹/²⁴

- introduction, anomalous transport phenomena
- in-equilibrium chiral magnetic effect
- in-equilibrium chiral separation effect
- local in-equilibrium chiral magnetic effect
- summary

Introduction, anomalous transport

Magnetic fields in lattice QCD

many groups & Bali et al.
 Alexandru et al. Ø Ding et al.

phase diagram

Endrődi, JHEP 07 (2015)

- equation of state
 Bali et al. JHEP 07 (2020)
- fluctuations
 Ding et al. PRL 132 (2024)
- transport phenomena

Astrakhantsev et al. PRD 102 (2020)

anomalous transport phenomena

recent review & Endrődi, PPNP 141 (2025)

P D'Elia, Bonati et al.
P Braguta, Chernodub et al.
Cea et al.
Buividovich et al.
Yamamoto
Detmold et al. and more

Anomalous transport

 usual transport: vector current due to electric field

$$\langle \boldsymbol{J}
angle = \sigma \cdot \boldsymbol{E}$$

chiral magnetic effect (CME)

Kharzeev, McLerran, Warringa, NPA 803 (2008)
Fukushima, Kharzeev, Warringa, PRD 78 (2008)
vector current due to chirality and magnetic field

$$\langle m{J}
angle = \sigma_{
m CME} \cdot m{B}$$

chiral separation effect (CSE)

Son, Zhitnitsky, PRD 70 (2004)
Metlitski, Zhitnitsky, PRD 72 (2005)
axial current due to baryon number and magnetic field

$$\langle J_5
angle = \sigma_{
m CSE} \cdot oldsymbol{B}$$

Phenomenological and theoretical relevance

experimental observation of CME in condensed matter systems

 ² Li, Kharzeev, Zhan et al., Nature Phys. 12 (2016)

- experimental searches for CME and related observables in heavy-ion collisions
 STAR collaboration, PRC 105 (2022)
- serves as indirect way to probe topological fluctuations and CP-odd domains in heavy-ion collisions
- recent reviews: A Kharzeev, Liao, Voloshin, Wang, PPNP 88 (2016)
 Kharzeev, Liao, Tribedy, IJMPE 33 (2024)
 Feng, Voloshin, Wang, 2502.09742

General (handwaving) argument

spin, momentum chiral magnetic effect

General (handwaving) argument

spin, momentum chiral separation effect

General (handwaving) argument – issues

- quantum theory requires ultraviolet regularization
- massless vs. massive fermions
- strong interactions between fermions
- in-equilibrium vs. out-of-equilibrium nature

General (handwaving) argument – issues

- quantum theory requires ultraviolet regularization
- massless vs. massive fermions
- strong interactions between fermions

• example: charge transport due to electric field $\boldsymbol{E} \parallel \boldsymbol{e}_1$

• example: charge transport due to electric field $\boldsymbol{E} \parallel \boldsymbol{e}_1$

• example: charge transport due to electric field $\boldsymbol{E} \parallel \boldsymbol{e}_1$

▶ example: charge transport due to electric field $E \parallel e_1$

out-of equilibrium linear response:

time-dependent response to time-dependent perturbation (electric conductivity)

• example: charge transport due to electric field $\boldsymbol{E} \parallel \boldsymbol{e}_1$

out-of equilibrium linear response:

time-dependent response to time-dependent perturbation (electric conductivity)

leading to an equilibrium distribution (electric polarization/susceptibility)

▶ example: charge transport due to electric field $E \parallel e_1$

out-of equilibrium linear response:

time-dependent response to time-dependent perturbation (electric conductivity)

leading to an equilibrium distribution (electric polarization/susceptibility)

same story can be told for CME

- Bloch's theorem: Bohm Phys. Rev. 75 (1949) N. Yamamoto, PRD 92 (2015) persistent electric currents do not exist in ground state of quantum systems
- applies to conserved currents
- applies to global (spatially averaged) currents
- ▶ applies in the thermodynamic limit ($V \to \infty$)

- Bloch's theorem: Bohm Phys. Rev. 75 (1949) N. Yamamoto, PRD 92 (2015) persistent electric currents do not exist in ground state of quantum systems
- applies to conserved currents
- applies to global (spatially averaged) currents
- ▶ applies in the thermodynamic limit $(V \rightarrow \infty)$
- in-equilibrium CME is not possible

- Bloch's theorem: Bohm Phys. Rev. 75 (1949) N. Yamamoto, PRD 92 (2015) persistent electric currents do not exist in ground state of quantum systems
- applies to conserved currents
- applies to global (spatially averaged) currents
- ▶ applies in the thermodynamic limit ($V \to \infty$)
- in-equilibrium CME is not possible
- ▶ in-equilibrium CSE is possible

- Bloch's theorem: Bohm Phys. Rev. 75 (1949) N. Yamamoto, PRD 92 (2015) persistent electric currents do not exist in ground state of quantum systems
- applies to conserved currents
- applies to global (spatially averaged) currents
- ▶ applies in the thermodynamic limit ($V \to \infty$)
- in-equilibrium CME is not possible
- in-equilibrium CSE is possible
- in-equilibrium local CME currents are possible

Chiral magnetic effect in equilibrium

CME and inconsistencies

▶ parameterize chiral imbalance $J_{05} = \int \bar{\psi} \gamma_0 \gamma_5 \psi$ by a chiral chemical potential μ_5 *P* Fukushima, Kharzeev, Warringa, PRD 78 (2008)

• CME for weak chiral imbalance $(\boldsymbol{B} = B\boldsymbol{e}_3)$

$$\langle J_3 \rangle = \sigma_{\rm CME} B = C_{\rm CME} \mu_5 B + \mathcal{O}(\mu_5^3)$$

from Bloch's theorem it follows that in equilibrium

 $C_{\mathrm{CME}} = 0$ \checkmark

several results in the literature give incorrectly

$$C_{\mathrm{CME}} = rac{1}{2\pi^2}$$
 /

CME and inconsistencies

▶ parameterize chiral imbalance $J_{05} = \int \bar{\psi} \gamma_0 \gamma_5 \psi$ by a chiral chemical potential μ_5 *P* Fukushima, Kharzeev, Warringa, PRD 78 (2008)

• CME for weak chiral imbalance $(\boldsymbol{B} = B\boldsymbol{e}_3)$

$$\langle J_3 \rangle = \sigma_{\rm CME} B = C_{\rm CME} \mu_5 B + \mathcal{O}(\mu_5^3)$$

from Bloch's theorem it follows that in equilibrium

 $C_{\mathrm{CME}} = 0$ \checkmark

several results in the literature give incorrectly

$$C_{\mathrm{CME}} = rac{1}{2\pi^2} \, \mathbf{I}$$

careful regularization is required

One typical issue with regularization

► vacuum thermodynamic potential from exact energies at $\mu_5 > 0$ and B > 0unregularized $\Omega(B, \mu_5) = \frac{B}{2\pi} \int_{-\infty}^{\infty} \frac{dp_3}{2\pi} E_{p_3} + higher Landau levels$ with energy $E_{p_3} = \sqrt{(p_3 + \mu_5)^2 + m^2}$

One typical issue with regularization

 \blacktriangleright vacuum thermodynamic potential from exact energies at $\mu_5 > 0$ and B > 0unregularized $\Omega(B, \mu_5) = \frac{B}{2\pi} \int_{-\infty}^{\infty} \frac{dp_3}{2\pi} E_{p_3} + \text{ higher Landau levels}$ with energy $E_{p_3} = \sqrt{(p_3 + \mu_5)^2 + m^2}$ current unregularized $\langle J_3 \rangle = \frac{\partial \Omega}{\partial A_3} \Big|_{A=0} = \frac{B}{2\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d} p_3}{2\pi} \frac{\mathrm{d}}{\mathrm{d} p_3} E_{p_3}$ $= \frac{B}{4\pi^2} \left[\lim_{p_1 \to \infty} E_{p_3} - \lim_{p_3 \to \infty} E_{p_3} \right]$

One typical issue with regularization

 \blacktriangleright vacuum thermodynamic potential from exact energies at $\mu_5 > 0$ and B > 0unregularized $\Omega(B, \mu_5) = \frac{B}{2\pi} \int_{-\infty}^{\infty} \frac{dp_3}{2\pi} E_{p_3} + higher Landau levels$ with energy $E_{p_3} = \sqrt{(p_3 + \mu_5)^2 + m^2}$ current unregularized $\langle J_3 \rangle = \frac{\partial \Omega}{\partial A_3} \Big|_{A=0} = \frac{B}{2\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d} p_3}{2\pi} \frac{\mathrm{d}}{\mathrm{d} p_3} E_{p_3}$ $= \frac{B}{4\pi^2} \left[\lim_{p_1 \to \infty} E_{p_3} - \lim_{p_2 \to -\infty} E_{p_3} \right]$ this needs regularization and with cutoff cutoff regularization $\langle J_3 \rangle = \frac{B}{4\pi^2} \left[(\Lambda + \mu_5) - (\Lambda - \mu_5) \right] = \frac{1}{2\pi^2} B\mu_5 f$

 $C_{\rm CME}$

Perturbation theory

triangle diagram

$$\Gamma^{\mu\nu\rho}_{AVV}(p+q,p,q) = \frac{-p-q}{\gamma_{5}\gamma^{\mu}} + \frac{-p-q}{\gamma_{5}\gamma^{\mu$$

gives in-equilibrium CME coefficient

$$C_{\mathsf{CME}} = \lim_{p,q
ightarrow 0} rac{1}{q_1} \, \Gamma^{023}_{AVV}(p+q,p,q)$$

► also gives the axial anomaly Peskin-Schroeder 19.2

$$\langle \partial_\mu J^\mu_5
angle ~~ (p+q)_\mu \Gamma^{\mu
u
ho}_{AVV}(p+q,p,q) A_
u A_
ho$$

Regularization sensitivity – anomaly

naive regularization

$$(p+q)_{\mu}\Gamma^{\mu
u
ho}_{AVV}(p+q,p,q)A_{
u}A_{
ho}=mP_5(p,q)$$

Pauli-Villars regularization

(regulator particles s=1,2,3 with $c_s=\pm 1$ and $m_s
ightarrow \infty$)

$$(p+q)_{\mu}\Gamma^{\mu
u
ho}_{AVV}(p+q,p,q)A_{
u}A_{
ho} = mP_5(p,q) + \sum_{s=1}^{3}c_sm_sP^{
u
ho}_{5,s}(p,q)A_{
u}A_{
ho}$$

 $\xrightarrow{m_s o \infty} mP_5(p,q) + rac{\epsilon^{lphaeta
u
ho}F_{lpha
u}F_{eta
ho}}{16\pi^2} \checkmark$

Regulator sensitivity – CME

naive regularization

$$C_{\mathsf{CME}} = \lim_{p,q,p+q o 0} rac{1}{q_1} \, \Gamma^{023}_{AVV}(p+q,p,q) = rac{1}{2\pi^2} \, {}^{\ell}$$

Pauli-Villars regularization

$$C_{\mathsf{CME}} = \lim_{p,q,p+q \to 0} \frac{1}{q_1} \Gamma_{AVV}^{023}(p+q,p,q) = \frac{1}{2\pi^2} + \sum_{s=1}^3 \frac{c_s}{2\pi^2} = 0 \checkmark$$

▶ in equilibrium, C_{CME} vanishes due to anomalous contribution

CME in equilibrium – lattice simulations

▶ seminal lattice determination of $\langle J_3 \rangle$ at $B \neq 0$, $\mu_5 \neq 0$ \mathscr{P} A. Yamamoto, PRL 107 (2011)

▶ coefficient $C_{
m CME} \approx 0.025 \approx 1/(4\pi^2)$ ₹

▶ seminal lattice determination of $\langle J_3 \rangle$ at $B \neq 0$, $\mu_5 \neq 0$ \mathscr{P} A. Yamamoto, PRL 107 (2011)

▶ coefficient $C_{\rm CME} \approx 0.025 \approx 1/(4\pi^2)$ ₹

A. Yamamoto, PRL 107 (2011) used a non-conserved electric current

$$J_{\nu}^{\rm non-cons} = \bar{\psi}(n)\gamma_{\nu}\psi(n)$$

▶ seminal lattice determination of $\langle J_3 \rangle$ at $B \neq 0$, $\mu_5 \neq 0$ \mathscr{P} A. Yamamoto, PRL 107 (2011)

▶ coefficient $C_{\rm CME} \approx 0.025 \approx 1/(4\pi^2)$ ₹

A. Yamamoto, PRL 107 (2011) used a non-conserved electric current

$$J_
u^{
m non-cons} = ar{\psi}(n) \gamma_
u \psi(n) \qquad \qquad J_
u^{
m cons} \sim ar{\psi}(n) \gamma_
u U_
u(n) \psi(n+\hat{
u})$$

▶ seminal lattice determination of $\langle J_3 \rangle$ at $B \neq 0$, $\mu_5 \neq 0$ \mathscr{P} A. Yamamoto, PRL 107 (2011)

▶ coefficient $C_{\rm CME} \approx 0.025 \approx 1/(4\pi^2)$ ₹

A. Yamamoto, PRL 107 (2011) used a non-conserved electric current

 $J_{\nu}^{\mathrm{non-cons}} = \bar{\psi}(n)\gamma_{\nu}\psi(n)$ $J_{\nu}^{\mathrm{cons}} \sim \bar{\psi}(n)\gamma_{\nu}U_{\nu}(n)\psi(n+\hat{\nu})$

Conserved current: $C_{\rm CME} = 0 \checkmark \mathscr{P}$ Brandt, Endrődi, Garnacho, Markó, JHEP 09 (2024)

CME in equilibrium – final result

- quenched, heavier-than-physical Wilson quarks
- full QCD simulations with dynamical staggered quarks employing the conserved electric current
- global CME current vanishes in equilibrium

 P Brandt, Endrődi, Garnacho, Markó, JHEP 09 (2024)

Chiral separation effect in equilibrium

Chiral separation effect

- axial current due to magnetic field and baryon density
 Son, Zhitnitsky, PRD 70 (2004)
 Metlitski, Zhitnitsky, PRD 72 (2005)
- \blacktriangleright parameterize baryon density $J_0=\int ar{\psi}\gamma_0\psi$ by chemical potential μ
- CSE for small density $(\boldsymbol{B} = B\boldsymbol{e}_3)$

$$\langle J_{35} \rangle = \sigma_{\rm CSE} B = C_{\rm CSE} \, \mu B + \mathcal{O}(\mu^3)$$

- ▶ Bloch's theorem allows in-equilibrium CSE $(\partial_{\nu}J_{\nu 5} \neq 0)$
- regularization less intricate, but conserved vector current on lattice is important
- previous lattice efforts & Puhr, Buividovich, PRL 118 (2017)
 Buividovich, Smith, von Smekal, PRD 104 (2021)

CSE in equilibrium – final result

 quenched, heavier-than-physical Wilson quarks
 full QCD simulations with staggered quarks at physical quark masses, extrapolated to the continuum limit employing the conserved electric current

& Brandt, Endrődi, Garnacho, Markó, JHEP 02 (2024)

comparison to baryon gas model at low T

Local chiral magnetic effect

Inhomogeneous magnetic fields

- up to now: homogeneous magnetic background
- ▶ off-central heavy-ion collisions: inhomogeneous fields <a>Physical Deng et al., PRC 85 (2012)

Inhomogeneous magnetic fields

- up to now: homogeneous magnetic background
- ▶ off-central heavy-ion collisions: inhomogeneous fields <a>Physical Deng et al., PRC 85 (2012)

Inhomogeneous magnetic fields

- up to now: homogeneous magnetic background
- ▶ off-central heavy-ion collisions: inhomogeneous fields <a>Physical Deng et al., PRC 85 (2012)

impact on thermodynamic observables in QCD and phase diagram

 P Brandt, Endrődi, Markó, Sandbote, Valois, JHEP 11 (2023)
 P Brandt, Endrődi, Markó, Valois, JHEP 07 (2024)

▶ response for weak μ_5 for homogeneous *B*

 $\langle J_3
angle = C_{
m CME} \mu_5 B$

▶ response for weak μ_5 for homogeneous and inhomogeneous *B*

$$\langle J_3 \rangle = C_{\text{CME}} \mu_5 B$$
 $\langle J_3(x_1) \rangle = \mu_5 \underbrace{\int dx'_1 C_{\text{CME}}(x_1 - x'_1)B(x'_1)}_{G(x_1)}$

▶ Bloch's theorem allows local currents if $\int dx_1 \langle J_3(x_1) \rangle = 0$

▶ response for weak μ_5 for homogeneous and inhomogeneous *B*

$$\langle J_3 \rangle = C_{\text{CME}} \mu_5 B$$
 $\langle J_3(x_1) \rangle = \mu_5 \underbrace{\int dx'_1 C_{\text{CME}}(x_1 - x'_1) B(x'_1)}_{G(x_1)}$

• Bloch's theorem allows local currents if $\int dx_1 \langle J_3(x_1) \rangle = 0$

▶ response for weak μ_5 for homogeneous and inhomogeneous *B*

$$\langle J_3 \rangle = C_{\text{CME}} \mu_5 B$$
 $\langle J_3(x_1) \rangle = \mu_5 \underbrace{\int dx'_1 C_{\text{CME}}(x_1 - x'_1) B(x'_1)}_{G(x_1)}$

• Bloch's theorem allows local currents if $\int dx_1 \langle J_3(x_1) \rangle = 0$

▶ response for weak μ_5 for homogeneous and inhomogeneous *B*

$$\langle J_3 \rangle = C_{\text{CME}} \mu_5 B$$
 $\langle J_3(x_1) \rangle = \mu_5 \underbrace{\int dx'_1 C_{\text{CME}}(x_1 - x'_1)B(x'_1)}_{G(x_1)}$

• Bloch's theorem allows local currents if $\int dx_1 \langle J_3(x_1) \rangle = 0$

▶ response for weak μ_5 for homogeneous and inhomogeneous *B*

$$\langle J_3 \rangle = C_{\text{CME}} \mu_5 B$$
 $\langle J_3(x_1) \rangle = \mu_5 \underbrace{\int dx'_1 C_{\text{CME}}(x_1 - x'_1) B(x'_1)}_{G(x_1)}$

• Bloch's theorem allows local currents if $\int dx_1 \langle J_3(x_1) \rangle = 0$

▶ response for weak μ_5 for homogeneous and inhomogeneous *B*

$$\langle J_3 \rangle = C_{\text{CME}} \mu_5 B$$
 $\langle J_3(x_1) \rangle = \mu_5 \underbrace{\int dx'_1 C_{\text{CME}}(x_1 - x'_1) B(x'_1)}_{G(x_1)}$

- Bloch's theorem allows local currents if $\int dx_1 \langle J_3(x_1) \rangle = 0$
- local current in the absence of color interactions

Local currents in QCD

- full QCD simulations with staggered quarks at physical quark masses, extrapolated to the continuum limit employing the conserved electric current
- non-trivial localized CME signal & Brandt, Endrődi, Garnacho, Markó, Valois, 2409.17616

Local currents in QCD

- full QCD simulations with staggered quarks at physical quark masses, extrapolated to the continuum limit employing the conserved electric current
- non-trivial localized CME signal & Brandt, Endrődi, Garnacho, Markó, Valois, 2409.17616

Local currents in QCD

- full QCD simulations with staggered quarks at physical quark masses, extrapolated to the continuum limit employing the conserved electric current
- non-trivial localized CME signal & Brandt, Endrődi, Garnacho, Markó, Valois, 2409.17616

Impact for experiments

local currents may serve as initial conditions in hydrodynamic expansion in transverse plane:

- requires acceptance cuts both in pseudorapidity and in azimuthal angle
- lattice results may guide experimental efforts to detect CME

Impact for experiments

local currents may serve as initial conditions in hydrodynamic expansion in transverse plane:

- requires acceptance cuts both in pseudorapidity and in azimuthal angle
- lattice results may guide experimental efforts to detect CME

Impact for experiments

local currents may serve as initial conditions in hydrodynamic expansion in transverse plane:

- requires acceptance cuts both in pseudorapidity and in azimuthal angle
- lattice results may guide experimental efforts to detect CME

Outlook

Outlook

all of the above was in equilibrium what about the out-of-equilibrium response?

○ E. Garnacho Tue 11:00

all of the above CME studies involved μ₅ what about *E* · *B* as CP-odd background?

Q J. Hernández Tue 11:30

Summary

- CME subtleties: in- / out-of-equilibrium
- careful regularization crucial in-equilibrium global CME vanishes

T [MeV]

• conserved vector current
$$\langle J_3 \rangle = \langle \text{Tr}(\Gamma_3 M^{-1}) \rangle$$

• conserved vector current
$$\langle J_3 \rangle = \langle \text{Tr}(\Gamma_3 M^{-1}) \rangle$$

CME coefficient Wilson:

$$C_{\text{CME}} \cdot B = \left. \frac{\partial \langle J_3 \rangle}{\partial \mu_5} \right|_{\mu_5=0} = \langle \mathsf{Tr}(\Gamma_{45} M^{-1}) \mathsf{Tr}(\Gamma_3 M^{-1}) \rangle - \langle \mathsf{Tr}(\Gamma_{45} M^{-1} \Gamma_3 M^{-1}) \rangle$$

• conserved vector current
$$\langle J_3 \rangle = \langle \mathsf{Tr}(\Gamma_3 M^{-1}) \rangle$$

CME coefficient Wilson:

$$C_{\text{CME}} \cdot B = \left. \frac{\partial \langle J_3 \rangle}{\partial \mu_5} \right|_{\mu_5 = 0} = \langle \mathsf{Tr}(\Gamma_{45} M^{-1}) \mathsf{Tr}(\Gamma_3 M^{-1}) \rangle - \langle \mathsf{Tr}(\Gamma_{45} M^{-1} \Gamma_3 M^{-1}) \rangle$$

staggered:

$$C_{\text{CME}} \cdot B = \langle \mathsf{Tr}(\Gamma_{45}M^{-1})\mathsf{Tr}(\Gamma_{3}M^{-1})\rangle - \langle \mathsf{Tr}(\Gamma_{45}M^{-1}\Gamma_{3}M^{-1})\rangle + \langle \mathsf{Tr}(\frac{\partial\Gamma_{3}}{\partial\mu_{5}}M^{-1})\rangle$$

• conserved vector current
$$\langle J_3 \rangle = \langle \mathsf{Tr}(\Gamma_3 M^{-1}) \rangle$$

CME coefficient Wilson:

$$C_{\text{CME}} \cdot B = \left. \frac{\partial \langle J_3 \rangle}{\partial \mu_5} \right|_{\mu_5 = 0} = \langle \mathsf{Tr}(\Gamma_{45} M^{-1}) \mathsf{Tr}(\Gamma_3 M^{-1}) \rangle - \langle \mathsf{Tr}(\Gamma_{45} M^{-1} \Gamma_3 M^{-1}) \rangle$$

staggered:

$$C_{\text{CME}} \cdot B = \langle \mathsf{Tr}(\Gamma_{45}M^{-1})\mathsf{Tr}(\Gamma_{3}M^{-1})\rangle - \langle \mathsf{Tr}(\Gamma_{45}M^{-1}\Gamma_{3}M^{-1})\rangle + \langle \mathsf{Tr}(\frac{\partial\Gamma_{3}}{\partial\mu_{5}}M^{-1})\rangle$$

Benchmarks in the free case

CME midpoint estimate

Chiral density

 \blacktriangleright chiral density J_{05} is parameterized by chiral chemical potential μ_5

$$J_{05}(\mu_5) = \chi_5 \,\mu_5 + \mathcal{O}(\mu_5^3), \qquad \chi_5 = \frac{T}{V} \left. \frac{\partial^2 \log \mathcal{Z}}{\partial \mu_5^2} \right|_{\mu_5 = 0}$$

Inhomogeneous chiral imbalance

• inhomogeneous $B(x_1)$ and inhomogeneous $\mu_5(x_1)$

4/4