&S]y, U.S. DEPARTMENT OF

I UNIVERSITY OF R,
ILLINOIS W ENERGY
R %

URBANA-CHAMPAIGN

Illinois Center for Advanced Studies of the Universe

Dynamic magneto-chiral instability
in a semiconductor

Nick Abboud

Y. Huang*, NA*, Y. Lv, P. Zhu, A. Murzabekova, C. Lee, E. A. Pappas, D. Petruzzi, J. Y. Yan,
D. Chauduri, P. Abbamonte, D. P. Shoemaker, R. M. Fernandes, J. Noronha, F. Mahmood

arXiv:2502.05170

9t Conference on Chirality, Vorticity,
July 2025 and Magnetic Fields in Quantum Matter Sdo Paulo, Brazil


https://arxiv.org/abs/2502.05170
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Motivation: the chiral magnetic effect

Chirally imbalanced plasma
of massless fermions
in @ magnetic field

Electric current

— N —
J x B

T spin

T momentum

 Manifestation of deconfined quarks and
CP-violation in ultra-relativistic nuclear

collisions?
e.g. Kharzeev et al., Nucl. Phys. A 803 227-253 (2008)

Consequence of
chiral anomaly

A
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electrically conductive crystalline materials
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Weyl semimetals host massless fermions

Conventional semimetal
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Weyl semimetals host massless fermions

Conventional sem

imetal Weyl semimetal

Non-relativistic
massive particles

and holes
\/4 momentum

Weyl fermions of
opposite chirality

L =vlip — efly

momentum u

The emergent low-energy degrees of freedom
of a Weyl semimetal are massless fermions.
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Chiral magnetic
effect?
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Chiral magnetic effect in Weyl semimetals

Wevl semimetal in equilibrium

No current in equilibrium!

j:jR—l—jL:O

Vazifeh & Franz (2013)
Basar et al. (2014)
and others
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Chiral magnetic effect in Weyl semimetals

Weyl semimetal in equilibrium Chirally pumped Weyl semimetal

—— )
—— 3,

No current in equilibrium! Created and maintained by external fields

f: jR + jL =0 E H é and chiral anomaly

Steady-state non-eqg chiral magnetic effect

Vazifeh & Franz (2013)
Basar et al. (2014) T >
and others J o B

Son & Spivak (2013)
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Chiral magnetic effect in Weyl semimetals

Transport in chirally pumped Weyl semimetals

X. Huang et al., PRX 5, 031023 (2015)
Q. Li et al., Nat. Phys. 12, 550 (2016)

Manifestation in transient
states in condensed matter?
(beyond steady states)
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Chiral magnetic instability
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Chiral magnetic instability
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Chiral magnetic instability
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Self-amplifying magnetic fluctuations
Y. Akamatsu & N. Yamamoto, PRL 111, 052002 (2013)
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Chiral magnetic instability

SBM[Mo.7

N

Self-amplifying magnetic fluctuations
Y. Akamatsu & N. Yamamoto, PRL 111, 052002 (2013)
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Wevyl semimetal as a chiral light amplifier

Y. Nishida, PRL 130, 096903 (2023)
T. Amitani & Y. Nishida, PRB 107, 014302 (2023)

Vacuum Weyl semimetal
(chirally pumped)
VAVAVAVAVAVARL
incident

G

reflected




Chiral magnetic instability

5B

i

Self-amplifying magnetic fluctuations
Y. Akamatsu & N. Yamamoto, PRL 111, 052002 (2013)
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Essential ingredients:

+ Jx B

e Maxwell’s equations




Chiral magnetic instability

The chiral anomaly is not necessary!

Neutron star merger (cross section)
E. R. Most, PRD 108, 123012 (2023)
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Stellar dynamo: “alpha effect” -
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Chiral magnetic instability

What other condensed-matter
systems could display a dynamical
magneto-chiral instability?
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Crystal symmetry requirements

Magneto-chiral current: J; = o ;; B;

Time reversal

ol ;= 8l

O B,ij
time-reversal-even

Time-reversal breaking
not necessary
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Crystal symmetry requirements

Magneto-chiral current: J; = o ;; B;

—

B

Time reversal

[/ =l

O B,ij
time-reversal-even

Time-reversal breaking
not necessary

Spatial inversion

OB.ij
inversion-odd

Non-centrosymmetric crystal

Mirror plane

ts et 5

To get a longitudinal effect

J-B+#0

No mirrors
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Crystal symmetry requirements

Time-reversal symmetric materials
with chiral crystal structure

Structurally chiral semiconductor tellurium
Y. Huang, NA, et al., 2502.05170

space group OO_BL OJ_ 8
p3,21 —7 OB.ij = 9B

helical atomic
chains
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Crystal symmetry requirements

Time-reversal symmetric materials
with chiral crystal structure
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THz emission from photoexcited Te

Y. Huang, NA, et al., 2502.05170

Mahmood lab, University of lllinois

Esy %

“F, THz
. emitted
radiation
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THz emission from photoexcited Te

Y. Huang, NA, et al., 2502.05170

Mahmood lab, University of lllinois

EsT —'\/\“‘/‘—k
— Z—THZ .
S .+ emitted
N\ = radiation
3 P

=

5 |

— ‘ Z N

Eﬂk/

. 0o 5 10 15
time (ps)

» Sum of four exponentially
decaying oscillations...

- Impurity levels
K. Natori et al., JPSJ 34, 1263 (1973)
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THz emission from photoexcited Te

Y. Huang, NA, et al., 2502.05170

Mahmood lab, University of lllinois

radiation

=

5 |

— ‘ P

Eﬂk/

. 0o 5 10 15
time (ps)

» Sum of four exponentially
decaying oscillations...

- Impurity levels
K. Natori et al., JPSJ 34, 1263 (1973)

e ...AND one growing oscillation!

Ernz (@.U.)

0 5 10 15
time (ps)
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A first attempt: condensed-matter

Magneto-chiral current

—

JZO‘BE

constant and isotropic

From Maxwell’s equations,
(07 —V*)B =05V x B

N
07 B
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A first attempt: condensed-matter

Magneto-chiral current plane wave solutions B ~ ez‘(E.F—wt)
J = O'BB E c R3
constant and isotropic Im[w] > () == instability

From Maxwell’s equations,

— —
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A first attempt: condensed-matter

Magneto-chiral current

plane wave solutions B ~ ¢'(#'7—?)

—

J=opB kcR3

constant and isotropic Im[w] > () == instability

From Maxwell’s equations,

02 -V B=03V x B /
( t ) circularly polarized %

Re|w]

L& V xB=kB
07 B

— W = \/k‘(k‘ — O'B) unstable
é non-oscillatory instability S N
v stable
e.g. Shovkovy, 2111.11416 w

Im|w]
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New ingredient: impurity oscillators

Recall, the observed frequency of the instability is characteristic of an impurity level.
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New ingredient: impurity oscillators

Recall, the observed frequency of the instability is characteristic of an impurity level.

Lorentzian oscillator model for charged impurities
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New ingredient: impurity oscillators

Recall, the observed frequency of the instability is characteristic of an impurity level.

Te atoms

impurity

Lorentzian oscillator model for charged impurities

- nimpe2 W

J D

E

m*  (wi —w?) —iyw

mode is a light-

Impurity polariton
/;; - One normal

) R impurity hybrid

with “pinned”
frequency.
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New ingredient: impurity oscillators

Can the impurity polariton become
unstable through electromagnetic
interaction with charge carriers?

Nick Abboud | University of Illinois Urbana-Champaign



New ingredient: impurity oscillators

Summa ry Of model Y. Huang, NA, et al., 2502.05170
j(wa E) — 0B (w)é(w, E) + UE(M)E(wv E)

op(w) = o Nimp€” w W o2 . T

= — opl\W) =

Ohm’s law Bound current - Unequal left- and.
due to impurities right-handed populations
Insert into Maxwell’s equations
and solve with Generic to chiral crystals
E, B ~ ei(E'F_Wt) S.Zhong et al., PRL 116, 077201 (2016)
J. Ma & D. A. Pesin, PRB 92, 235205 (2015)
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Y. Huang, NA, et al., 2502.05170

A branch of the impurity
polariton is unstable!

Using reasonable parameter values,
some measured on the sample

Agrees with experiment to order of
magnitude

Damping of the impurity oscillators
can render the blue mode stable again
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Steady-state vs. transient chiral transport

Chirally pumped Weyl semimetal

—— 5
m— 3l

e Steady non-eq current J o B
e Conseguence of chiral anomaly

e Property of emergent massless carriers

e.g. X. Huang et al. (2015); Q. Li et al. (2016)

Magneto-chiral instability in Te

</{/j§§ [Bo
0 5 10 15-

V \%/\A time (ps)

Y. Huang, NA, et al., 2502.05170

Te

Erv, (auu.)

« Transient non-eqcurrent J o< B
» Requires only a chiral crystal structure

e Doesn’t have a direct analog outside of
solid state (due to impurity involvement)

Nick Abboud | University of Illinois Urbana-Champaign
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Y. Huang, NA, et al., 2502.05170

Conclusions & Outlook

e We propose a simple electrodynamic model in which an impurity polariton is
rendered dynamically unstable by magneto-chiral transport effects in
transiently excited chiral materials.

» Experimental results highlight the potential to manipulate THz-range radiation
in far-from-equilibrium chiral materials, including wave amplification.

e Motivates a systematic study of nonlinear dynamics including background fields
in far-from-equilibrium microscopic descriptions of chiral semiconductors.
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Bonus slides
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Directions for further work

Y. Huang, NA, et al., 2502.05170

e Our linear response model implicitly assumes

a long-lived out-of-equilibrium state. fast 4
) slow
- Plausible—carrier recombination is slow. <10
Jnawali et al., Nat. Comm. 11, 3991 (2020) 3 6T

- Calls for a more microscopic approach,
e.g. a kinetic theory.

e Understand observed dependence on applied magnetic field
- Not yet taken into account

e Better experimentally resolve the polarization of the outgoing radiation.

Nick Abboud | University of Illinois Urbana-Champaign
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Y. Huang, NA, et al., 2502.05170

Some experlmental data
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Other enantiomorphic point groups

Point Groups|matrix representation of Z|Cartesian axes
T:L'.'L' T;r"y Tmz
Ci Tye Tyy Ty arbitrary
B T.o Tz-y 1. )
Tow Twy 0O
Co Tye Tyy O two-fold rotation along z
0 0 T..
T:c:c : —
Doy 0 Tgy 8 rotation axes along (x, v, z) T” 0 0 . .
0 0 T.. Dy 0 7; 0 four-fold rotation along z
), -7 0 0O 0 T..
Cs T Ty 0 three-fold rotation along z T|| T 0
0 0 7. Ce T 1), O six-fold rotation along z
Ds 0 7, 0 three-fold rotation along z = : =
0 0 T. ) 0 0
Ty -T- 0 D¢ 0 7;; 0 six-fold rotation along z
Cy T T 0 four-fold rotation along z 0O 0 T..
00 T, T, 0 0
T 0 7o 0 (z,y, z) along crystal axes
0 0 To
To 0 0
O 0 76 O (z,y, z) along crystal axes
0 0 Tp
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Trying adding Hall effects?

- Classical Hall effect (in large B-field) swamps valley Hall
- No anomalous Hall effect in TR-invariant tellurium

- Classical Hall effect causes instability to propagate (Nishida 2023), but the
magnitude of the effect is off by several orders without unrealistic fine tuning

- Would lead to B-dependent growth rate, contrary to observations

Y e N

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
k (mm~%) k (mm~%)
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More than one unstable mode

Tweak the parameters?

— sometimes multiple oscillatory
instabilities

T
8
§ 0
S
&
-2 \\
-1
10 unstable
g 1072 \
§ 1073
3
£ 10

Y. Huang, NA, et al., 2502.05170
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Speculative mechanism for imbalance

1_\//

0.5F

Time-reversal-invariant chiral crystal:

— Opposite-chirality Weyl nodes are
not related by symmetries, so
generically have different energies.

E (eV)

A . i — Hence, photoexcitation by a
| *K Ha linearly polarized source populates
Or | opposite-chirality nodes differently.

\
\ — Plus, after photoexcitation, the
average rate of decay of the right-
handed fermions generically differs
from that of the left-handed ones.

0.5}
\

<A L H—K
Figure from Jnawali et al., Nat. Comm. 11, 3991 (2020)
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