Dissipative corrections to the spin polarization vector

Daniele Roselli University of Florence & INFN Florence

9th Conference on Chirality, Vorticity and Magnetic Fields in Quantum Matter

July 7, 2025

In collaboration with F.Becattini and Sheng Xin-Li

Daniele Roselli University of Florence & INFN Florence Dissipative corrections to the spin polarization vector 4 □ ▷ < (□) ▷ < (□) ▷ < (□) ▷ < (□) ▷ < (□) ▷ < (□) ▷ < (□) ○ </p>
9th Conference on Chirality, Vorticity and Magnetic Fields in Quantum Matter

Spin polarization in QGP arises from hydrodynamic gradients in non-central heavy-ion collisions.

QGP is a system dominated by QCD in non-perturbative regime with very high temperature and vorticity.

Local and global polarization of fermions explained by:

- Local thermodynamic equilibrium.
- Hydrodynamic evolution.
- Isothermal decoupling at high energies.

▲□▶▲圖▶★圖▶★圖▶ ■ のへの

Daniele Roselli University of Florence & INFN Florence Dissipative corrections to the spin polarization vector 9th Conference on Chirality, Vorticity and Magnetic Fields in Quantum Matter

Non-Equilibrium density operator

- QGP assumed in local thermodynamic equilibrium (LTE) at Σ_{EQ} .
- Freeze-out: transition from strongly interacting QCD to quasi-free hadrons.

Initial LTE state:

 $\beta_{\mu} = \frac{-\mu}{T}$, Four-temperature

Using Gauss theorem between Equilibrium (Σ_{EQ}) and the Freeze-out (Σ_{FO}):

Daniele Roselli University of Florence & INFN Florence

9th Conference on Chirality, Vorticity and Magnetic Fields in Quantum Matter

イロト イポト イヨト イヨト

Dissipative corrections to the spin polarization vector

Dissipative corrections and Kubo formulae

Dissipative correction for observable $\widehat{O}(x)$ in linear response theory:

$$\Delta O(x) \equiv \int_0^1 \mathrm{d}z \int \mathrm{d}\Omega(y) \nabla_\mu \beta_\nu(y) \mathrm{Tr}\left(\widehat{O}(x) e^{-z\beta(x)\widehat{P}} \widehat{T}^{\mu\nu}(y) e^{z\beta(x)\widehat{P}} (1/Z) e^{-\beta(x)\widehat{P}}\right),$$

Example: $\widehat{O}(x) = \widehat{T}^{\mu\nu}(x)$:

$$\Delta T^{\sigma\lambda}(x) \sim \int \mathrm{d}^4 y \; \partial_\mu \beta_\nu(y) \langle \widehat{T}^{\sigma\lambda}(x) \widehat{T}^{\mu\nu}(y) \rangle_{\beta(x),C}, \quad \langle \bullet \rangle_{\beta(x),C} \equiv \mathrm{Tr} \left[\frac{e^{-\beta(x)\cdot \widehat{P}}}{Z} \bullet \right]_{Connected}$$

Separation of scales between gradients and correlators:

- ∂_μβ_ν(y)varies on macroscopic lengths.
- $\langle \hat{T}(x)\hat{T}(y)\rangle$ different from zero only if y x is a microscopic length.

We take $\partial_{\mu}\beta_{\nu}(y)$ out of the integral in y and ontain the Kubo formulae:

$$\Delta T^{\sigma\lambda}(x) \sim \partial_{\mu}\beta_{\nu}(x) \left(\widehat{T}^{\sigma\lambda}, \widehat{T}^{\mu\nu}\right)$$

• Viscous coefficient, shear viscosity: $\eta \sim \left(\widehat{T}^{ij}, \widehat{T}^{ij}\right)$.

\bigcirc Proportional to the gradient in the same space-time point x.

Daniele Roselli University of Florence & INFN Florence Dissipative corrections to the spin polarization vector

Wigner function for the Dirac field

Our goal: calculate dissipative correction to the spin polarization vector S^{μ} . S^{μ} can be express using the free-Wigner function W, for spin 1/2:

$$S^{\sigma}(k) = \frac{1}{2} \frac{\int_{\Sigma_{FO}} \mathrm{d}\Sigma \cdot k \operatorname{tr} \left[\gamma^{\sigma} \gamma^{5} W(x, k)\right]}{\int_{\Sigma_{FO}} \mathrm{d}\Sigma \cdot k \operatorname{tr} \left[W(x, k)\right]} \equiv \frac{1}{2} \frac{\int_{\Sigma_{FO}} \mathrm{d}\Sigma \cdot k \mathcal{A}^{\sigma}(x, k)}{\int_{\Sigma_{FO}} \mathrm{d}\Sigma \cdot k \mathcal{S}(x, k)}$$

Wigner function W: expectation value of the Wigner operator:

$$\begin{split} \widehat{W}_{B+}^{A}\left(\mathbf{x},k\right) &= \frac{\theta(k^{2})\theta(k^{0})}{\left(2\pi\right)^{3}} \int \frac{\mathrm{d}^{3}p}{2E_{p}} \int \frac{\mathrm{d}^{3}p'}{2E_{p'}} e^{\mathrm{i}\mathbf{x}\cdot\left(p-p'\right)} \delta^{4}\left(k-\frac{p+p'}{2}\right) \\ &\times \sum_{r,r'=\pm} u_{r'}^{A}(p')\overline{u}_{B\ r}(p)\widehat{a}_{r}^{\dagger}(p)\widehat{a}_{r'}(p'). \quad \{\text{Free Dirac fields}\} \end{split}$$

In linear response: dissipative corrections to S from dissipative corrections to W

$$\Delta S^{\sigma}(k) = \frac{1}{2} \frac{\int_{\Sigma_{FO}} \mathrm{d}\Sigma \cdot k \; \Delta \mathcal{A}^{\sigma}(x,k)}{\int_{\Sigma_{FO}} \mathrm{d}\Sigma \cdot k \; \mathcal{S}_{LE}(x,k)}$$

Daniele Roselli University of Florence & INFN Florence Dissipative corrections to the spin polarization vector - 4 冊 1 4 三 1 4 三 1

Dissipative corrections to the Wigner function in linear response theory

Using linear response theory for dissipative correction to the Wigner function:

$$\Delta W^{A}_{B}(k,x) = \int_{0}^{1} \mathrm{d}z \int_{\Omega} \mathrm{d}\Omega(y) \nabla_{\mu} \beta_{\nu}(y) \langle \widehat{W}^{A}_{B}(x,k) e^{-z\beta(x)\widehat{P}} \widehat{T}^{\mu\nu}(y) e^{z\beta(x)\widehat{P}} \rangle_{\beta(x),C}$$

- At FO Σ_{FO} in x we have quasi-free hadrons.
- In the volume Ω system is strongly coupled.
- *W* is Wigner function of free theory
- $\hat{T}^{\mu\nu}(y)$ is the SEMT of the interacting plasma

W(x,k) is a function of coordinate x and momentum k.

We found: correlator $\langle \widehat{W}(x,k) \widehat{T}^{\mu\nu}(y) \rangle$ is different from 0 on a *k*-dependent world line over which the gradient $\partial_{\mu}\beta_{\nu}(y)$ may vary significantly. Even in hydrodynamic limit:

$$\Delta W(x,k) \neq \partial_{\mu}\beta_{\nu}(x) \left(\widehat{W}, \widehat{T}^{\mu\nu}\right)$$

Daniele Roselli University of Florence & INFN Florence Dissipative corrections to the spin polarization vector

9th Conference on Chirality, Vorticity and Magnetic Fields in Quantum Matter

Using free field expansion for \widehat{W}^A_B and the homogeneous equilibrium:

$$\begin{split} \Delta W^A_B(x,k) &= \frac{\theta(k^0)\theta(k^2)}{(2\pi)^6} \int \mathrm{d}^4 Q \delta\left(k \cdot Q\right) \int \mathrm{d}\Omega(y) e^{-\mathrm{i}Q(y-x)} \nabla_\mu \beta_\nu(y) \\ &\times \delta\left(k^2 - m^2 + \frac{Q^2}{4}\right) \left[F^{\mu\nu}\left(k,Q,\beta\right)\right]^A_B \end{split}$$

where

$$Q = p - p', \quad k = \frac{p + p'}{2}, \quad k \cdot p = 0.$$

All information about interaction in:

$$[F^{\mu\nu}(k,Q,\beta)]^{A}_{B} \equiv \frac{e^{\beta(x)\cdot Q} - 1}{\beta(x)\cdot Q} \sum_{r,r'=\pm} u^{A}_{r'}(p')\overline{u}_{Br}(p) \langle \widehat{a}^{\dagger}_{r}(p) \widehat{a}_{r'}(p') \widehat{T}^{\mu\nu}(0) \rangle_{\beta(x),C}$$

Dependence on y: Fourier transform of the gradient of the TD field . Q^0 is constrained: $Q^0 = \mathbf{Q} \cdot \mathbf{k}/k^0$.

Daniele Roselli University of Florence & INFN Florence Dissipative corrections to the spin polarization vector 9th Conference on Chirality, Vorticity and Magnetic Fields in Quantum Matter

イロト イポト イラト イラト

The thermal expectation value

Expand interaction term on a base of the Clifford algebra:

$$\langle \hat{a}_{r}^{\dagger}(\boldsymbol{p}) \hat{a}_{r'}(\boldsymbol{p}') \hat{\mathcal{T}}^{\mu\nu}(0) \rangle_{\beta(x),C} = \sum_{C,D=1}^{4} u_{r}^{C}(\boldsymbol{p}) \left[\Gamma^{\mu\nu}\left(k,Q,\beta\right) \right]_{C}^{D} \overline{u}_{D r'}(\boldsymbol{p}'),$$

where:

$$[\Gamma^{\mu\nu}]^D_C = \Gamma^{\mu\nu}_1 \mathbb{I}^D_C + \Gamma^{\mu\nu}_{2\,\lambda} [\gamma^{\lambda}]^D_C + \Gamma^{\mu\nu}_{3\,\lambda\rho} [\Sigma^{\lambda\rho}]^D_C + \Gamma^{\mu\nu}_4 [i\gamma^5]^D_C + \Gamma^{\mu\nu}_{5\,\lambda} [\gamma^{\lambda}\gamma^5]^D_C$$

Each $\Gamma_i^{\mu\nu}$:

- $\Gamma_i^{\mu\nu} = \Gamma_i^{\nu\mu}$ (we assume Belinfante p.g),
- Depends on vectors k^{μ} , Q^{μ} , β^{μ} , pseudo-vector $a^{\mu} \equiv \varepsilon^{\mu\rho\sigma\gamma} k_{\rho} Q_{\sigma} \beta_{\gamma}$,
- Depends on all the scalars $S = k^2, Q^2, \beta^2, Q \cdot \beta, k \cdot \beta$,
- Does not depend on any pseudo-scalars.
- Is an analytic function of its variables.

For example:

$$\Gamma_1^{\mu\nu} = G_1(S)k^{\mu}k^{\nu} + G_2(S)Q^{\mu}Q^{\nu} + m^2G_3(S)\beta^{\mu}\beta^{\nu} + \dots$$

All information about interaction in the form factors $G_i(S)$.

Daniele Roselli University of Florence & INFN Florence Dissipative corrections to the spin polarization vector ・ロト ・ 同ト ・ ヨト ・ ヨト

Dynamical constraints:

- Dirac equation: $\overline{u}(p')(p'-m)=0$ and (p-m)u(p)=0,
- Transverse condition: $Q_{\mu}\overline{u}(p)\Gamma^{\mu\nu}u(p) = 0.$

Only the vector and pseudo-vector contributions are independent:

$$\overline{u}(p')\Gamma^{\mu\nu}u(p) = \Gamma^{\mu\nu}_{2\lambda}(Q)\overline{u}(p')\gamma^{\lambda}u(p) + \widetilde{\Gamma}^{\mu\nu}_{5\lambda}\overline{u}(p')\gamma^{\lambda}\gamma^{5}u(p)$$

The expectation value is calculated in the homogeneous equilibrium. Thermostatic constraints:

- KMS condition in momentum space: [Γ^{μν}(Q)][†] = γ⁰Γ^{μν}(−Q)γ⁰e^{−β(x)·Q},
- Accordance with parity and time-reversal transformation.

Preliminary result: only contribution from $\Gamma^{\mu\nu}_{2\lambda}$,

 $\Gamma_{2\ \lambda}^{\mu\nu} = X_1(S)k^{\mu}k^{\nu}k_{\lambda} + X_2(S)\left(Q^{\mu}Q^{\nu} - Q^2g^{\mu\nu}\right)k_{\lambda} + \dots$

In total 14 possible independent scalar form factors: X_1, \ldots, X_{14} .

$$\Delta W^A_B(x,k) \propto \int_{\Omega} \mathrm{d}^4 y \, \partial_\mu \beta_\nu(y) \int \mathrm{d}^3 \mathbf{Q} e^{-\mathrm{i} Q \cdot (y-x)} \left[F^{\mu\nu}(Q) \right]^A_B \delta\left(k^2 - m^2 + \frac{Q^2}{4}\right).$$

If the exponential in Q is peaked in y - x, we can extract the gradient and calculate it in y = x:

$$\Delta W_B^A(\mathbf{x}, k) \propto \partial_{\mu} \beta_{\nu}(\mathbf{x}) \underbrace{\int_{\Omega} \mathrm{d}^4 y \, \int \mathrm{d}^3 \mathbf{Q} e^{-\mathrm{i} Q \cdot (y-\mathbf{x})} \left[F^{\mu\nu}(Q) \right]_B^A \delta\left(k^2 - m^2 + \frac{Q^2}{4}\right)}_{\text{Viscous coefficient}}$$

Dissipative correction proportional to gradient calculated in the same point x. However we have:

$$Q^{0} = \frac{\mathbf{k} \cdot \mathbf{Q}}{Q^{0}} \implies -\mathrm{i}Q \cdot (y - x) = \mathrm{i}\mathbf{Q} \cdot \left[\mathbf{y} - \mathbf{x} - \frac{\mathbf{k}}{k^{0}} \left(y^{0} - x^{0}\right)\right].$$

We should compute the gradient on the k-dependent world line and not only on x:

$$\Delta W(x,k) \neq \partial_{\mu}\beta_{\nu}(x)\left(\widehat{W},\widehat{T}^{\mu\nu}\right)$$

Daniele Roselli University of Florence & INFN Florence

Dissipative corrections to the spin polarization vector

Dissipative correction for W: can't be separated in gradient times viscous coefficient. Gradient must be integrated together with the expectation value:

$$[F^{\mu\nu}(Q)]^{A}_{B} = \left\{ \left(\not\!\!\!\! k + \frac{\not\!\!\! Q}{2} + m \right) [X_{1}(S)k^{\mu}k^{\nu}k_{\lambda} + \dots] \gamma^{\lambda} \left(\not\!\!\! k - \frac{\not\!\!\! Q}{2} + m \right) \right\}^{A}_{B} \frac{e^{\beta(x)\cdot Q} - 1}{\beta(x)\cdot Q}$$

The function F contains all information about interactions. Dissipative corrections:

- Do not depend on a single viscous coefficient,
- Depend on a set of unknown form factors $X_i(S)$.

For spin 1/2 field: 14 independent scalar form factors.

Their functional dependence on S is fixed buy the underlying microscopic theory.

イロト イポト イヨト イヨト

We have studied the dissipative correction of the Wigner function of a free Dirac field:

- Depend, in principle, on 14 unknown scalar functions X_i determined by the underlying microscopic interaction.
- Are not proportional to the gradients of the thermodynamic field calculated in the same space-time point.

Future work:

- Estimate the correction for the spin polarization vector.
- **2** Test different interaction models to constrain the X_i .

Thank you!

Daniele Roselli University of Florence & INFN Florence Dissipative corrections to the spin polarization vector 9th Conference on Chirality, Vorticity and Magnetic Fields in Quantum Matter

イロト 不得下 イヨト イヨト