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CP is conserved!
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There are many types of couplings: to photons, to nucleons, to new extra particles…

The coupling to photons is one of the most relevant ones:

ℒ = gAγγ A ⃗E ⋅ ⃗B

gAγγ = gmodel
Aγγ + gQCD

Aγγ =
α

2πfA ( E
N

− 1.92(4))

10. Di Cortona, Giovanni Grilli, et al. "The QCD axion, precisely." Journal of High Energy Physics 2016.1 (2016): 1-37.
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Previous work showed that the 
other correlators are noisier [11,12]

12. Brandt, Bastian B., et al. "Electromagnetic effects on topological observables in QCD." arXiv preprint arXiv:2312.14660 (2023).
11. Brandt, Bastian, et al. "QCD topology with electromagnetic fields and the axion-photon coupling." arXiv preprint arXiv:2212.03385 (2022).
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Alternative way to define the topological charges? Axial Ward identities!

∂μJ5
μ = 2mψ̄γ5ψ + 2qtop + 2Nc

q2

4π2
⃗E ⋅ ⃗B

By integrating this equation over the whole lattice,

0 = m∫ d4x ψ̄γ5ψ + Qtop + Nc
q2

4π2
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By measuring this we can obtain the topological charges!
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Yielding a purely fermionic expression for the coupling!
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