

test de la

Relaxation time for Λ hyperons coming from rotating Corona region in heavy ion collisions

JOSÉ JORGE MEDINA SERNA IN COLLABORATION WITH A. AYALA, I. DOMINGUEZ, MA. TEJEDA, I. MALDONADO.

Instituto de Ciencias **Nucleares UNAM**

Core-Corona model for polarization $\mathscr{P}^{\Lambda} = \frac{(N^{\uparrow}_{\Lambda \ QGP} - N^{\downarrow}_{\Lambda \ QGP}) + (N^{\uparrow}_{\Lambda \ REC} - N^{\downarrow}_{\Lambda \ REC})}{(N^{\uparrow}_{\Lambda \ QGP} + N^{\uparrow}_{\Lambda \ REC}) + (N^{\downarrow}_{\Lambda \ QGP} + N^{\downarrow}_{\Lambda \ REC})}.$ Spectators Corona

A+A

Intrinsic polarization for the corona

Ayala et al, 10.1103/PhysRevC.105.034907

Intrinsic polarization for the core $z_{QGP} = \frac{N_{\Lambda QGP}^{\uparrow} - N_{\Lambda QGP}^{\downarrow}}{N_{\Lambda OGP}}$

$$\frac{REC - N_{\Lambda REC}^{\downarrow}}{N_{\Lambda REC}}$$

Self-energy

Self energy of a

- ٠
- After hadronization, the quark polarization is transferred to the Λ

• Since the corona is formed by hadrons, a low temperature approach is necessary.

Relaxation time is closely related to the

interaction rate of a particle to align its its spin

along the angular velocity

$$S^{\pm}(p) = \frac{\gamma^{0}(p_{0} \pm \Omega/2) - \vec{\gamma} \cdot \vec{p} + m}{(p_{0} \pm \Omega/2)^{2} - p^{2} - m^{2} + i\epsilon}$$

- If the lifetime of the system is lower than the
- relaxation time, the system shows small or zero

 $\Gamma^{\pm}(p_0) = f_F(p_0) \operatorname{Tr}\left[\operatorname{Im}\Sigma^{\pm}\right]$

Self-energy of a rotating fermion

The propagator for a fermion with its spin

aligned/anti-aligned along the angular velocity

under a rigid cylinder approximations

Polarization rate

$$\Gamma = V \int \frac{d^3 p}{(2\pi)^3} \left(\Gamma^+(p_0) - \Gamma^-(p_0) \right) \quad \text{can}$$
 and

Volume of the system

The relation between the relaxation time and the polarization rate is inverse

- Finally, the polarization rate for core/corona
 - be obtained as de difference of the alignment rate
 - the anti alignment rate integrated over all the
- phase space.

Modeling the corona region

Relativistic Mean Field Model

$$\mathscr{L} = \bar{\psi} \left[i \gamma^{\mu} \partial_{\mu} - M_N - g_{\sigma} \sigma \right] \psi$$

Nucleon part

Λ

$$+\bar{\psi}_{\Lambda}\left[i\gamma^{\mu}\partial_{\mu}-M_{\Lambda}-g_{\sigma\Lambda}\sigma\right]\psi_{\Lambda}\quad\Lambda\,\mathrm{part}$$

$$+\frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} \qquad \sigma \text{ part}$$

 $M_T^2 \equiv \frac{2g_\sigma^2 M_N}{M_N}$

JJ Medina et al, arXiv:2502.14248

Thermal modification to σ propagator

$$\frac{d^{2} c}{d\sigma} \sum_{n} \int \frac{d^{3} k}{(2\pi)^{3}} \operatorname{Tr} \left[(M_{N} - k)(M_{N} - (k - p)) \right] \tilde{\Delta}(K) \tilde{\Delta}(K - p) + \gamma_{T}(i\omega) \left\{ 10x^{2} - \frac{4}{3} + (5x^{2} + 1) \left[x \log \left(\frac{x + 1}{x - 1} \right) \right] \right\}$$

$$\frac{2x^{2}}{2x^{2} + 1} \log \left(\frac{x^{2} + \sqrt{3x^{2} + 1} + 1}{x^{2} - \sqrt{3x^{2} + 1} + 1} \right) \right]$$

$$K_1\left(\frac{M_N}{T}\right)\cosh\left(\frac{\mu}{T}\right) \qquad \gamma_T = \frac{M_T^2 \tanh\left(\frac{\pi}{T}\right)}{T} \qquad x \equiv \frac{p_0}{p}$$

The propagator can be separated in a real part and an explicit imaginary part

$$\Delta^*(p_0, p) = \frac{-1}{P^2 - M_{\sigma}^2 - \gamma_T p_0 F(x) - i\pi A(x)\theta(p^2 - p_0^2)}$$

$$\rho_{\sigma}(p_0, p) = 2 \mathrm{Im} \Delta^*(q_0 + i\eta, q)$$

$$\beta(p_0, p) = 2\pi\gamma_T p_0 A(x)\theta \left(1 - x^2\right)$$

JJ Medina et al, arXiv:2502.14248

$$A(x) = (5x^{2} + 1)\left(x - \frac{2x^{2}}{\sqrt{3x^{2} + 1}}\right)$$
$$F(x) = 10x^{2} - \frac{4}{3} + (5x^{2} + 1)\left[x \log\left|\frac{x + 1}{x - 1}\right| - \frac{2x^{2}}{\sqrt{3x^{2} + 1}}\log\left|\frac{x^{2} + \sqrt{3x^{2} + 1}}{x^{2} - \sqrt{3x^{2} + 1}}\right|\right]$$

$$Quasi-particle term$$

$$Quasi-particle term$$

$$Quasi-particle term$$

$$Quasi-particle term$$

$$+\beta(p_0, p)$$

$$Landau damping term$$

$$Quasi-particle term$$

$$\left[P^2 - M_{\sigma}^2 - \gamma_T p_0 F(x)\right]^2 - \left(\gamma_T p_0 A(x) \pi\right)^2\right]$$

Polarization rate

The final result for the alignment rate is

$$\Gamma_{REC}^{\pm}(p_0) = \frac{g_{\Lambda}^2 M_{\Lambda} \pi}{2} \int_0^\infty \frac{dk \, k^2}{(2\pi)^3} \int_{\mathscr{R}^{\pm}} dk_0 \frac{f(k_0)}{p_0} \frac{f(k_0)}{p_0} \times \tilde{f}\left(p_0 - k_0 - \mu_B \mp \Omega/2\right) \rho_{\sigma}(k_0)$$

$$\begin{split} \Gamma_{QGP}^{\pm}(p_0) &= \frac{g^2 m_q C_F \pi}{2} \int_0^\infty \frac{dk \, k^2}{(2\pi)^3} \int_{\mathscr{R}^{\pm}} dk_0 \frac{f(k_0)}{2pk} \\ & \times \left(4\rho_L(k_0) + 8\rho_T(k_0) \right) \tilde{f} \left(p_0 - k_0 - \mu_q \mp \Omega/2 \right) \end{split}$$
 For core

JJ Medina et al, Phys.Rev.D 109 (2024) 7, 074018

The region
$$\mathscr{R}^{\pm}$$
 is defined
 $k_0 \ge p_0 \pm \Omega/2 - \sqrt{(p+k)^2 + k_0^2}$
 $k_0 \le p_0 \pm \Omega/2 - \sqrt{(p-k)^2 + k_0^2}$

Preliminar numerical results

To obtain some numerical results with our model, we use the following values of volume and expansion velocity

	Volume (fm ³)	Expansion velocity β	
0 - 10 %	2667	0.246	
10 - 20 %	2550	0.240	
20 - 40 %	2470	0.233	
40 - 80 %	2409	0.229	

M. Waqas et al, *Results Phys.* 64 (2024) 107894

- These values are obtained for the whole system, core and corona.
- For an estimation of the core region, we asume a 1% of the system volume for the volume.
- We estimate the life time of the

system as
$$\tau = (\frac{3V}{4\pi})^{1/3} \frac{1}{\beta}$$

1 J. Claymans et al, *Phys.Rev.C* 73 (2006) 034905

- 2 Ayala et al, *Phys.Rev.D* 102 (2020) 5, 056019
- 3 Ting-Ting Sun et al, *Chin.Phys.C* 42 (2018) 2, 025101

Number of A

Number of Λ from the core

$$\begin{split} N_{p \ QGP} &= \int ds^2 \ n_p(\vec{s}, \vec{b}) \ \theta[n_p(\vec{s}, \vec{b}) - c_n] \\ n_p(\vec{s}, \vec{b}) &= T_A(\vec{s}) \left[1 - e^{-\sigma_{NN}(\sqrt{s_{NN}})T_B\vec{s} - \vec{b}} \right] \\ &+ T_B(\vec{s} - \vec{b}) \left[1 - e^{-\sigma_{NN}(\sqrt{s_{NN}})T_A(\vec{s})} \right] \\ T_A(\vec{s}) &= \int_{\infty}^{\infty} \rho_A(z, \vec{s}) \ dz \\ N_{\Lambda \ QGP} &= c N_{p \ QGP}^2 \end{split}$$

Ayala et al, 10.1103/PhysRevC.105.034907

Blaizot J. et al, 10.1103/PhysRevLett.77.1703

$\begin{array}{l} \text{Number of } \Lambda \\ \text{from the corona} \end{array}$

$$N_{NQGP} = \int ds^2 T_A(\vec{s}) T_B(\vec{b} - \vec{s}) \theta[c_n - n_p(\vec{s}, \vec{b})]$$

The key ingredient is the critical density. Densities above c_n allows the production of QGP, while densities below c_n do not. $c_n = 3.8 \text{ fm}^{-2}$

c = 0.0026

Relaxation time for the core region

- We assume a collision energy of Au+Au, $\sqrt{s_{NN}} = 3 \text{ GeV}$
- We take a value of chemical potential $\mu_B = 700$ MeV.
- We take the angular velocity as function of collision energy and impact parameter b.

Relaxation time for the corona region

- We assume a collision energy of Au+Au, $\sqrt{s_{NN}} = 3 \text{ GeV}$
- We take a value of chemical potential $\mu_B = 700$ MeV.
- We take the angular velocity as function of collision energy and impact parameter b.

Intrinsic polarization for the core region

- T = 100 MeVT = 90 MeV10
- We assume a collision energy of Au+Au, $\sqrt{s_{NN}} = 3 \text{ GeV}$
- We take a value of chemical potential $\mu_{B} = 700 \text{ MeV.}$
- We take the angular velocity as function of collision energy and impact parameter b.

Intrinsic polarization for the corona region

- We assume a collision energy of Au+Au, $\sqrt{s_{NN}} = 3 \text{ GeV}$
- We take a value of chemical potential $\mu_{B} = 700 \text{ MeV}.$
- We take the angular velocity as function of collision energy and impact parameter b.

Polarization contribution for the core region

- The experimental data correspond to Au+Au, $\sqrt{s_{NN}} = 3$ GeV.
- We take a value of chemical potential $\mu_B = 700$ MeV.
- We take the angular velocity as function of collision energy and impact parameter b.

Polarization contribution for the corona region

- We assume a collision energy of Au+Au, $\sqrt{s_{NN}} = 3$ GeV.
- The experimental data correspond to Au+Au, $\sqrt{s_{NN}} = 3$ GeV.
- We take a value of chemical potential $\mu_B = 700$ MeV.
- We take the angular velocity as function of collision energy and impact parameter b.

Global polarization

- We assume a collision energy of Au+Au, $\sqrt{s_{NN}} = 3$ GeV.
- The experimental data correspond to Au+Au, $\sqrt{s_{NN}} = 3$ GeV.
- We take a value of chemical potential $\mu_B = 700$ MeV.
- We take the angular velocity as function of collision energy and impact parameter b.

Summary

- The core-corona model allow us to identify two different contributions to global polarization.
- Intrinsic polarization is a key ingredient to produce polarization within our model.
- We obtained an estimation of the relaxation time for $q_{
 m s}$ from the core and Λ from the corona. • τ_{OGP} is larger than τ_{REC} , therefore z_{OGP} is larger than z_{REC} .
- \mathscr{P}_{QGP} vanishes for centralities larger than 11% because of the number of participant is smaller than the critical number of participants for QGP formation.
- In the range of 90 and 100 MeV of temperature, our model bounds upper and lower the experimental results for global polarization.

Thank you!!

Fermion propagator under rotation

Metric tensor under rigid rotations

$$g_{\mu\nu} = \begin{pmatrix} 1 - (x^2 + y^2)\Omega^2 & y\Omega & -x\Omega & 0 \\ y\Omega & -1 & 0 & 0 \\ -x\Omega & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

We can find solutions to Dirac equation in terms of a new function $\phi(x)$

$$\Psi(x) = \left[i\gamma^0 \left(\partial_t + \Omega \hat{J}_z \right) + i\vec{\gamma} \cdot \vec{\nabla} + m \right] \phi(x)$$

Dirac equation under rigid rotations

$$\left[i\gamma^0\left(\partial_t + \Omega\hat{J}_z\right) + i\vec{\gamma}\cdot\vec{\nabla} - m\right]\Psi = 0$$

And $\phi(x)$ satisfies a Klein-Gordon equation under rotation

$$\left[\left(i\partial_t + \Omega\hat{J}_z\right)^2 + \partial_x^2 + \partial_y^2 + \partial_z^2 - m^2\right]\phi(x) =$$

Solutions

The solutions to Klein-Gordon equations are in the form

$$\phi(x) = \begin{pmatrix} J_{\ell}(k_{\perp}\rho) \\ J_{\ell+1}(k_{\perp}\rho)e^{i\varphi} \\ J_{\ell}(k_{\perp}\rho) \\ J_{\ell+1}(k_{\perp}\rho)e^{i\varphi} \end{pmatrix} e^{-Et+ik_{z}z+i\ell\varphi}$$

Therefore, the solutions to Dirac equation are in the form

$$\Psi(x) = \begin{pmatrix} \left[E + j\Omega + m - k_z + ik_{\perp}\right] J_{\ell}(k_{\perp}\rho) \\ \left[E + j\Omega + m + k_z - ik_{\perp}\right] J_{\ell+1}(k_{\perp}\rho)e^{i\varphi} \\ \left[-E + j\Omega + m - k_z + ik_{\perp}\right] J_{\ell}(k_{\perp}\rho) \\ \left[-E + j\Omega + m + k_z - ik_{\perp}\right] J_{\ell+1}(k_{\perp}\rho)e^{i\varphi} \end{pmatrix} e^{-(E+j\Omega)t+i\varphi} dt^{-1}$$

Closure relation for the solutions

Representation of the Klein-Gordon propagator

Fermion propagator from Klein-Gordon

$$G(x, x') = (-i) \int_{-\infty}^{0} d\tau \operatorname{Exp} \left[-i\tau \mathcal{H} \right] \delta^{4}(x - x)$$

$$\frac{\xi \, dk_z \, dk_\perp k_\perp}{(2\pi)^3} \phi_i(x) \phi_i^{\dagger}(x') = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \delta^4(x - x')$$

$$S(p) = \frac{\gamma^{0}(p_{0} + \Omega/2) - \vec{\gamma} \cdot \vec{p} + m}{(p_{0} + \Omega/2)^{2} - p^{2} - m^{2} + i\epsilon} \mathcal{O}^{+} + \frac{\gamma^{0}(p_{0} - \Omega/2) - \vec{\gamma} \cdot \vec{p} + m}{(p_{0} - \Omega/2)^{2} - p^{2} - m^{2} + i\epsilon} \mathcal{O}^{-}$$

(ned term)

$$= \frac{1}{2}(1 + i\gamma^{1}\gamma^{2})$$

$$\mathcal{O}^{-} = \frac{1}{2}(1 - i\gamma)$$

Alig

$$\mathcal{O}^+ = \frac{1}{2}(1 + i\gamma^1\gamma^2)$$

Real and imaginary part

Notice that for -1 < x < 1

 $\frac{x+1}{x-1} < 0 \quad \text{and} \quad \frac{x}{x}$

$$\frac{x^2 + \sqrt{3x^2 + 1} + 1}{x^2 - \sqrt{3x^2 + 1} + 1} < 0$$

Therefore, the propagator with thermal modifications ca be written as

$$\Delta^*(p_0, p) = \frac{-1}{P^2 - M_{\sigma}^2 - \gamma_T p_0 F(x) - i\pi A(x)\theta(p^2 - p_0^2)}$$

JJ Medina et al, arXiv:2502.14248

Then,

$$\log\left(\frac{x+1}{x-1}\right) = \log\left|\frac{x+1}{x-1}\right| + i\pi\theta(1-x^2),$$

$$\log\left(\frac{x^2+\sqrt{3x^2+1}+1}{x^2-\sqrt{3x^2+1}+1}\right) = \log\left|\frac{x^2+\sqrt{3x^2+1}+1}{x^2-\sqrt{3x^2+1}+1}\right| + i\pi\theta(1-x^2)$$

$$A(x) = (5x^{2} + 1)\left(x - \frac{2x^{2}}{\sqrt{3x^{2} + 1}}\right)$$
$$F(x) = 10x^{2} - \frac{4}{3} + (5x^{2} + 1)\left[x \log \left|\frac{x + 1}{x - 1}\right| - \frac{2x^{2}}{\sqrt{3x^{2} + 1}} \log \left|\frac{x^{2} + \sqrt{3x^{2} + 1}}{x^{2} - \sqrt{3x^{2} + 1}}\right|\right]$$

