Signatures of Local Acceleration of Quark-Gluon Plasma in Dilepton Production

Aritra Bandyopadhyay

9th Conference on Chirality, Vorticity and Magnetic Fields in **Quantum Matter**

In collaboration with Moulindu Kundu, Victor E Ambrus and Maxim N Chernodub

Facets of Rotating Quark -gluon-plasma (FORQ), Department of Physics, UVT

Signatures of Quark-gluon-plasma

Heavy Ion Collisions create an isolated Quantum system, which is :

- Initially far away from equilibrium
- Self interacting
- Expanding against the vacuum

To know more about this system, we need to probe it. These probes are also known as Signatures.

Electromagnetic probes as QGP signatures (2)

Electromagnetic probes, i.e. Dileptons, Photons are uniquely built as candidates for QGP signatures

- Carries information from all the important stages of Heavy-Ion-Collisions. •
- No strong interaction. •
- Mean free path in medium > medium size.
- Escape the medium virtually unscathed.

More information ! Least contamination !!

Electromagnetic probes in HIC

3

Contributing processes

We are interested in

3

Leading order Dilepton production

Hadronic

Rescattering

Quark - antiquark annihilation dominates at leading order dilepton production

-T

Spacetime

evolution

Dilepton Spectra

(Dynamic property)

The thermally averaged dilepton multiplicity in the local rest frame of the plasma

$$\begin{array}{c} \text{Emission amplitude} & \text{Thermal weight} & \text{Phase space} \\ \begin{array}{c} \sum_{F} \left[\langle F, l(P_{1}), \bar{l}(P_{2}) | S | I \rangle \right]^{2} & \begin{array}{c} e^{-\beta E_{l}} \\ Z \end{array} & \begin{array}{c} Vd^{3}p_{1} & Vd^{3}p_{2} \\ (2\pi)^{3} & (2\pi)^{3} \end{array} \\ \begin{array}{c} P_{1} \rangle, \bar{l}(P_{2}) | S | I \rangle = \frac{e_{0} & \bar{u}(P_{2})\gamma_{\mu}v(P_{1})}{V\sqrt{4E_{1}E_{2}}} \int d^{4}x & e^{iq \cdot x} & \langle F | A^{\mu}(x) | I \rangle \\ V\sqrt{4E_{1}E_{2}} & \downarrow & \downarrow \\ N = e_{0}^{2} & L_{\mu\nu} & \mathcal{M}^{\mu\nu} & \begin{array}{c} d^{3}p_{1} & d^{3} \\ E_{1}(2\pi)^{3} & E_{2}(2\pi)^{3} \end{array} \\ \end{array}$$

The thermally averaged dilepton multiplicity in the local rest frame of the plasma

$$\begin{array}{c} \text{Emission amplitude} & \text{Thermal weight} & \text{Phase space} \\ \begin{array}{c} \sum_{F} \left[\langle F, l(P_{1}), \bar{l}(P_{2}) | S | I \rangle \right]^{2} & \begin{array}{c} e^{-\beta E_{l}} \\ Z \end{array} & \begin{array}{c} Vd^{3}p_{1} & Vd^{3}p_{2} \\ (2\pi)^{3} & (2\pi)^{3} \end{array} \\ \begin{array}{c} P_{1} \rangle, \bar{l}(P_{2}) | S | I \rangle = \frac{e_{0} & \bar{u}(P_{2})\gamma_{\mu}\nu(P_{1})}{V\sqrt{4E_{1}E_{2}}} \int d^{4}x & e^{iq \cdot x} & \langle F | A^{\mu}(x) | I \rangle \\ \end{array} \\ \begin{array}{c} \sqrt{P_{1}} \rangle, \bar{l}(P_{2}) | S | I \rangle = \frac{e_{0} & \bar{u}(P_{2})\gamma_{\mu}\nu(P_{1})}{V\sqrt{4E_{1}E_{2}}} \int d^{4}x & e^{iq \cdot x} & \langle F | A^{\mu}(x) | I \rangle \\ \end{array} \\ \begin{array}{c} \sqrt{P_{1}} \rangle N = e_{0}^{2} & L_{\mu\nu} & \mathcal{M}^{\mu\nu} & \begin{array}{c} \frac{d^{3}p_{1}}{E_{1}(2\pi)^{3}} & \frac{d^{3}p_{2}}{E_{2}(2\pi)^{3}} \end{array} \\ \end{array}$$

 $L_{\mu\nu} = \frac{1}{4} \operatorname{Tr} \left[\bar{u}(P_2) \gamma_{\mu} v(P_1) \bar{v}(P_1) \gamma_{\nu} u(P_2) \right] = P_{1\mu} P_{2\nu} + P_{1\nu} P_{2\mu} - (P_1 \cdot P_2 + m_l^2) g_{\mu\nu}$

 $\mathcal{M}^{\mu\nu} = \sum \sum$ $= d^4 x a$

 $=2\pi e^{-\beta c}$

$$\int d^{4}x \ d^{4}y \ e^{iq \cdot (x-y)} \langle F | A^{\mu}(x) | I \rangle \times \frac{1}{Z} \langle I | \hat{\rho} \ A^{\nu}(y) \ \hat{\rho}^{-1} \hat{\rho} | F \rangle$$

$$f^{4}y \ e^{iq \cdot (x-y)} \sum_{F} \langle F | A^{\mu}(x) \ A^{\nu}(y_{0} + i\beta, \mathbf{y}) \ \hat{\rho} | F \rangle \frac{1}{Z}$$

$$d^{4}x \ d^{4}y \ e^{iq \cdot (x-y)} \sum_{F} \langle F | A^{\mu}(x) A^{\nu}(y) | F \rangle \frac{e^{-\beta E_{F}}}{Z}$$

$$g_{0} \ \Omega \left[\frac{d^{4}x}{2\pi} \ e^{iq \cdot x} \sum_{F} \langle F | A^{\mu}(x) A^{\nu}(0) | F \rangle \frac{e^{-\beta E_{F}}}{Z} \right]$$

$$\rho^{\mu\nu}(q) = -\frac{1}{\pi} \ \frac{e^{\beta q_{0}}}{e^{\beta q_{0}} - 1} \ \frac{e_{f}^{2}}{q^{4}} \ \mathrm{Im} \left[C \left[\frac{dN}{d^{4}x d^{4}q} \right] = \frac{\alpha_{em}}{12\pi^{3}} \frac{e_{f}^{2}}{q^{2}} \frac{1}{e^{\beta q_{0}} - 1} \sum_{f=u,d} \frac{1}{\pi} \ \mathrm{Im} \ C^{\mu}_{\mu,f}(q)$$

*Disclaimer - Formalism derived for static medium

For the present work \rightarrow Considered modifications only in the correlation function C^{μ}_{μ}

$$C^{\mu}_{\mu}(q) = \int d^4x \ e^{iq \cdot x} \operatorname{Tr}_{Dfc} \left[\gamma^{\mu} S(x,0) \ \gamma_{\mu} S(0,x) \right]$$

on C^{μ}

 $\mathcal{M}^{\mu\nu} = \sum \sum$ $= d^4x a$

 $=2\pi e^{-\beta c}$

$$\int d^{4}x \ d^{4}y \ e^{iq \cdot (x-y)} \langle F | A^{\mu}(x) | I \rangle \times \frac{1}{Z} \langle I | \hat{\rho} \ A^{\nu}(y) \ \hat{\rho}^{-1} \hat{\rho} | F \rangle$$

$$t^{4}y \ e^{iq \cdot (x-y)} \sum_{F} \langle F | A^{\mu}(x) \ A^{\nu}(y_{0} + i\beta, \mathbf{y}) \ \hat{\rho} | F \rangle \frac{1}{Z}$$

$$d^{4}x \ d^{4}y \ e^{iq \cdot (x-y)} \sum_{F} \langle F | A^{\mu}(x) A^{\nu}(y) | F \rangle \frac{e^{-\beta E_{F}}}{Z}$$

$$g_{0} \ \Omega \left[\frac{d^{4}x}{2\pi} \ e^{iq \cdot x} \sum_{F} \langle F | A^{\mu}(x) A^{\nu}(0) | F \rangle \frac{e^{-\beta E_{F}}}{Z} \right]$$

$$\rho^{\mu\nu}(q) = -\frac{1}{\pi} \ \frac{e^{\beta q_{0}}}{e^{\beta q_{0}} - 1} \ \frac{e_{f}^{2}}{q^{4}} \ \mathrm{Im} \left[Q \right]$$

$$\frac{dN}{d^{4}x d^{4}q} = \frac{\alpha_{em}}{12\pi^{3}} \frac{e_{f}^{2}}{q^{2}} \frac{1}{e^{\beta q_{0}} - 1} \sum_{f=u,d} \frac{1}{\pi} \ \mathrm{Im} \ C^{\mu}_{\mu,f}(q)$$

*Disclaimer - Formalism derived for static medium

For the present work \rightarrow Considered modifications only in the correlation function C^{μ}_{μ}

$$\left[C^{\mu}_{\mu}\right]^{\alpha}(q) = \int d^{4}x \ e^{iq \cdot x} \ \operatorname{Tr}_{Dfc}\left[\gamma^{\mu} \ S^{\alpha}(x,0) \ \gamma_{\mu} \ S^{\alpha}(0,x)\right]$$

on C^{μ}

Loca acce at on the

Unruh effect : an observer detects an apparent thermal radiation in an uniformly accelerated frame -

$$T_U = \frac{a}{2\pi}$$

Ultra-relativistic heavy lon collisions \rightarrow Large acceleration immediately after the collisions \rightarrow Perfect place to test the effect due to acceleration

A natural question : How acceleration affects the observables signatures from different stages of FIC

Present work \rightarrow We are interested in QGP phase \rightarrow The acceleration becomes reasonably weak!

Prokhorov et. al.; 2502.1014

Dirac propagator with weak acceleration (7)

$\hat{ ho}$ = Density matrix in an accelerated medium :

$$\hat{\rho}\hat{\phi}(x_{\perp};t,z)\hat{\rho}^{-1} = e^{-\alpha \mathcal{S}^{0z}}\hat{\phi}(x_{\perp};\tilde{t},\tilde{z}) \qquad \qquad \alpha = \frac{a}{T}$$

KMS relation : $S_E(x_{\perp}, \tilde{\tau}, \tilde{z}; x') = -e^{\alpha}$

$$S_{E}^{(\alpha)}(x_{\perp},\tau,z;x') = \sum_{j=-\infty}^{\infty} (-1)^{j} e^{-j\alpha S^{0z}} S_{E}^{\text{vac}}(x_{\perp},\tau_{(j)},z_{(j)};x')$$

Ambruș & Chernodub ; PLB 855 (2024)

$$= \exp\left[-\beta(\widehat{H} - a\,\widehat{K}^{z})\right]$$

$$\alpha \mathcal{S}^{0z} S_E(x_{\perp}, \tau, z; x')$$

$$T(x) = \frac{\beta\sqrt{(1+az)^2 - (at)^2}}{\beta\sqrt{(1+az)^2 - (at)^2}}$$
$$u^{\mu}\partial_{\mu} = \frac{(1+az)\partial_t + (at)\partial_z}{\sqrt{(1+az)^2 - (at)^2}}$$
$$a^{\mu}\partial_{\mu} = a \times \frac{(at)\partial_t + (1+az)^2}{(1+az)^2 - (at)^2}$$

$$\tau_{(j)} = \tau \cos(j\alpha) - \frac{1}{a}(1 + az)\sin(j\alpha)$$
$$z_{(j)} = \tau \sin(j\alpha) + \frac{1}{a}(1 + az)\cos(j\alpha)$$

Dirac propagator with weak acceleration

$$\tau_{(j)} = \tau \cos(j\alpha) - \frac{1}{a}(1+az)\sin(j\alpha),$$
$$z_{(j)} = \tau \sin(j\alpha) + \frac{1}{a}(1+az)\cos(j\alpha) - \frac{1}{a},$$

Ambruș & Chernodub ; PLB 855 (2024)

 $\begin{cases} \tau_{(j)} = \tau - j\beta - zj\alpha + O(\alpha^2) \\ z_{(j)} = z + \tau j\alpha - \frac{\alpha\beta j^2}{2} + O(\alpha^2) \end{cases}$

Dirac propagator with weak acceleration (7)

$$S_E^{(\alpha)}(x_{\perp},\tau,z;x') = \sum_{j=-\infty}^{\infty} (-1)^j e^{-j\alpha S^{0z}} S_E^{\text{vac}}(x_{\perp},\tau_{(j)})$$

$$e^{-j\alpha S^{0z}} = \cos\frac{j\alpha}{2} - i\gamma^0\gamma^3\sin\frac{j\alpha}{2}$$

$$\int_{E}^{\operatorname{vac}}(x,x') = \int$$

$$S_E^{(\alpha)}(X, \Delta x) = S_E^0(\Delta x) + \alpha \ S_E^1(X, \Delta x)$$

$$S_{E}^{0}(\Delta x) = \frac{1}{\beta_{T}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} e^{ip \cdot \Delta x} \frac{m-p}{p^{2}+m^{2}} \bigg|_{p_{\tau}=\omega_{n}}$$

$$S_{E}^{1}(X,\Delta x) = \frac{1}{\beta_{T}^{2}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{\partial}{\partial p_{\tau}} \left[e^{ip \cdot \Delta x} \left\{ p_{\tau} \left(Z + \frac{\Delta z}{2} \right) - p_{z} \left(T + \frac{\Delta \tau}{2} \right) + \frac{\gamma^{0} \gamma^{3}}{2} \right\} \frac{m - p}{p^{2} + m^{2}} \right]_{p_{\tau} = \omega_{n}} + \frac{i}{2\beta_{T}^{2}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} p_{z} \frac{\partial^{2}}{\partial p_{\tau}^{2}} \left[e^{ip \cdot \Delta x} \frac{m - p}{p^{2} + m^{2}} \right]_{p_{\tau} = \omega_{n}} + \frac{i}{2\beta_{T}^{2}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} p_{z} \frac{\partial^{2}}{\partial p_{\tau}^{2}} \left[e^{ip \cdot \Delta x} \frac{m - p}{p^{2} + m^{2}} \right]_{p_{\tau} = \omega_{n}} + \frac{i}{2\beta_{T}^{2}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} p_{z} \frac{\partial^{2}}{\partial p_{\tau}^{2}} \left[e^{ip \cdot \Delta x} \frac{m - p}{p^{2} + m^{2}} \right]_{p_{\tau} = \omega_{n}} + \frac{i}{2\beta_{T}^{2}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} p_{z} \frac{\partial^{2}}{\partial p_{\tau}^{2}} \left[e^{ip \cdot \Delta x} \frac{m - p}{p^{2} + m^{2}} \right]_{p_{\tau} = \omega_{n}} + \frac{i}{2\beta_{T}^{2}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} p_{z} \frac{\partial^{2}}{\partial p_{\tau}^{2}} \left[e^{ip \cdot \Delta x} \frac{m - p}{p^{2} + m^{2}} \right]_{p_{\tau} = \omega_{n}} + \frac{i}{2\beta_{T}^{2}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} p_{z} \frac{\partial^{2}}{\partial p_{\tau}^{2}} \left[e^{ip \cdot \Delta x} \frac{m - p}{p^{2} + m^{2}} \right]_{p_{\tau} = \omega_{n}} + \frac{i}{2\beta_{T}^{2}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} p_{z} \frac{\partial^{2}}{\partial p_{\tau}^{2}} \left[e^{ip \cdot \Delta x} \frac{m - p}{p^{2} + m^{2}} \right]_{p_{\tau} = \omega_{n}} + \frac{i}{2\beta_{T}^{2}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} p_{z} \frac{\partial^{2}}{\partial p_{\tau}^{2}} \left[e^{ip \cdot \Delta x} \frac{m - p}{p^{2} + m^{2}} \right]_{p_{\tau} = \omega_{n}} + \frac{i}{2\beta_{T}^{2}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} p_{z} \frac{\partial^{2}}{\partial p_{\tau}^{2}} \left[e^{ip \cdot \Delta x} \frac{m - p}{p^{2} + m^{2}} \right]_{p_{\tau} = \omega_{n}} + \frac{i}{2\beta_{T}^{2}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} p_{z} \frac{\partial^{2}}{\partial p_{\tau}^{2}} \left[e^{ip \cdot \Delta x} \frac{m - p}{p^{2} + m^{2}} \right]_{p_{\tau} = \omega_{n}} + \frac{i}{2\beta_{T}^{2}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} p_{z} \frac{\partial^{2}}{\partial p_{\tau}} \left[e^{ip \cdot \Delta x} \frac{m - p}{p^{2} + m^{2}} \right]_{p_{\tau} = \omega_{n}} + \frac{i}{2\beta_{T}^{2}} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} p_{z} \frac{\partial^{2}}{\partial p_{\tau}} \left[e^{ip \cdot \Delta x} \frac{m - p}{p^{2} + m^{2}} \right]_{p_{\tau} = \omega_{n}} + \frac{i}{2\beta_{T}^{2}} \sum_{n} \frac{i}{2\beta_{T}^{2}} p_{z} \frac{i}{2\beta_{T}^{2}} p_$$

$$\Delta x) + \mathcal{O}[\alpha^{2}] \qquad \leftarrow \qquad \begin{array}{c} \text{Ambrus, & Chernodub ; PLB 855 (20)} \\ \hline \begin{array}{c} \frac{d^{4}p}{(2\pi)^{4}}e^{ip \cdot (x-x')} \frac{m-p}{p^{2}+m^{2}} \\ \hline \end{array} \\ \hline \\ \Delta x) + \mathcal{O}[\alpha^{2}] \qquad \leftarrow \qquad \begin{array}{c} \overline{\tau_{(j)} = \tau - j\beta - zj\alpha + O(\alpha^{2})} \\ z_{(j)} = z + \tau j\alpha - \frac{\alpha\beta j^{2}}{2} + O(\alpha^{2}) \\ \downarrow \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \text{Need for coordinate transformation} \\ \{x, x'\} \rightarrow \{X, \Delta x\} \quad X = \frac{x+x'}{2}; \quad \Delta x = x \end{array}$$

Correlation function with weak acceleration (8)

$$\begin{split} C^{\mu\nu}_{(\alpha)}(q) &= \frac{1}{\Omega} \int d^4 X \int d^4 \Delta x \ e^{-iq \cdot \Delta x} \ \mathsf{Tr}_{Dfc} \left[\gamma^{\mu} S^{(\alpha)}_E(X, \Delta x) \gamma^{\nu} S^{(\alpha)}_E(X, -\Delta x) \right], \\ &= \frac{1}{\Omega} \int d^4 X \int d^4 \Delta x \ e^{-iq \cdot \Delta x} \ \mathsf{Tr}_{Dfc} \left[\gamma^{\mu} \left(S^0_E(\Delta x) + \alpha \ S^1_E(X, \Delta x) \right) \gamma^{\nu} \left(S^0_E(\Delta x) + \alpha \ S^1_E(X, \Delta x) \right) \right], \end{split}$$

 $S_E^0(-\Delta x) + \alpha S_E^1(X, -\Delta x))],$

Correlation function with weak acceleration (8)

$$\operatorname{Im} C_{(\alpha)}^{\mu\nu}(q) = \operatorname{Im} \left(\frac{1}{\Omega} \int d^{4}X \int d^{4}\Delta x \ e^{-iq\cdot\Delta x} \operatorname{Tr}_{Dfc} \left[\gamma^{\mu} S_{E}^{(\alpha)}(X, \Delta x) \gamma^{\nu} S_{E}^{(\alpha)}(X, -\Delta x) \right] \right),$$

$$= \operatorname{Im} \left(\frac{1}{\Omega} \int d^{4}X \int d^{4}\Delta x \ e^{-iq\cdot\Delta x} \operatorname{Tr}_{Dfc} \left[\gamma^{\mu} \left(S_{E}^{0}(\Delta x) + \alpha \ S_{E}^{1}(X, \Delta x) \right) \gamma^{\nu} \left(S_{E}^{0}(X, -\Delta x) \right) \right] \right),$$

$$= \operatorname{Im} C_{0}^{\mu\nu}(q) + \alpha \operatorname{Im} C_{1}^{\mu\nu}(q) + \mathcal{O}[\alpha^{2}].$$

 $(-\Delta x)+\alpha S^1_E(X, -\Delta x))$

$$\operatorname{Im} C^{\mu}_{0\mu}(\omega, \mathbf{q}) = \frac{1}{2\pi |\mathbf{q}| \beta} N_c N_f (Q^2 + 2m^2) \log \left[\frac{(e^{-\beta\omega} + e^{-\beta\omega_-})(1 + e^{-\beta\omega_+})}{(e^{-\beta\omega} + e^{-\beta\omega_+})(1 + e^{-\beta\omega_-})} \right].$$

$$\begin{split} \mathrm{Im}C^{\mu}_{1\mu}(\omega,\mathbf{q}) &= \frac{N_c N_f}{2\pi\beta} \left[\frac{2Q^2}{\beta |\mathbf{q}|^2} \log \left[\frac{(e^{-\beta\omega} + e^{-\beta\omega_-})(1 + e^{-\beta\omega_+})}{(e^{-\beta\omega} + e^{-\beta\omega_+})(1 + e^{-\beta\omega_-})} \right] - \frac{\omega}{|\mathbf{q}|} \mathcal{M}(\omega,\omega_+) \left[\sqrt{\omega_+^2 - m^2} + \sqrt{\omega_-^2 - m^2} + \mathcal{M}(\omega,\omega_+)(\omega_+ - \omega_-) - 2(Q^2 + 2m^2) \frac{\omega}{|\mathbf{q}|} \frac{\partial}{\partial m^2} \left(\mathcal{M}(\omega,\omega_+)(\omega_+ - \omega_-) \right) + 2\mathcal{M}(\omega,\omega_+) \left[\omega_+ \left(\omega_+ - \frac{\omega}{|\mathbf{q}|} \sqrt{\omega_+^2 - m^2} \right) + \omega_- \left(\omega_- - \frac{\omega}{|\mathbf{q}|} \sqrt{\omega_-^2 - m^2} \right) \right] \frac{\partial\omega_+}{\partial m^2} \right]. \end{split}$$

$$\omega_{\pm} = \frac{1}{2} \left(\omega \pm |\mathbf{q}| \sqrt{1 - \frac{4m^2}{Q^2}} \right)$$

Results

$$\left. \mathcal{M}(\omega, \omega_{+}) = 1 - n_{F}(\omega_{+}) - n_{F}(\omega - \omega_{+}) \right.$$

DR as a function of invariant mass for a weakly accelerating medium (DR^{α}) shown in comparison with the Born dilepton rate (DR^0), i.e. DR with vanishing acceleration. With varying T (left panel) and α (right panel).

Results

In this talk we have

- Discussed about the signatures of different stages of Heavy Ion collisions.
- Emphasised about the importance of Dileptons as a QGP signature.
- Formulated the basic expression for the Dilepton rate.
- Discussed the necessity of incorporating local acceleration in the system.
- Evaluated the Dilepton rate in a weakly accelerated medium.

We found encouraging enhancement of the Dilepton rate in the intermediate invariant mass (M) range in comparison with the Born rate.

Outlook :

- Changes in the formalism of DPR due to local acceleration \rightarrow incorporate the modified density matrix.
- Extending to arbitrary values of acceleration.
- Incorporating arbitrary polarisation for the outgoing lepton pairs etc.

Thank you for your kind attention

Summary

In this talk we have

- Discuss
- Emphas
- Formula
- Discuss
- Evaluate

$$\begin{split} \tilde{x}^{\mu} &= \mathscr{L}^{\mu}{}_{\nu}x^{\nu} + A^{\mu}, \\ \mathscr{L}^{\mu}{}_{\nu} &= \begin{pmatrix} \cos \alpha & 0 & 0 & i \sin \alpha \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ i \sin \alpha & 0 & 0 & \cos \alpha \end{pmatrix}, \\ A^{\mu}\partial_{\mu} &= \frac{i}{a} \sin \alpha \partial_{t} - \frac{1}{a}(1 - \cos \alpha)\partial_{z}. \end{split}$$

Outlook :

- Changes
- Extendir

$$\mathcal{M}^{\mu\nu}(Q) = (\mathcal{L}^{-1})^{\nu}_{\lambda} \int d^4y \ d^4y' \ e^{iQ\cdot(y-y')} \left\langle A^{\mu}(y)A^{\lambda}(\mathcal{L}y'+A) \right\rangle_{\beta,\alpha} \qquad \langle \widehat{A} \rangle_{\beta,\alpha} = \sum_{F} \langle F | \ \widehat{A} \ \hat{\rho} | F \rangle$$

Incorpor

Thank you for your kind attention

Summary

In this talk we have

- Discussed about the signatures of different stages of Heavy Ion collisions.
- Emphasised about the importance of Dileptons as a QGP signature.
- Formulated the basic expression for the Dilepton rate.
- Discussed the necessity of incorporating local acceleration in the system.
- Evaluated the Dilepton rate in a weakly accelerated medium.

We found encouraging enhancement of the Dilepton rate in the intermediate invariant mass (M) range in comparison with the Born rate.

Outlook :

- Changes in the formalism of DPR due to local acceleration \rightarrow incorporate the modified density matrix.
- Extending to arbitrary values of acceleration.
- Incorporating arbitrary polarisation for the outgoing lepton pairs etc.

Thank you for your kind attention

Summary

