Nonequilibrium Dynamics of the Chiral Quark Condensate Magnetic Field Effects, Inhomogeneous condensates

Gastão Krein

Instituto de Física Teórica, São Paulo

9th Conference on Chirality, Vorticity and Magnetic Fields in Quantum Matter São Paulo – 07 - 11 July 2025

Motivation

- 1. Time dependence is a common feature of strongly interacting phenomena in the early universe, magnetars, and heavy-ion collisions
- 2. The quark condensate is a prominent QCD property affected by temperature, baryon density, and strong magnetic fields
- 3. Time scales of the condensate dynamics are important for hadron production in heavy-ion collisions
- 4. How is the quark condensate dynamics affected by temperature, density and magnetic fields?
- 5. Here: studies of quark condensate nonequilibrium time evolution (magnetic field, inhomogeneos chiral condensate)

Work with Arthur Frazon + Carlisson Miller + Juan Pablo Carlomagno + Theo Motta

Phase change - time dependence

Typical situation:

- A system is forced to change from a thermodynamic equilibrium phase to another, out-of-equilibrium phase
- Evolution to new equilibrium through spatial fluctuations that take the system (initially homogeneous) through a sequence of highly (not in equilibrium) inhomogeneous states

Theory: coarse-graining

Rational:

- It is difficult/impossible to describe the system with microscopic d.o.f.
- Focus on a small number of semi-macroscopic variables; order parameters φ
- Dynamics of φ is slower than that of the microscopic degrees of freedom; described by Ginzburg-Landau-Langevin type of equations

From A. Zee book

Landau: system's state characterized by a macroscopic free energy $F[\varphi]$

Example: $F[\varphi] = \int d^3x \left[\kappa(\nabla \varphi)^2 + V(\varphi) \right], \quad V(\varphi) = \frac{1}{2} r \varphi^2 + \frac{1}{4} u \varphi^4$

Landau: system's state characterized by a macroscopic free energy $F[\varphi]$

Example: $F[\varphi] = \int d^3x \left[\kappa(\nabla \varphi)^2 + V(\varphi) \right], \quad V(\varphi) = \frac{1}{2} r \varphi^2 + \frac{1}{4} u \varphi^4$

$$\frac{\delta F}{\delta \varphi} = 0$$

Landau: system's state characterized by a macroscopic free energy $F[\varphi]$

 $\underline{\mathsf{Example}}: \ F[\varphi] = \int d^3x \, \left[\kappa (\nabla \varphi)^2 + V(\varphi) \right], \qquad V(\varphi) = \tfrac{1}{2} \, r \, \varphi^2 + \tfrac{1}{4} \, u \, \varphi^4$

Landau: system's state characterized by a macroscopic free energy $F[\varphi]$

 $\underline{\mathsf{Example}}: \ F[\varphi] = \int d^3x \, \left[\kappa (\nabla \varphi)^2 + V(\varphi) \right], \qquad V(\varphi) = \tfrac{1}{2} \, r \, \varphi^2 + \tfrac{1}{4} \, u \, \varphi^4$

Purely diffusive dynamics - no (thermal) fluctuations

Phase change, fluctuations

 $\eta \frac{\partial \varphi}{\partial t} = -\frac{\delta F}{\delta \varphi} + \xi(x, t) \quad \leftarrow \text{ Ginzburg-Landau-Langevin (GLL) equation}$

$$\langle \xi(x,t)\xi(x',t')\rangle = \sqrt{2\eta T}\,\delta(x-x')\delta(t-t')$$

Fluctuation-dissipation theorem

Phase change

Dynamical universality classes

Dynamical phase changes/transitions can be classified in universality classes according to the nature and couplings of the order parameters*

- Model A: nonconserved order parameter
- Model B: conserved order parameter
- $\,$ Model C: nonconserved and conserved order parameters $\,$

—

P. C. Hohenberg & M.I Halperin, Rev. Mod. Phys. 49, 435 (1977).

Derivation of GLLeq - Linear σ model^{*}

$$\mathcal{L} = \bar{q} [i \partial \!\!\!/ - g(\sigma + i \gamma_5 \boldsymbol{\tau} \cdot \boldsymbol{\pi})] q + \frac{1}{2} [\partial_\mu \sigma \partial^\mu \sigma + \partial_\mu \boldsymbol{\pi} \cdot \partial^\mu \boldsymbol{\pi}] - U(\sigma, \boldsymbol{\pi})$$

$$U(\sigma, \boldsymbol{\pi}) = \frac{\lambda}{4} (\sigma^2 + \boldsymbol{\pi}^2 - v^2)^2 - h_q \sigma - U_0$$

Parameters: $v^2 = f_{\pi}^2 - \frac{m_{\pi}^2}{\lambda^2}, \ m_{\sigma}^2 = 2\lambda^2 f_{\pi}^2 + m_{\pi}^2, \ h_q = f_{\pi} m_{\pi}^2, \ m_q = g \langle \sigma \rangle, \ U_0: \ U(0,0) = 0$

Crossover at $T \simeq 150$ MeV: g = 3.3

Quark condensate: $m \langle \bar{q}q \rangle_{\rm QCD} = -h_q \langle \sigma \rangle$

١.

Coupling magnetic field: $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + iqA_{\mu}$ (for the charged fields)

M. Nahrgang et al. Phys. Rev. C 84, 024912 (2011).

The scenario, approximations

- QGP scales for temperature (T) and magnetic field (B)
- Perturbation around local equilibrium (medium at local T and B)
- No expansion & energy transfer field and medium
- Source of dissipation $\eta: \sigma \rightarrow \bar{q}q$ (no pions)
- Look at qualitative changes due to strong ${\cal B}$
- Analytical understanding

Closed time path formalism

Semiclassical effective action:

$$\Gamma[\sigma, S] = \Gamma_{cl}[\sigma] + i \operatorname{Tr} \ln S - i \operatorname{Tr} \left(i \not D - m_0 \right) S + \Gamma_2[\sigma, S]$$

$$\Gamma_2[\sigma, S] = g \int_{\mathcal{C}} d^4 x \operatorname{tr} \left[S^{++}(x, x) \sigma^+(x) + S^{--}(x, x) \sigma^-(x) \right]$$

 $-~\sigma$ and S defined on the Schwinger-Keldysh contour (CTP contour), $\sigma^{\pm},~S^{\pm}$

 $-\sigma^{\pm}, S^{\pm}$ are not independent, they are equal at some large time (CTP b.c.)

Integrate out the quarks

$$\frac{\delta\Gamma[\sigma,S]}{\delta S^{ab}(x,y)} = 0$$

$$\bigcup$$

$$\left(iD - g\sigma_0(x)\right)S^{ab}(x,y) - \int_{\mathcal{C}} d^4 z \, \frac{\delta\Gamma_2[\sigma,S]}{\delta S^{ac}(x,z)} \, S^{cb}(z,y) = i\delta^{ab}\delta^{(4)}(x-y)$$

Very difficult to solve (even numerically): expand around local equilibrium

$$\sigma^{a}(x) = \sigma_{0}^{a}(x) + \delta\sigma^{a}(x)$$

$$S^{ab}(x,y) = S^{ab}_{\text{thm}}(x,y) + \delta S^{ab}(x,y) + \delta^{2}S^{ab}(x,y) + \cdots$$
where $\frac{\delta\Gamma_{\text{cl}}}{\delta\sigma_{0}^{a}(x)} = -g\text{Tr}S^{aa}(x,x)$ and $[i\not\!\!D - m_{0} - g\,\sigma_{0}(x)]S^{ab}_{\text{thm}}(x,y) = -i\delta^{ab}\delta^{(4)}(x-y)$

GLL equation

- Dissipation $(\sigma \rightarrow \bar{q}q)$: imaginary part of $\Gamma[\sigma, S]$
- Variation of $\Gamma[\sigma,S]$ w.r.t. σ to obtain e.o.m. not possible
- Solution: use Feynman-Vernon trick, identify the imaginary part with a noise source coupling linearly to the field
- Obtain real action, variation w.r.t. σ leads to GLL equation

$$\partial_{\mu}\partial^{\mu}\sigma(x) + \frac{\delta U[\sigma]}{\delta\sigma(x)} + g\rho_s(\sigma_0) - D_{\sigma}(x) = \xi_{\sigma}(x)$$

GLL equation

$$\partial_{\mu}\partial^{\mu}\sigma(x) + \frac{\delta U[\sigma]}{\delta\sigma(x)} + g\rho_s(\sigma_0) - D_{\sigma}(x) = \xi_{\sigma}(x)$$

Scalar Density: $\rho_s(\sigma_0) = \operatorname{tr} S_{thm}^{++}(x, x)$

Dissipation kernel:
$$D_{\sigma}(x) = ig^2 \int d^4 y \, \theta(x^0 - y^0) \, M(x, y) \, \delta\sigma(y) \leftarrow \mathsf{Memory}$$

$$M(x, y) = \operatorname{tr} \left[S^{+-}_{thm}(x, y) S^{-+}_{thm}(y, x) - S^{-+}_{thm}(x, y) S^{+-}_{thm}(y, x) \right]$$

<u>Colored noise</u>: $\langle \xi_{\sigma}(x) \rangle_{\xi} = 0$ and $\langle \xi_{\sigma}(x)\xi_{\sigma}(y) \rangle_{\xi} = N(x,y)$ $N(x,y) = -\frac{1}{2}g^{2} \operatorname{tr} \left[S_{thm}^{+-}(x,y)S_{thm}^{-+}(y,x) + S_{thm}^{-+}(x,y)S_{thm}^{+-}(y,x) \right]$

 $\underline{\langle \cdots \rangle_{\xi}} : \text{functional average with prob. distr. } P[\xi] = \exp\left[-\frac{1}{2}\int d^4x d^4y \,\xi(x) N^{-1}(x,y) \,\xi(y)\right]$

Quark propagator $S^{ab}_{thm}(x,y)$

Structure of $\rho_s(x)$, M(x,y) and N(x,y)

- Schwinger phase drops out, use Fourier transform

In the lowest Landau level (LLL) approximation:

$$\begin{split} S_{thm}^{++}(p) &= e^{-p_{\perp}^{2}/|q_{f}B|} A(p) \left[\frac{i}{p_{\parallel}^{2} - m_{q}^{2} + i\epsilon} - 2\pi n_{F}(p_{0})\delta(p_{\parallel}^{2} - m_{q}^{2}) \right] \\ S_{thm}^{+-}(p) &= e^{-p_{\perp}^{2}/|q_{f}B|} A(p) 2\pi \delta(p_{\parallel}^{2} - m_{q}^{2}) \left[\theta(-p_{0}) - n_{F}(p_{0}) \right], \\ S_{thm}^{-+}(p) &= e^{-p_{\perp}^{2}/|q_{f}B|} A(p) 2\pi \delta(p_{\parallel}^{2} - m_{q}^{2}) \left[\theta(p_{0}) - n_{F}(p_{0}) \right] \\ S_{thm}^{--}(p) &= e^{-p_{\perp}^{2}/|q_{f}B|} A(p) \left[\frac{-i}{p_{\parallel}^{2} - m_{q}^{2} - i\epsilon} - 2\pi n_{F}(p_{0})\delta(p_{\parallel}^{2} - m_{q}^{2}) \right] \\ \text{where } A(p) &= (\not p_{\parallel} + m_{q}) \left[1 + i\gamma^{1}\gamma^{2} \text{sign}(qB) \right] \text{ and } n_{F}(p_{0}) = \frac{1}{e^{|p_{0}|/T + 1}} \end{split}$$

Momentum space GLL equation

$$\frac{\partial^2 \sigma(t, \boldsymbol{p})}{\partial t^2} + \boldsymbol{p}^2 \,\sigma(t, \boldsymbol{p}) + \eta(\boldsymbol{p}) \,\frac{\partial \sigma(t, \boldsymbol{p})}{\partial t} + F_{\sigma}(t, \boldsymbol{p}) = \xi_{\sigma}(t, \boldsymbol{p})$$

$$\eta(\boldsymbol{p}) = g^2 \frac{1}{2E_{\sigma}(\boldsymbol{p})} M(\boldsymbol{p}) \quad \leftarrow M(\boldsymbol{p}) = M(E_{\sigma}, \boldsymbol{p}), \ E_{\sigma} = \sqrt{\boldsymbol{p}^2 + m_{\sigma}^2}$$
$$F_{\sigma}(t, \boldsymbol{p}) = \int d^3 x \, e^{-i\boldsymbol{p}\cdot\boldsymbol{x}} \left[\frac{\delta U[\sigma]}{\delta\sigma(t, \boldsymbol{x})} + g \, \rho_s(\sigma_0) \right]$$
$$\langle \xi_{\sigma}(t, \boldsymbol{p}) \xi_{\sigma}(t', \boldsymbol{p}) \rangle_{\xi} = (2\pi)^3 \delta(\boldsymbol{p} + \boldsymbol{p}') N(t - t', \boldsymbol{p})$$

 $\underline{\eta = 0}$: "classical" equation of motion $\eta \neq 0$: slows the dynamics

GK and C. Miller, Symmetry 13, 551 (2021).

Equilibrium*

E.S. Fraga & A.J. Mizher, Phys. Rev. D 78, 025016 (2008).

Zero-mode η

$$\underline{B} = 0 \quad \eta_0 = g^2 \frac{2N_c}{\pi} \left[1 - 2n_F(m_\sigma/2) \right] \frac{1}{m_\sigma^2} \left(m_\sigma^2 - 4m_q^2 \right)^{3/2}$$
$$\underline{B} \neq 0 \quad \eta_B = g^2 \frac{N_c}{4\pi} \left[1 - 2n_F(m_\sigma/2) \right] (eB) \frac{1}{m_\sigma^2} \sqrt{m_\sigma^2 - 4m_q^2} \quad (LLL)$$

σ and quark masses

 $\eta \neq 0$ when $m_{\sigma} > 2m_q$

B modifies minimum of V_{eff} ($\leftarrow m_q$) and its curvature ($\leftarrow m_\sigma$)

 m_{σ} increases faster than m_q as the temperature decreases:

- $-\eta_B$ increases at low temperatures
- increase in η_B delays evolution of σ

Short-time dynamics

Linearized GLL equation:

$$\eta(\boldsymbol{p}_{\perp}) \, \frac{\partial \overline{\sigma}(t, \boldsymbol{p}_{\perp})}{\partial t} - \left(\mu^2 - \boldsymbol{p}_{\perp}^2\right) \overline{\sigma}(t, \boldsymbol{p}_{\perp}) + g\rho_s(\sigma_0) - f_{\pi}m_{\pi}^2 = \overline{\xi}_{\sigma}(t, \boldsymbol{p}_{\perp})$$

$$\mu^2 = \lambda \left(f_\pi^2 - \frac{m_\pi^2}{\lambda} \right), \quad \overline{\sigma} = \sigma/L^3, \quad \overline{\xi} = \xi/L^3$$

Quench from high to low T:

$$\begin{split} \langle \overline{\sigma}^2(t, \boldsymbol{p}_{\perp}^2) \rangle_{\boldsymbol{\xi}} &= \frac{\left[g\rho_s(\sigma_0) - f_{\pi}m_{\pi}^2\right]^2}{(\mu^2 - \boldsymbol{p}_{\perp})^2} \left(e^{\lambda(\boldsymbol{p}_{\perp}) \ t/\tau_s} - 1\right)^2 + \frac{E(\boldsymbol{p}_{\perp}) \coth(E(\boldsymbol{p}_{\perp}))}{L^3(\mu^2 - \boldsymbol{p}_{\perp}^2)} \left(e^{2 \ \lambda(\boldsymbol{p}_{\perp}) \ t/\tau_s} - 1\right) \\ \tau_s &= \frac{\eta_B}{\mu^2} \qquad \text{and} \qquad \lambda(\boldsymbol{p}_{\perp}) = \frac{1 - \boldsymbol{p}_{\perp}^2/\mu^2}{\eta(\boldsymbol{p}_{\perp})/\eta_B}, \end{split}$$

Short-time dynamics

Large B slows considerably the short-time dynamics Present estimate: delays of $\simeq 1~{\rm fm/c} \leftarrow 1/10$ of QGP lifetime

Long-time dynamics

Condensate not thermalized within QGP lifetime

Long-time dynamics

Condensate thermilized within QGP lifetime

Inhomogeneous chiral condensates

- Low T and high μ : stable phase of quark matter might break translational invariance (condensates spatially modulated)
- Different kinds of modulations, depending on dimensionality of space For example:
 - D = 1: kinks
 - D = 2: Checkerboard crystals
 - D = 3: Domain wall networks

- Next: even when not strictly stable, have remarkably long lifetimes

Review: M. Buballa and S. Carignano, Prog. Part. Nucl. Phys. 81, 39 (2015)

Phenomenological GLL equation:

$$\eta \frac{\partial \phi^a(\boldsymbol{x}, t)}{\partial t} = -\frac{\delta \Omega_{GL}}{\delta \phi^a(\boldsymbol{x}, t)} + \xi(\boldsymbol{x}, t), \qquad a = \sigma, \pi$$
$$\Omega_{GL}[\phi^a] = \int d^4 x \left[\frac{\alpha_2}{2} \phi^2 + \frac{\alpha_4}{4} \left(\phi^2 \right)^2 + \frac{\alpha_{4b}}{4} (\nabla \phi)^2 + \cdots \right]$$
$$\langle \xi(\boldsymbol{x}, t) \rangle = 0, \qquad \langle \xi(\boldsymbol{x}, t) \xi(\boldsymbol{x}', t') \rangle = 2\eta T \delta(t - t') \delta^{(3)}(\boldsymbol{x} - \boldsymbol{x}')$$

 Ω_{GL} : for a bosonized nonlocal NJL model Carlomagno, Dumm, and Scoccola PLB 745, 1 (2015).

$$\begin{split} S_E &= \int d^4x \left[-i\bar{\psi}(x) \partial\!\!\!/ \psi(x) - \frac{G}{2} j_a(x) j_a(x) \right], \qquad j_a(x) = \int d^4x' \mathcal{G}(x') \bar{\psi} \left(x + \frac{x'}{2} \right) \Gamma_a \psi \left(x - \frac{x'}{2} \right) \\ \alpha_2 &= \frac{1}{G} - 8N_c \oint \frac{g^2}{p_n^2}, \qquad \alpha_4 = 8N_c \oint \frac{g^4}{p_n^4}, \qquad \alpha_{4b} = 8N_c \oint \frac{g^2}{p_n^4} \left(1 - \frac{2}{3} \frac{g'}{g} \vec{p}^2 \right), \cdots \\ \oint (\cdots) &= T \sum_{\omega_n} \int d^3p \ (\cdots) \end{split}$$

Phase diagram

Equilibrium: at the star mark, $T=50~{\rm MeV}$ and $\mu=150~{\rm MeV},$

stable homogeneous condensates

1 + 1 dimensions

Different realizations of the noise field (fluctuations)

2 + 1 dimensions

3 + 1 dimensions

Conclusions & Perspectives

- 1. Presented a nonequilibrium QFT setup to tackle temperture, baryon density, and magnetic field effects on chiral dynamics
- 2. Used Ginzburg-Landau-Langevin framework, made numerical estimates of the short- and long-time dynamics
- 3. More realistic applications to HIC: beyond LLL approximation (weak fields), include pion dynamics, couple to hydrodynamics
- Dense matter, patches of nonhomogeneous condensates: although not strictly stable, have remarkably long lifetimes ← might produce deviations in the relation between postmerger gravitational wave frequency f_{peak} and tidal deformability λ akin to Bauswein et I. PRL 122, 061102 (2019)

Thank you

Funding

